JP2005187913A - Browning surface-treated copper foil, its production method, and electromagnetic wave shielding conductive mesh for front panel of plasma display obtained by using the browning surface-treated copper foil - Google Patents

Browning surface-treated copper foil, its production method, and electromagnetic wave shielding conductive mesh for front panel of plasma display obtained by using the browning surface-treated copper foil Download PDF

Info

Publication number
JP2005187913A
JP2005187913A JP2003433053A JP2003433053A JP2005187913A JP 2005187913 A JP2005187913 A JP 2005187913A JP 2003433053 A JP2003433053 A JP 2003433053A JP 2003433053 A JP2003433053 A JP 2003433053A JP 2005187913 A JP2005187913 A JP 2005187913A
Authority
JP
Japan
Prior art keywords
copper foil
plating
browning
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003433053A
Other languages
Japanese (ja)
Other versions
JP4354271B2 (en
Inventor
Tsutomu Higuchi
勉 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003433053A priority Critical patent/JP4354271B2/en
Priority to KR1020057021874A priority patent/KR100738164B1/en
Priority to CNB2004800104109A priority patent/CN100567584C/en
Priority to PCT/JP2004/019006 priority patent/WO2005064044A1/en
Priority to TW093139820A priority patent/TW200526111A/en
Publication of JP2005187913A publication Critical patent/JP2005187913A/en
Application granted granted Critical
Publication of JP4354271B2 publication Critical patent/JP4354271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide surface-treated copper foil provided with a browning-treated layer free from the falling of powder and having a uniform color tone and comprising no different metals to form into the cause for inhibiting etching so as to further facilitate etching. <P>SOLUTION: The browning surface-treated copper foil is provided with a browning-treated face formed by copper plating performed in a multistage, and the cross-sectional height of the browning-treated face is ≤150 nm. The browning-treated face has the characteristics, e.g., that the a value in an Lab color system is ≤4.0. The surface-treated copper foil is produced fundamentally through a stage a (a fundamental plating treatment stage), a stage b (an additional plating treatment stage), a stage c (a coating plating treatment stage), a stage d (a finish plating treatment stage), and a stage e (a cleaning/drying stage). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

茶褐色化処理面を備える表面処理銅箔、その表面処理銅箔の製造方法及びその表面処理銅箔を用いたプラズマディスプレイの前面パネル用の電磁波遮蔽導電性メッシュに関する。   The present invention relates to a surface-treated copper foil having a browned surface, a method for producing the surface-treated copper foil, and an electromagnetic wave shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil.

プラズマディスプレイパネルのシールド用導電性メッシュは、金属化繊維織物から導電性メッシュへと変遷してきた。この導電性メッシュの製造には、いくつかの方法が確立されている。その一つは、表面処理銅箔をPETフィルムにラミネートして張り合わせ、フォトリソグラフエッチング法を用いて製造するものである。そして、もう一つは、表面処理銅箔を支持基材と共にフォトリソグラフエッチング法でエッチングして、その後、支持基材を剥がした表面処理銅箔単体の導電性メッシュである。   The conductive mesh for shielding the plasma display panel has been changed from a metalized fiber fabric to a conductive mesh. Several methods have been established for producing this conductive mesh. One of them is to manufacture by using a photolithographic etching method by laminating and bonding a surface-treated copper foil to a PET film. The other is a conductive mesh of a single surface-treated copper foil obtained by etching a surface-treated copper foil together with a supporting base material by a photolithographic etching method, and then peeling the supporting base material.

更に、近年の省電力化の要求から、プラズマ発生信号電圧を200Vから50Vレベルを目標として開発が行われており、当該電圧の低下に伴う輝度の減少を補うため、導電性メッシュの回路幅を細線化し、導電性メッシュによる前面ガラスパネルの被覆率を減少させる試みがなされてきた。そのため、導電性メッシュの厚さを薄くして、エッチング加工を容易にすることが行われてきた。その一つが、PETフィルム上にスパッタリング蒸着法により、電気メッキの種となるシード層を形成し、その後電解銅メッキ等で薄い銅層を形成し、フォトリソグラフエッチング法で、メッシュ線幅を微細化した導電性メッシュの製造が行われてきた。   Furthermore, in order to compensate for the decrease in luminance due to the decrease in the voltage, the circuit width of the conductive mesh has been increased in order to compensate for the decrease in the luminance due to the decrease in the voltage. Attempts have been made to reduce the coverage of the front glass panel by thinning the conductive mesh. Therefore, the thickness of the conductive mesh has been reduced to facilitate the etching process. One of them is to form a seed layer, which is the seed of electroplating, on the PET film by sputtering vapor deposition, and then to form a thin copper layer by electrolytic copper plating, etc., and to refine the mesh line width by photolithographic etching Conductive meshes have been manufactured.

いずれの方法で導電性メッシュが製造されるにせよ、導電性メッシュ自体は前面パネルの中に組み込まれ、前面ガラスを通して表面から視認できるものであるため、その導電性メッシュに加工される表面処理銅箔の片面は、茶褐色から黒色の暗色状態に処理され透過光の輝度を引き立たせるようにする。従来から、この処理には多層プリント配線板の技術である、内層回路と樹脂層との接着性向上のために行う黒化処理、ニッケル若しくはコバルト等の異種金属を用いた表面処理に転用されてきた。   Regardless of the method used to produce the conductive mesh, the conductive mesh itself is incorporated into the front panel and is visible from the surface through the front glass, so the surface-treated copper processed into the conductive mesh. One side of the foil is processed from dark brown to black to enhance the brightness of transmitted light. Conventionally, this treatment has been diverted to multilayer printed wiring board technology, blackening treatment to improve the adhesion between the inner circuit and the resin layer, and surface treatment using different metals such as nickel or cobalt. It was.

PDP材料の技術動向 日立化成テクニカルレポート 第33号(1999−7)Technical Trends of PDP Materials Hitachi Chemical Technical Report No. 33 (1999-7) 特開平11−186785号公報Japanese Patent Laid-Open No. 11-186785 特開2000−31588公報JP 2000-31588 A

しかしながら、上述の黒化処理には、重大な問題があった。即ち、銅箔表面に銅の黒色酸化物を多く付けると、確かに良好な黒色化面が得られる。ところが、銅箔の表面に形成した銅の黒色酸化物は、付着量が多くなるほど、黒色化面から脱落しやすくなり、いわゆる粉落ち現象が起き、黒化処理面が損傷を受けやすく、ハンドリングが困難となるのである。   However, the above blackening process has a serious problem. That is, when a large amount of black oxide of copper is applied to the surface of the copper foil, a good blackened surface can be obtained. However, the copper black oxide formed on the surface of the copper foil is more likely to fall off the blackened surface as the amount of adhesion increases, so-called powdering phenomenon occurs, the blackened surface is more likely to be damaged, and handling is easier. It becomes difficult.

粉落ち現象が発生すると、脱落した黒色酸化物が無用な箇所に混入したり、前面パネルのガラスと一体化させるための透明化処理の時に、透明接着剤層に分散して透明度を劣化させる要因ともなり得るのである。   Factors that cause the falling black oxide to mix into the useless parts or to disperse in the transparent adhesive layer during the clearing process to integrate with the front panel glass. It can be a friend.

一方で、良好な黒色化面を形成することの出来る黒色化処理として、一般的な黒色ニッケルメッキ、硫化ニッケルメッキ、コバルトメッキ等が検討されてきたが、通常の銅のエッチングプロセスで黒色化処理面側からのエッチング加工ができないという問題が生じていた。特に、コバルトやニッケルをリッチに析出させた黒色化処理面を持つ表面処理銅箔は、粉落ちの問題も解決できず、高価なニッケル等を多量に使用するため高価な製品となっていた。   On the other hand, general black nickel plating, nickel sulfide plating, cobalt plating, etc. have been studied as blackening treatments that can form a good blackened surface. There has been a problem that etching cannot be performed from the surface side. In particular, the surface-treated copper foil having a blackened surface on which cobalt or nickel is deposited in a rich manner cannot solve the problem of powder falling, and has become an expensive product because it uses a large amount of expensive nickel or the like.

一方で、プラズマディスプレイパネルの製造技術が成熟し、従来は単に良好な黒色化面を持つ表面処理銅箔が要求されてきたが、製造技術及び管理の高度化に伴い、電磁波遮蔽メッシュの黒色度に高いレベルは必要ではなく、むしろ低価格で、しかもエッチング加工が容易で光の透過度の安定した開口率の高いメッシュパターンを持つ電磁波遮蔽メッシュが望まれるようになってきた。   On the other hand, the manufacturing technology of plasma display panels has matured, and conventionally, a surface-treated copper foil with a simply blackened surface has been required, but with the advancement of manufacturing technology and management, the blackness of the electromagnetic shielding mesh has been increased. However, an electromagnetic wave shielding mesh having a mesh pattern with a high aperture ratio, which is inexpensive, easy to etch, stable in light transmittance, and so on has been desired.

従って、現在市場に流通しているコバルトの黒色系メッキ被膜を備えた銅箔には、銅のエッチャントを用いてのコバルト層のエッチング加工が困難であるという問題が生じ、異種金属を減量して茶褐色の色調のものとすることを試みてきた。   Therefore, the copper foil provided with a black plating film of cobalt currently on the market has a problem that it is difficult to etch the cobalt layer using a copper etchant, reducing the amount of dissimilar metals. I have tried to make it brownish brown.

確かに、低価格という条件を満たし、且つ、エッチングが容易と言うことを考えれば、表面処理銅箔の表面を黒色化しないで、コバルト等の付着量を減らして茶褐色の状態で市場供給する事が今後予測されることとなる。ところが、やはりコバルトやニッケル等の異種金属を用いることに何ら代わりはなく、エッチング廃液処理の負荷も大きく、エッチング阻害要因となる異種金属を含まない銅箔とのエッチング性能の差を完全に無くすことは不可能である。   Certainly, considering that the low price is satisfied and that etching is easy, the surface of the surface-treated copper foil should not be blackened, but the amount of deposited cobalt etc. should be reduced and supplied in the brownish state. Will be predicted in the future. However, there is no substitute for using dissimilar metals such as cobalt and nickel, the etching waste liquid treatment is heavy, and the difference in etching performance from copper foils that do not contain dissimilar metals that cause etching inhibition is completely eliminated. Is impossible.

しかも、従来の茶褐色の表面を持つ表面処理銅箔の欠点は、その茶褐色面の色が均一ではなく、全面にムラが生じたものであった。即ち、同一面内における茶褐色処理の均一化が出来ていないのであり、厳密に言えば、その茶褐色面からエッチング加工をしようとしたときには、エッチングして得られるメッシュの断面形状のバラツキを生じる原因となっていたのである。しかも、その茶褐色面は、艶消し状態であり、その表面を軽く摩擦するだけで、損傷を受けやすいものであった。   In addition, the disadvantage of the conventional surface-treated copper foil having a brownish brown surface is that the brownish brown surface is not uniform in color and uneven. That is, the brown color treatment in the same plane has not been made uniform. Strictly speaking, when etching processing is attempted from the brown color surface, it causes the variation in the cross-sectional shape of the mesh obtained by etching. It was. Moreover, the brown surface was in a matte state, and it was easily damaged by merely rubbing the surface.

そのため、市場では、均一な茶褐色を持つ茶褐色化処理層を備え、且つ、エッチング加工可能が更に容易となるようにエッチング阻害要因となる異種金属を含まないプラズマディスプレイパネルの電磁波遮蔽メッシュ用の表面処理銅箔が望まれてきたのである。   Therefore, the surface treatment for the electromagnetic wave shielding mesh of the plasma display panel which is provided with a browning treatment layer having a uniform brown color and does not contain a dissimilar metal which becomes an etching inhibiting factor so that the etching process can be further facilitated. Copper foil has been desired.

そこで、本件発明者等は、鋭意研究の結果、以下に示すような製造方法で表面処理銅箔を製造すると、従来に無い、エッチング阻害要因となる異種金属を含まない表面処理銅箔を得ることが出来ることに想到したのである。   Therefore, as a result of earnest research, the inventors of the present invention, when producing a surface-treated copper foil by the production method as shown below, obtains a surface-treated copper foil that does not contain a dissimilar metal that becomes an etching-inhibiting factor that has not existed conventionally. I realized that I could do it.

<褐色化表面処理銅箔>
以下に述べる褐色化表面処理銅箔は、後述する製造方法のように、多段階に行う銅メッキにより形成された褐色化処理面を備える銅箔である。本件発明において、「多段階に行う銅メッキ」とは、一回のメッキ処理操作により形成するのではなく、2回以上の複数回のメッキ処理操作を採用した銅メッキ処理のことである。ここで、下地の銅箔には、電解銅箔若しくは圧延銅箔のいずれをも用いることが可能である。そして、電解銅箔を用いた場合には、その光沢面又は粗面のいずれをも選択的に使用することが可能となる。
<Browned surface treated copper foil>
The browning surface-treated copper foil described below is a copper foil provided with a browning-treated surface formed by copper plating performed in multiple stages as in the manufacturing method described later. In the present invention, “multi-stage copper plating” refers to a copper plating process that employs two or more times of plating processes rather than a single plating process. Here, as the underlying copper foil, either an electrolytic copper foil or a rolled copper foil can be used. And when an electrolytic copper foil is used, it becomes possible to selectively use either the glossy surface or the rough surface.

本件発明に係る表面処理銅箔の持つ第1の特色は、その褐色化処理面の表面形状が極めて粗いものではなく、当該褐色化処理面の持つ断面高さが150nm以下であることが第1の特徴である。即ち、極めて滑らかで光沢を持つ褐色化処理面ということができる。但し、誤解を招かないために明記しておくが、通常の製造工程の範囲内におけるバラツキが存在するのは当然であり、必ずしも全ての位置での断面高さが150nm以下である必要はなく、製造工程のバラツキを反映した程度で150nmを超える断面高さが存在する場合があるのは当然である。本件発明に係る表面処理銅箔1の褐色化処理面2の断面高さを測定するために、FIB分析装置を用いて断面観察したFIB観察像を図1に示す。この図1には、電解銅箔の光沢面に褐色化処理面を形成したものを示している。なお、このFIB観察像は、被観察面に対して60°の角度を持った方向から観察したものである。   The first feature of the surface-treated copper foil according to the present invention is that the surface shape of the browning surface is not very rough, and the cross-sectional height of the browning surface is 150 nm or less. It is the feature. That is, it can be said that it is a browning surface having a very smooth and glossy surface. However, in order to avoid misunderstanding, it is natural that there is variation within the range of the normal manufacturing process, and the cross-sectional height at all positions is not necessarily 150 nm or less, Of course, there may be a cross-sectional height of more than 150 nm to reflect the variation in the manufacturing process. In order to measure the cross-sectional height of the browning surface 2 of the surface-treated copper foil 1 according to the present invention, a FIB observation image obtained by cross-sectional observation using a FIB analyzer is shown in FIG. FIG. 1 shows the electrolytic copper foil with a browned surface formed on the glossy surface. The FIB observation image is observed from a direction having an angle of 60 ° with respect to the surface to be observed.

この図1から分かるように、褐色化処理面の断面は一定の凹凸が存在することが明らかであり、このような凹凸をモニターする場合、触針式の表面粗さ計を用いるのが一般的である。ところが、図1のスケールから分かるように、表面粗さ計では正確な粗さ測定が不可能なレベルの凹凸であると考えられる。そこで、本件発明では、表面粗さ計で測ったときのRmaxに対応する値として、FIB観察像の視野の中の山部と谷部との最大差を「断面高さ」としているのである。この図1の中に「d」で示す箇所が、図1の断面高さとなり、約80nmと判断できるのである。しかも、図1において、褐色化処理面2は、極めて均一な厚さで銅箔表面の形状に沿って形成されており、下地の銅箔表面と完全に密着した状態を維持しており、褐色化処理面2が浮き上がる等の不具合箇所は見あたらず、粉落ちを予感させる箇所は見られないのである。   As can be seen from FIG. 1, it is clear that the cross section of the browning surface has certain irregularities, and in order to monitor such irregularities, a stylus type surface roughness meter is generally used. It is. However, as can be seen from the scale of FIG. 1, it is considered that the surface roughness meter has irregularities at a level where accurate roughness measurement is impossible. Therefore, in the present invention, as a value corresponding to Rmax when measured with a surface roughness meter, the maximum difference between the peak portion and the valley portion in the field of view of the FIB observation image is set as the “section height”. The portion indicated by “d” in FIG. 1 is the cross-sectional height of FIG. 1 and can be determined to be about 80 nm. Moreover, in FIG. 1, the browning surface 2 is formed along the shape of the copper foil surface with an extremely uniform thickness, and maintains a state of being completely in close contact with the underlying copper foil surface. There are no trouble spots such as the floatation surface 2 being lifted up, and there are no places where powder fall is predicted.

これに対し、従来の褐色化処理面を備える銅箔の褐色化処理面を、上述したと同様に断面からFIB分析すると、図2に示すような結果となる。即ち、褐色化処理面を構成する形状が樹枝状に成長し、下地の銅箔からかなり突出した状態となっていることが分かるのである。従って、このときの断面高さ(d)を測定すると約180nmとなり、かなり荒れた表面になっていることが理解できるのである。しかも、このような、樹枝形状を持つ褐色化処理面は、その樹枝状部が折れ易く損傷を受けやすい表面であると言え、しかも、折れた断片が脱落すれば粉落ちが発生するのも当然であり、褐色化処理表面から目視で見たとき色ムラを引き起こす原因となっていると考えられるのである。   On the other hand, when the browning treatment surface of the copper foil provided with the conventional browning treatment surface is subjected to FIB analysis from the cross section in the same manner as described above, the result is as shown in FIG. That is, it can be seen that the shape constituting the browning surface has grown in a dendritic shape and is considerably protruded from the underlying copper foil. Therefore, when the cross-sectional height (d) at this time is measured, it is about 180 nm, and it can be understood that the surface is considerably rough. Moreover, it can be said that the browning surface having a dendritic shape is a surface where the dendritic portion is easily broken and easily damaged, and it is natural that if the broken pieces fall off, powdering will occur. This is considered to be a cause of color unevenness when viewed from the browned surface.

以上に述べてきた本件発明に係る表面処理銅箔は、図1のFIB断面観察像から見ても極めて滑らかな表面を持っていることが理解できる。ところが、光沢のある褐色化処理ではあるが、褐色化処理表面が受けた光を乱反射する程の光沢を有するわけではなく、電解銅箔の光沢面及び圧延銅箔の表面に褐色化処理を施した場合でも、Lab表色系におけるa値が4.0以下となるのである。ここで、4.0以下と記載しているように、光沢として負の値を示す艶消し状態をも含むものである。このような艶消し状態の褐色化処理面は、電解銅箔の粗面に褐色化処理を施した場合に形成されやすいものである。   It can be understood that the surface-treated copper foil according to the present invention described above has a very smooth surface even when viewed from the FIB cross-sectional observation image of FIG. However, although it is a glossy browning treatment, it does not have a gloss that diffusely reflects the light received by the browning treatment surface, and the glossy surface of the electrolytic copper foil and the surface of the rolled copper foil are subjected to a browning treatment. Even in this case, the a value in the Lab color system is 4.0 or less. Here, as described as 4.0 or less, it also includes a matte state showing a negative value as gloss. Such a matted browned surface is easily formed when the roughened surface of the electrolytic copper foil is subjected to a browning treatment.

褐色化処理面の表面が艶消し状態であるか否かは、Lab表色系よりも光沢度を用いて表すことの方が好ましい。しかしながら、本件発明に係る褐色化処理面の光沢度は、褐色化処理面を形成する下地の種類に応じて分類すべきである。一つは、前記褐色化処理面は、電解銅箔の光沢面若しくは圧延銅箔の表面に当該褐色化処理面を形成したものである場合には、光沢度[Gs(60°)]が10以下であることが好ましいのである。光沢度が10以上となると、所謂黒光りする状態となり金属光沢が目立つようになるのである。   Whether the surface of the browning surface is matte or not is preferably expressed using glossiness rather than the Lab color system. However, the glossiness of the browning surface according to the present invention should be classified according to the type of the base on which the browning surface is formed. One is that when the browning surface is a glossy surface of an electrolytic copper foil or a surface of a rolled copper foil and the browning surface is formed, the glossiness [Gs (60 °)] is 10 It is preferable that: When the glossiness is 10 or more, a so-called black shining state occurs and the metallic luster becomes conspicuous.

そして、電解銅箔の粗面のように凹凸のある下地を選択した場合の当該褐色化処理面は、光沢度[Gs(60°)]が3以下である事が望ましいのである。光沢度が3以上となると、褐色化処理面を構成するヤケメッキとの関係で、粉落ちしやすい表面となっている可能性が高くなるのである。   And when the foundation | substrate with an unevenness | corrugation like the rough surface of an electrolytic copper foil is selected, it is desirable for the said browning process surface that glossiness [Gs (60 degrees)] is 3 or less. When the glossiness is 3 or more, there is a high possibility that the surface tends to fall off due to the discoloration plating constituting the browning surface.

また、前記褐色化処理面に防錆処理層を備えるものとすることも好ましい。本件発明に係る表面処理銅箔の長期保存性を確保できるからである。この防錆処理層には、褐色化処理層の変色を引き起こすことなく、しかも、銅エッチング液により容易に溶解可能なものであれば、亜鉛、真鍮等の無機防錆、ベンゾトリアゾール、イミダゾール等の有機防錆等のいずれをも用いることが可能である。   Moreover, it is also preferable to provide a rust prevention treatment layer on the browning treatment surface. This is because the long-term storage stability of the surface-treated copper foil according to the present invention can be ensured. If this rust-proofing layer does not cause discoloration of the browning-treated layer and can be easily dissolved by a copper etching solution, inorganic rust-proofing such as zinc and brass, benzotriazole, imidazole, etc. Any of organic rust prevention and the like can be used.

<褐色化処理面を備える表面処理銅箔の製造方法>
(褐色化処理面を備える表面処理銅箔の製造方法1)
本件発明における黒色化処理面を備える表面処理銅箔の基本的製造方法は、以下の工程a〜工程eの各工程を備えるのである。そして、褐色化処理面を形成する銅メッキを1回のメッキ操作で形成するのではなく、複数回のメッキ工程に分け、多段的に銅メッキを行う点に特徴を持つのである。以下、工程ごとに説明する。
<Manufacturing method of surface-treated copper foil provided with a browning surface>
(Manufacturing method 1 of surface-treated copper foil provided with a browning surface)
The basic manufacturing method of the surface-treated copper foil provided with the blackening treatment surface in the present invention includes the following steps a to e. Then, the copper plating for forming the browning surface is not formed by a single plating operation, but is divided into a plurality of plating steps, and is characterized in that copper plating is performed in multiple stages. Hereinafter, it demonstrates for every process.

工程a: 硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための最初のメッキ処理(以下、「基礎メッキ処理」と称する。)であり、本件発明において基礎メッキ処理工程と称する。 Step a: First plating treatment (hereinafter referred to as “basic plating treatment”) for making the surface of the copper foil brown using a copper sulfate-based plating solution under burn plating conditions. In the present invention, the basic plating treatment is performed. This is called a process.

ここで、基礎メッキ工程で被メッキ対象となる銅箔は、粗化処理を行っていても、粗化処理のないものでも構わないのである。この粗化処理とは張り合わせる基材等との良好な密着性を得るために施されるものであり、微細な銅粒を付着させるか、黒色に見える銅酸化物を付着させられる等の方法により意図的に粗化させたものである。   Here, the copper foil to be plated in the basic plating step may be subjected to roughening treatment or may be free of roughening treatment. This roughening treatment is applied to obtain good adhesion to the base material to be bonded, and a method of attaching fine copper particles or copper oxide that appears black Is intentionally roughened.

この基礎メッキ工程では、いわゆる銅のヤケメッキ条件でメッキ処理を行うのである。但し、この基礎メッキ工程で行うヤケメッキは、ある程度の凹凸を銅箔表面に形成するための核を形成する為のものであり、走査型電子顕微鏡で基礎メッキ工程後の銅箔表面を観察しても、明確に粗化されたような状態には見えないのである。   In this basic plating process, plating is performed under so-called copper burn plating conditions. However, the burn plating performed in this basic plating process is for forming a nucleus for forming a certain degree of irregularities on the copper foil surface, and the surface of the copper foil after the basic plating process is observed with a scanning electron microscope. However, it does not appear to be clearly roughened.

従って、この基礎メッキ工程で電着するヤケメッキ量は、完全に平滑且つ平坦な平面へメッキ処理したとしたときの換算厚さ(以下、単に「換算厚さ」と称する。)として、300mg/m〜600mg/m程度の電着量とすべきである。300mg/m 未満の場合には、十分な粗化するための核が形成されたとは言えず、後述する追加メッキ処理を行っても良好な褐色化処理面を形成し得ないのである。一方、600mg/m を超えた場合には、後述する追加メッキ処理を施すと粗化処理が進行しすぎて、粉落ちしやすい褐色化処理表面が形成されるのである。 Therefore, the amount of burnt plating to be electrodeposited in this basic plating step is 300 mg / m as a converted thickness (hereinafter simply referred to as “converted thickness”) when plating is performed on a completely smooth and flat surface. The amount of electrodeposition should be about 2 to 600 mg / m 2 . When it is less than 300 mg / m 2 , it cannot be said that a nucleus for sufficiently roughening has been formed, and even if an additional plating process described later is performed, a good browning surface cannot be formed. On the other hand, when it exceeds 600 mg / m < 2 >, if the additional plating process mentioned later is performed, a roughening process will advance too much and the browning process surface which is easy to powder-off will be formed.

ここでのヤケメッキの条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅5〜20g/l、硫酸50〜200g/l、その他必要に応じた添加剤(α−ナフトキノリン、デキストリン、ニカワ、チオ尿素等)、液温15〜40℃、電流密度10〜50A/dmの条件とする等である。 The conditions for the burnt plating here are not particularly limited, and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the concentration is 5 to 20 g / l copper, 50 to 200 g / l sulfuric acid, and other additives (α-naphthoquinoline, dextrin, glue, thiourea, etc.), liquid For example, the temperature is 15 to 40 ° C. and the current density is 10 to 50 A / dm 2 .

工程b: この工程は、基礎メッキ処理された銅箔の表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて1回以上の追加のメッキ処理を施す追加メッキ処理工程である。この追加メッキ処理工程におけるヤケメッキ条件は、工程a.と同様の条件を採用しても差し支えないが、工程a.で銅箔の表面に凹凸を形成することとなる核が存在しているため、電流密度を工程a.の場合の半分以下にすることで、下地の核に対する電流集中を防止して無用な異常析出を防止することが好ましいのである。即ち、工程aにおいてヤケメッキを行う際に採用する電流密度(Ia)に対し、工程bでヤケメッキを行う際に採用する電流密度(Ib)は、Iaの50%以下の電流密度とするのである。 Step b: This step is an additional plating treatment step in which the surface of the copper foil subjected to the basic plating treatment is subjected to one or more additional plating treatments using a copper sulfate-based plating solution under burn plating conditions. The burn plating conditions in this additional plating process are as follows: The same conditions may be adopted as in step a. Since there are nuclei that will form irregularities on the surface of the copper foil in step a. It is preferable to reduce the concentration to less than half that of the case in order to prevent current concentration on the underlying nucleus and prevent unnecessary abnormal precipitation. In other words, the current density (Ib) used when performing the burn plating in the step b is 50% or less of the current density, compared with the current density (Ia) used when performing the burn plating in the step a.

ここで、「1回以上の追加のメッキ処理」としているように、2回以上の複数回のメッキ処理を行うことも可能である。但し、このときの基礎メッキ処理と追加メッキ処理とにより形成されるメッキ処理面は、目に見えて粗化した凹凸状態を形成するのではなく、被メッキ処理表面を均一に被覆し、ある程度軽度の粗化状態を作り出すことが出来ればよいのである。従って、軽度の粗化状態を作り出すために、基礎メッキ工程と追加メッキ工程とのトータル電流及びトータル電解時間を制御することが必要となる点に留意すべきである。   Here, as described in “one or more additional plating processes”, it is also possible to perform two or more times of plating processes. However, the plating process surface formed by the basic plating process and the additional plating process at this time does not form a concavo-convex state that is visibly roughened, but covers the surface to be plated uniformly and is somewhat light. It is only necessary to create a roughened state. Therefore, it should be noted that it is necessary to control the total current and total electrolysis time of the basic plating process and the additional plating process in order to create a light roughened state.

上述した基礎メッキ工程でのメッキ量を基準に、追加メッキ工程での適正な電着量は、換算厚さとして、50mg/m〜300mg/m程度の電着量とすべきである。50mg/m 未満の場合には、工程aで核形成した表面に適正な凹凸形状を付与し得ず、良好な褐色化処理面が得られないのである。一方、300mg/m を超えた場合には工程aで形成した核成長が過剰になりすぎて粉落ちしやすい褐色化処理面が形成されるのである。 Based on the amount of plating on the above-mentioned basic plating process, proper amount of deposition of an additional plating step, as the conversion thickness should be between 50mg / m 2 ~300mg / m 2 about electrodeposition amount. In the case of less than 50 mg / m 2 , an appropriate uneven shape cannot be imparted to the surface nucleated in step a, and a good browning surface cannot be obtained. On the other hand, when it exceeds 300 mg / m 2 , the nucleus growth formed in the step a becomes excessive, and a browned surface that is easy to fall off is formed.

工程c: この工程は、工程a及び工程bによりヤケメッキを施した銅箔面に、銅メッキ溶液を用いて平滑メッキ条件でメッキ処理を行う被覆メッキ処理工程である。被覆メッキ工程は、工程a及び工程bで粗化処理した表面を滑らかにするためのメッキ処理であり、ヤケメッキした表面を被覆するように銅を均一析出させるための工程である。従って、ここでは、銅の平滑メッキ可能な銅電解液の全てを使用することが可能である。この平滑メッキ条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅50〜80g/l、硫酸50〜150g/l、液温40〜50℃、電流密度10〜50A/dmの条件とする等である。 Process c: This process is a coating plating process in which the copper foil surface that has been subjected to burnt plating in the processes a and b is subjected to a plating process under a smooth plating condition using a copper plating solution. The coating plating process is a plating process for smoothing the surface roughened in the process a and the process b, and is a process for uniformly depositing copper so as to cover the burnt surface. Therefore, it is possible to use all of the copper electrolyte that can be smoothly plated with copper. The smooth plating conditions are not particularly limited and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the conditions are copper 50 to 80 g / l, sulfuric acid 50 to 150 g / l, liquid temperature 40 to 50 ° C., and current density 10 to 50 A / dm 2. .

但し、電解時間は、ヤケメッキにより粗化した形状が平滑になり過ぎないよう、完全に平滑且つ平坦な平面へメッキ処理したとしたときの換算厚さとして、5g/m〜10g/m程度の電着量とすべきである。5g/m 未満の場合には、工程a及び工程bで粗化処理した表面を滑らかにする効果が得られないのである。一方、10g/m を超えた場合には工程a及び工程bで粗化処理した表面が滑らかになり過ぎて褐色化処理表面の色が金属光沢を増すのである。 However, electrolysis time, so that is not too smooth roughened shape by burnt plating, as the conversion thickness when formed into a complete and plating the smooth and flat surface, 5g / m 2 ~10g / m 2 about Should be the amount of electrodeposition. In the case of less than 5 g / m 2 , the effect of smoothing the surface roughened in step a and step b cannot be obtained. On the other hand, when it exceeds 10 g / m 2 , the surface roughened in steps a and b becomes too smooth, and the color of the browned surface increases the metallic luster.

工程d: この工程は、工程cが終了し平滑メッキ処理のなされた表面に、銅メッキ溶液をヤケメッキ条件で用いて、銅箔表面を褐色に仕上げるためのメッキ処理(以下、「仕上げメッキ処理」と称する。)を施す仕上げメッキ処理工程である。この工程における、ヤケメッキと、前述の基礎メッキ工程及び追加メッキ工程との違いは、この工程では粗化処理を極めて微細な銅粒(以下、「極微細銅粒」と称する。)を用いて行うのである。 Step d: This step is a plating treatment (hereinafter referred to as “finish plating treatment”) for finishing the copper foil surface brown by using the copper plating solution on the surface after completion of the step c and smooth plating treatment under the condition of burnt plating. This is a finish plating process step. In this process, the difference between the burn plating and the above-described basic plating process and additional plating process is that the roughening treatment is performed using extremely fine copper grains (hereinafter referred to as “ultrafine copper grains”). It is.

この極微細銅粒の形成には、一般に砒素を含んだ銅電解液が用いられる。係る場合の電解条件の一例を挙げれば、硫酸銅系溶液であって、濃度が銅10g/l、硫酸100g/l、砒素1.5g/l、液温38℃、電流密度30A/dmとする等であった。しかしながら、本件発明では、近年の環境問題の盛り上がりより、人体に影響を与える可能性がより低い添加剤として、砒素に代え、9−フェニルアクリジンを添加した銅電解液を用いることとした。9−フェニルアクリジンは、銅電解の場において、砒素の果たす役割と同様の役割を果たし、析出する微細銅粒の整粒効果と、均一電着を可能とするものである。即ち、9−フェニルアクリジンを添加した極微細銅粒を形成するための銅電解液としては、濃度が銅5〜15g/l、フリー硫酸40〜100g/l、9−フェニルアクリジン50〜300mg/l、塩素濃度20ppm〜32ppm、液温30〜40℃、電流密度20〜40A/dm が極めて安定した電解操業を可能とすることの出来る範囲となる。より好ましくは、銅10〜15g/l、フリー硫酸40〜70g/l、9−フェニルアクリジン100〜200mg/l、塩素濃度25ppm〜30ppm、液温30〜40℃、電流密度20〜40A/dm の範囲である。この範囲が最も操業安定性及びメッキ液として溶液安定性に優れ、本件発明に係る表面処理銅箔の生産歩留まりが高くなるのである。 In general, a copper electrolyte containing arsenic is used to form the ultrafine copper particles. An example of electrolysis conditions in this case is a copper sulfate-based solution having a concentration of 10 g / l copper, 100 g / l sulfuric acid, 1.5 g / l arsenic, a liquid temperature of 38 ° C., and a current density of 30 A / dm 2 . And so on. However, in the present invention, due to the recent rise in environmental problems, a copper electrolyte solution containing 9-phenylacridine in place of arsenic is used as an additive that is less likely to affect the human body. 9-Phenylacridine plays a role similar to the role played by arsenic in the field of copper electrolysis, and enables the sizing effect of precipitated fine copper grains and uniform electrodeposition. That is, as a copper electrolyte for forming ultrafine copper grains to which 9-phenylacridine is added, the concentration is 5 to 15 g / l copper, 40 to 100 g / l free sulfuric acid, 50 to 300 mg / l 9-phenylacridine. Further, the chlorine concentration of 20 ppm to 32 ppm, the liquid temperature of 30 to 40 ° C., and the current density of 20 to 40 A / dm 2 are within a range in which an extremely stable electrolytic operation can be performed. More preferably, copper 10-15 g / l, free sulfuric acid 40-70 g / l, 9-phenylacridine 100-200 mg / l, chlorine concentration 25 ppm-30 ppm, liquid temperature 30-40 ° C., current density 20-40 A / dm 2 Range. This range is the most excellent in operational stability and solution stability as a plating solution, and the production yield of the surface-treated copper foil according to the present invention is increased.

工程e: この工程は、上述の各工程の終了後、水洗、乾燥し、褐色化表面処理銅箔とする洗浄・乾燥工程である。水洗及び乾燥は、定法に従って行えば良く、特殊な条件はない。但し、ここで言う水洗は、単に最終水洗を意味するものであり、各工程間では前工程の溶液を後工程に持ち込まないように、常識的な範囲で考えられる水洗は適宜設けていることを明記しておく。 Step e: This step is a washing / drying step in which each of the above steps is washed with water and dried to obtain a browned surface-treated copper foil. Washing with water and drying may be carried out according to a regular method, and there are no special conditions. However, the rinsing referred to here simply means final rinsing, and the rinsing that can be considered within a common sense range should be provided as appropriate so that the solution of the previous process is not brought into the subsequent process between each process. Please specify.

(褐色化処理面を備える表面処理銅箔の製造方法2)
この製造方法は、以下に示す工程a〜工程fの各工程を備えた褐色化表面処理銅箔の製造方法である。
(Method 2 for producing a surface-treated copper foil having a browned surface)
This manufacturing method is a manufacturing method of the browning surface treatment copper foil provided with each process of the process a-the process f shown below.

工程a: 硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための最初のメッキ処理(以下、「基礎メッキ処理」と称する。)を施す基礎メッキ処理工程。
工程b: 基礎メッキ処理された銅箔の表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて1回以上の追加のメッキ処理を施す追加メッキ処理工程。
工程c: 工程a及び工程bによりヤケメッキを施した銅箔面に、硫酸銅系メッキ溶液を用いて平滑メッキ条件でメッキ処理を行う被覆メッキ処理工程。
工程d: 工程cが終了し平滑メッキ処理のなされた表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔表面を褐色に仕上げるためのメッキ処理(以下、「仕上げメッキ処理」と称する。)を施す仕上げメッキ処理工程。
工程e: 以上の工程により褐色化処理の終了した銅箔の表面に防錆処理を施す防錆処理工程。
工程f: 上述の各工程の終了後、水洗、乾燥し、褐色化表面処理銅箔とする洗浄・乾燥工程。
Step a: A basic plating treatment step of applying a first plating treatment (hereinafter referred to as “basic plating treatment”) to make the surface of the copper foil brown using a copper sulfate plating solution under a burn plating condition.
Step b: An additional plating treatment step of performing one or more additional plating treatments on the surface of the copper foil that has been subjected to the basic plating treatment, using a copper sulfate-based plating solution under burn plating conditions.
Step c: A covering plating step in which the copper foil surface that has been subjected to burnt plating in the steps a and b is plated using a copper sulfate plating solution under smooth plating conditions.
Step d: Plating treatment for finishing the copper foil surface brown (hereinafter referred to as “finish plating treatment”) using the copper sulfate-based plating solution on the surface subjected to the smooth plating treatment after the completion of the step c, under the condition of burnt plating. .) Finish plating process.
Step e: A rust prevention treatment step for carrying out a rust prevention treatment on the surface of the copper foil that has been browned by the above steps.
Step f: Washing / drying step after completion of each of the steps described above, followed by washing with water and drying to obtain a browned surface-treated copper foil.

以上の工程から明らかなように、製造方法1に防錆処理工程が加わった工程である。従って、重複した説明を避けるため、防錆処理工程に関してのみ説明する。   As is clear from the above steps, the manufacturing method 1 is a step in which a rust prevention treatment step is added. Therefore, only the rust prevention treatment process will be described in order to avoid redundant description.

防錆処理工程では、褐色化処理面の変色きたさず、銅エッチング液でのエッチング除去が容易で、同時に表面処理銅箔の表面が酸化腐食することを防止する処理を行うのである。この防錆処理に用いる方法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、若しくは亜鉛、クロメート、亜鉛合金等を用いる無機防錆のいずれを採用しても問題はない。表面処理銅箔の使用目的に合わせた防錆を選択すればよい。有機防錆の場合は、有機防錆剤を浸漬塗布、シャワーリング塗布、電着法等の手法を採用することが可能となる。無機防錆の場合は、電解で防錆元素を表面処理銅箔の表面上に析出させる方法、その他いわゆる置換析出法等を用いることが可能である。例えば、亜鉛防錆処理を行うとして、ピロ燐酸亜鉛メッキ浴、シアン化亜鉛メッキ浴、硫酸亜鉛メッキ浴等を用いることが可能である。例えば、ピロ燐酸亜鉛メッキ浴であれば、濃度が亜鉛5〜30g/l、ピロ燐酸カリウム50〜500g/l、液温20〜50℃、pH9〜12、電流密度0.3〜10A/dmの条件とする等である。 In the rust-proofing process, the browning surface is not discolored, the etching removal with the copper etching solution is easy, and at the same time, the surface of the surface-treated copper foil is prevented from being oxidized and corroded. The method used for the rust prevention treatment may be any of organic rust prevention using benzotriazole, imidazole or the like, or inorganic rust prevention using zinc, chromate, zinc alloy or the like. What is necessary is just to select the rust prevention according to the intended purpose of the surface-treated copper foil. In the case of organic rust prevention, it is possible to employ techniques such as dip coating, shower ring coating, and electrodeposition method with an organic rust preventive. In the case of inorganic rust prevention, it is possible to use a method of depositing a rust-preventive element on the surface of the surface-treated copper foil by electrolysis, or other so-called substitution deposition methods. For example, a zinc pyrophosphate plating bath, a zinc cyanide plating bath, a zinc sulfate plating bath, or the like can be used for the zinc rust prevention treatment. For example, in the case of a zinc pyrophosphate plating bath, the concentration is 5 to 30 g / l of zinc, 50 to 500 g / l of potassium pyrophosphate, the liquid temperature is 20 to 50 ° C., the pH is 9 to 12, and the current density is 0.3 to 10 A / dm 2. And so on.

また、本件発明に係る表面処理銅箔の褐色化処理面の色調に影響を与えない無機防錆として亜鉛−ニッケル合金メッキ液又は亜鉛−コバルト合金メッキ液を用いてメッキ処理するものが好ましい。最初に、亜鉛−ニッケル合金メッキに関して説明する。ここで用いる亜鉛−ニッケル合金メッキ液に特に限定はないが、一例を挙げれば、硫酸ニッケルを用いニッケル濃度が1〜2.5g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.1〜1g/l、ピロリン酸カリウム50〜500g/l、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件等を採用するのである。 Moreover, what carries out a plating process using a zinc-nickel alloy plating solution or a zinc-cobalt alloy plating solution as inorganic rust prevention which does not affect the color tone of the browning surface of the surface treatment copper foil which concerns on this invention is preferable. First, the zinc-nickel alloy plating will be described. The zinc-nickel alloy plating solution used here is not particularly limited. For example, nickel sulfate is used to have a nickel concentration of 1 to 2.5 g / l, and zinc pyrophosphate is used to have a zinc concentration of 0.1 to 1 g. / L, potassium pyrophosphate 50-500 g / l, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 , etc. are adopted.

次に、亜鉛−コバルト合金メッキに関して説明する。ここで用いる亜鉛−コバルト合金メッキ液に特に限定はないが、一例を挙げれば、硫酸コバルトを用いコバルト濃度が1〜2.5g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.1〜1g/l、ピロリン酸カリウム50〜500g/l、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件等を採用するのである。この亜鉛−コバルト合金メッキと後述するクロメ−ト処理とを組み合わせた防錆処理層は、特に優れた耐蝕性能を示すのである。 Next, zinc-cobalt alloy plating will be described. The zinc-cobalt alloy plating solution used here is not particularly limited. For example, cobalt sulfate is used to have a cobalt concentration of 1 to 2.5 g / l, and zinc pyrophosphate is used to have a zinc concentration of 0.1 to 1 g. / L, potassium pyrophosphate 50-500 g / l, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 , etc. are adopted. The anticorrosion treatment layer combining this zinc-cobalt alloy plating and the chromate treatment described later exhibits particularly excellent corrosion resistance.

更に、防錆効果を高めるためには、表面処理銅箔の表面に亜鉛−ニッケル合金層又は亜鉛−コバルト合金層等を形成した後に、クロメート層を形成すれば、より優れた耐蝕性を得ることが可能となるのである。即ち、上述の防錆処理層の形成後に、クロメート処理を行えばよいのである。このクロメート処理工程では、クロメート溶液を接触させての置換処理でも、クロメート溶液中で電解してクロメート被膜を形成する電解クロメート処理のいずれの方法を採用しても構わないのである。また、ここで用いるクロメート溶液に関しても、常法で用いられる範囲のものを使用することが可能である。そして、その後、水洗し、乾燥することで褐色化処理面を備える表面処理銅箔を得るのである。   Furthermore, in order to enhance the rust prevention effect, if a chromate layer is formed after forming a zinc-nickel alloy layer or a zinc-cobalt alloy layer on the surface of the surface-treated copper foil, better corrosion resistance can be obtained. Is possible. That is, the chromate treatment may be performed after the above-described rust prevention treatment layer is formed. In this chromate treatment step, either a substitution treatment in which a chromate solution is brought into contact or an electrolytic chromate treatment in which a chromate film is formed by electrolysis in a chromate solution may be adopted. Also, the chromate solution used here can be in the range used in the usual method. And after that, the surface-treated copper foil provided with a browning surface is obtained by washing with water and drying.

以上に述べてきた本件発明に係る褐色化処理面を備えた表面処理銅箔は、褐色化処理面からの粉落ちがなく、しかも、極めて均一で色ムラの無い良好な褐色しており、その褐色化処理層は通常の銅エッチングプロセスでエッチング除去が可能である。よって、プリント配線板を製造するプロセスを使用して、容易に任意の形状に加工することが可能である。これらのことを考えると、プラズマディスプレイパネルの前面パネルに組み込まれる電磁波遮蔽導電性メッシュの用途に最適なものと言えるのである。   The surface-treated copper foil provided with the browning treatment surface according to the present invention described above has no powder fall off from the browning treatment surface, and has a good brown color that is extremely uniform and has no color unevenness. The browning treatment layer can be removed by an ordinary copper etching process. Therefore, it can be easily processed into an arbitrary shape by using a process for manufacturing a printed wiring board. Considering these things, it can be said that the electromagnetic wave shielding conductive mesh incorporated in the front panel of the plasma display panel is most suitable for use.

また、本件発明に係る表面処理銅箔の製造方法は、従来にない多段の銅ヤケメッキ方法を採用することで、銅箔の表面に効率よく褐色化処理面を形成することが可能となり、褐色化処理面を備えた表面処理銅箔の色調のバラツキを極めて小さなものとすることが出来たのである。   In addition, the manufacturing method of the surface-treated copper foil according to the present invention is capable of efficiently forming a browning treatment surface on the surface of the copper foil by adopting an unprecedented multistage copper burn plating method. The variation in the color tone of the surface-treated copper foil provided with the treated surface could be made extremely small.

以下に、上述してきた褐色化処理面を備えた表面処理銅箔を製造し、銅エッチング液を用いて電磁波遮蔽導電性メッシュを製造した結果を示すこととする。   Below, the surface treatment copper foil provided with the browning process surface mentioned above is manufactured, and suppose that the result of having manufactured the electromagnetic wave shielding electroconductive mesh using copper etching liquid is shown.

本実施形態では、粗化処理を施していない電解銅箔を用い、その光沢面に褐色化処理を行い表面処理銅箔を製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。   In this embodiment, an electrolytic copper foil that has not been subjected to roughening treatment is used, a browning treatment is performed on the glossy surface to produce a surface-treated copper foil, and an electromagnetic shielding conductive mesh shape is experimentally produced by an etching method. The etching performance was confirmed.

本実施形態では、硫酸銅溶液を電解することにより得られた公称厚さ10μmのベリーロープロファイル銅箔を用いた。そして、その電解銅箔を、硫酸濃度150g/l、液温30℃の希硫酸溶液を用いて、この溶液に30秒浸漬して、表面の清浄化を行った。以下、工程ごとに説明することとする。   In this embodiment, a very low profile copper foil having a nominal thickness of 10 μm obtained by electrolyzing a copper sulfate solution was used. Then, the electrolytic copper foil was immersed in this solution for 30 seconds using a diluted sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. to clean the surface. Hereinafter, each process will be described.

<表面処理銅箔の製造>
工程a: ここでは、粗化処理を行っていない上記ベリーロープロファイル銅箔の光沢面(Ra=0.22μm、Rz=1.54μm)に対して、硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための基礎メッキ処理を行った。
<Manufacture of surface-treated copper foil>
Step a: Here, a copper sulfate-based plating solution is used on the glossy surface (Ra = 0.22 μm, Rz = 1.54 μm) of the belly low profile copper foil that has not been subjected to roughening treatment, under the condition of burnt plating. The basic plating treatment was performed to make the surface of the copper foil brown.

このときに用いた基礎メッキ処理条件は、硫酸銅溶液であって、銅濃度18g/l、フリー硫酸濃度100g/l、液温25℃、電流密度(Ia)10A/dmのヤケメッキ条件で電解することにより行った。その結果、この基礎メッキ工程で行ったヤケメッキは、ある程度の凹凸を銅箔表面に形成するための核を形成したのみであり、換算厚さ300mg/mの電着量であった。 The basic plating treatment conditions used at this time were a copper sulfate solution, and electrolysis was performed under the conditions of a burnt plating with a copper concentration of 18 g / l, a free sulfuric acid concentration of 100 g / l, a liquid temperature of 25 ° C., and a current density (Ia) of 10 A / dm 2. It was done by doing. As a result, the burn plating performed in this basic plating process only formed nuclei for forming a certain degree of irregularities on the surface of the copper foil, and the electrodeposition amount was 300 mg / m 2 in terms of converted thickness.

工程b: この追加メッキ処理工程では、基礎メッキ処理された銅箔の表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて1回のメッキ処理を施した。このときの追加メッキ処理条件は、工程a.と同様の濃度及び液温の硫酸銅溶液を用いたが、ヤケメッキを行う際に採用する電流密度(Ib)をIaの15%の電流密度となる1.5A/dmとして、工程a.で銅箔の表面に形成した核に対する電流集中を防止して無用な異常析出を防止した。この追加メッキ工程での電着量は、換算厚さとして50mg/mの電着量とした。 Step b: In this additional plating treatment step, the surface of the copper foil subjected to the basic plating treatment was subjected to a single plating treatment using a copper sulfate-based plating solution under burnt plating conditions. The additional plating treatment conditions at this time are as follows. A copper sulfate solution having the same concentration and temperature as in Example 1 was used, but the current density (Ib) employed when the burnt plating was performed was set to 1.5 A / dm 2 at which the current density was 15% of Ia. In this way, current concentration on the nuclei formed on the surface of the copper foil was prevented, and unnecessary abnormal precipitation was prevented. The electrodeposition amount in this additional plating step was an electrodeposition amount of 50 mg / m 2 as a converted thickness.

工程c: この被覆メッキ処理工程では、工程a及び工程bによりヤケメッキを施した銅箔面に、銅メッキ溶液を用いて平滑メッキ条件でメッキ処理を行った。この被覆メッキ工程では、硫酸銅溶液であって、銅濃度65g/l、フリー硫酸濃度150g/l、液温45℃、電流密度15A/dmの平滑メッキ条件で電解した。このようにして、工程a及び工程bで粗化処理した表面を滑らかにした。このときの平滑メッキの換算厚さは4g/mであった。 Step c: In this covering plating treatment step, the copper foil surface subjected to burnt plating in Step a and Step b was plated under a smooth plating condition using a copper plating solution. In this coating plating process, electrolysis was performed using a copper sulfate solution under smooth plating conditions of a copper concentration of 65 g / l, a free sulfuric acid concentration of 150 g / l, a liquid temperature of 45 ° C., and a current density of 15 A / dm 2 . In this way, the surface roughened in step a and step b was smoothed. The converted thickness of smooth plating at this time was 4 g / m 2 .

工程d: この仕上げメッキ処理工程では、工程cが終了し平滑メッキ処理のなされた表面に、銅メッキ溶液をヤケメッキ条件で用いて、銅箔表面を褐色に仕上げるためのメッキ処理を施し、極微細銅粒を付着形成したのである。 Step d: In this finish plating step, the surface of step c is finished and subjected to the smooth plating treatment, using a copper plating solution under the condition of burnt plating, a plating treatment for finishing the copper foil surface brown is performed, and the surface is fine. Copper particles were deposited and formed.

この極微細銅粒の形成には、9−フェニルアクリジンを添加した以下の硫酸銅溶液を用いたのである。この銅電解液及び電解条件としては、銅濃度が13g/l、フリー硫酸50g/l、9−フェニルアクリジン150mg/l、塩素濃度28ppm、液温35℃とし、電流密度24A/dm を用いた。そして、この仕上げメッキ処理工程での電着量は、換算厚さとして300mg/mの電着量とした。 The following copper sulfate solution to which 9-phenylacridine was added was used for the formation of the ultrafine copper particles. As the copper electrolyte and electrolysis conditions, the copper concentration was 13 g / l, free sulfuric acid 50 g / l, 9-phenylacridine 150 mg / l, chlorine concentration 28 ppm, liquid temperature 35 ° C., and current density 24 A / dm 2 was used. . The electrodeposition amount in the finish plating process was 300 mg / m 2 as the converted thickness.

工程e: この洗浄・乾燥工程では、上述の工程d.の終了後、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の褐色化処理面を備えた表面処理銅箔を得たのである。なお、ここで言う水洗に限らず、各工程間では前工程の溶液を後工程に持ち込まないように、工程間の水洗は適宜設けた。 Step e: In this washing / drying step, the above-mentioned step d. After the completion of the above, it is washed by showering with pure water sufficiently, staying in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater, draining the water, and giving a browned surface with a very good color tone. The surface-treated copper foil provided was obtained. In addition, the water washing between processes was provided suitably so that the solution of a front process might not be brought into a back process between not only the water washing said here but between each process.

<表面処理銅箔の物性>
以上の工程を経て得られた褐色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図1に示す断面が得られており、当該褐色化処理面の断面高さ(d)が80nmであり、当該褐色化処理面のLab表色系におけるa値が3.5、光沢度[Gs(60°)]が2.8であった。また、褐色化処理面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross section of the surface-treated copper foil provided with the browning treatment surface obtained through the above steps with a FIB apparatus, the cross section shown in FIG. 1 is obtained, and the cross-sectional height (d ) Was 80 nm, the a value in the Lab color system of the browned surface was 3.5, and the glossiness [Gs (60 °)] was 2.8. Moreover, the powder fall in the tape test by sticking an adhesive tape on the browning surface and peeling it off was not confirmed.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
以上のようにして得られた表面処理銅箔の両面にエッチングレジストとなるドライフィルムを張り合わせた。そして、褐色化処理面側のドライフィルムにのみ、電磁波遮蔽導電性メッシュを試作するための試験用のマスクフィルムを重ねて、メッシュピッチ200μm、メッシュ線幅10μm、メッシュバイアス角度45°であり、周囲にメッシュ電極部を備える導電性メッシュパターンを紫外線露光した。このとき、同時に反対面のエッチングレジスト層の全面にも、紫外線露光することにより、後の現像により除去できないものとした。その後、アルカリ溶液を用いて現像し、エッチングパターンを形成した。
<Manufacture of electromagnetic shielding mesh for plasma display>
A dry film serving as an etching resist was bonded to both surfaces of the surface-treated copper foil obtained as described above. Then, only a dry film on the browning surface side is overlaid with a test mask film for producing an electromagnetic shielding conductive mesh, and the mesh pitch is 200 μm, the mesh line width is 10 μm, and the mesh bias angle is 45 °. A conductive mesh pattern having a mesh electrode portion was exposed to ultraviolet rays. At this time, the entire surface of the etching resist layer on the opposite side was also exposed to ultraviolet rays so that it could not be removed by subsequent development. Then, it developed using the alkaline solution and formed the etching pattern.

そして、銅エッチング液である塩化鉄エッチング液を用いて、褐色化処理面側から銅エッチングして、その後、エッチングレジスト層を剥離することにより、電磁波遮蔽導電性メッシュを製造した。その結果、エッチング残りもなく、非常に良好なエッチングが行われた。   Then, using an iron chloride etchant that is a copper etchant, copper etching was performed from the browned surface side, and then the etching resist layer was peeled off to produce an electromagnetic wave shielding conductive mesh. As a result, there was no etching residue and very good etching was performed.

この実施例では、実施例1の工程d.と工程e.との間に防錆処理工程を設けた点が、実施例1と異なるのみである。従って、工程a、工程b、工程c、工程dまでは、実施例1と同様であり、重複した説明は避け、ここでの工程e.の防錆処理工程のみ詳細に説明する事とする。   In this example, step d. And step e. The only difference from Example 1 is that a rust prevention treatment step is provided between the two. Therefore, the process a, the process b, the process c, and the process d are the same as those in the first embodiment, and a duplicate description is avoided, and the process e. Only the rust prevention treatment process will be described in detail.

工程e.: この防錆処理工程では、亜鉛−ニッケル合金メッキ液を用いてメッキ処理して、両面に亜鉛−ニッケル合金層を形成したのである。亜鉛−ニッケル合金層は、硫酸ニッケルを用いニッケル濃度が2.0g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.5g/l、ピロリン酸カリウム250g/l、液温35℃、pH10、電流密度5A/dmの条件で5秒間電解して、両面に均一且つ平滑に電析させた。 Step e. : In this rust prevention treatment step, a zinc-nickel alloy plating solution was used for plating to form a zinc-nickel alloy layer on both sides. The zinc-nickel alloy layer uses nickel sulfate, nickel concentration is 2.0 g / l, zinc pyrophosphate is used, zinc concentration is 0.5 g / l, potassium pyrophosphate 250 g / l, liquid temperature 35 ° C., pH 10, current Electrolysis was performed for 5 seconds under conditions of a density of 5 A / dm 2 , and electrodeposited uniformly and smoothly on both surfaces.

工程f: この洗浄・乾燥工程は実施例1の工程e.に対応するものであり、上述の工程e.の終了後、十分に水洗し、加熱乾燥し褐色化処理面を備えた表面処理銅箔としたのであり、詳細は実施例1と同様である。 Step f: This washing / drying step is the same as step e. Corresponding to step e. After the completion of the step, the surface-treated copper foil was sufficiently washed with water, dried by heating, and provided with a browned surface. The details are the same as in Example 1.

<表面処理銅箔の物性>
以上の工程を経て得られた褐色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図1に示したと同様の断面が得られ、当該褐色化処理面の断面高さが85nmであり、当該褐色化処理面のLab表色系におけるa値が3.6、光沢度[Gs(60°)]が2.6であった。また、褐色化処理面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the browning treatment surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 1 is obtained, and the cross-sectional height of the browning treatment surface is The a value in the Lab color system of the browned surface was 3.6 nm, and the glossiness [Gs (60 °)] was 2.6. Moreover, the powder fall in the tape test by sticking an adhesive tape on the browning surface and peeling it off was not confirmed.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

実施例1が電解銅箔である公称厚さ10μmのベリーロープロファイル銅箔の光沢面に黒色化処理面を形成したのに対し、本実施形態では粗面側に黒色化処理面を形成した表面処理銅箔を製造したのである。まず、実施例1と同様に、その電解銅箔を、硫酸濃度150g/l、液温30℃の希硫酸溶液を用いて、この溶液に30秒浸漬して、表面の清浄化を行った。以下、工程ごとに説明することとする。   In Example 1, the blackened surface was formed on the glossy surface of the very low profile copper foil having a nominal thickness of 10 μm, which is an electrolytic copper foil. In this embodiment, the surface on which the blackened surface was formed on the rough surface side. A treated copper foil was produced. First, as in Example 1, the electrolytic copper foil was immersed in this solution for 30 seconds using a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. to clean the surface. Hereinafter, each process will be described.

<表面処理銅箔の製造>
工程a: ここでは、粗化処理を行っていない上記ベリーロープロファイル銅箔の粗面(Ra=0.35μm、Rz=2.32μm)に対して、硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための基礎メッキ処理を行った。このベリーロープロファイル銅箔の粗面の表面粗さは、光沢面と言っても支障のない程、低プロファイルの表面となっていた。以下、実施例1と同様の工程a(基礎メッキ処理工程)、工程b(追加メッキ処理工程)、工程c.(被覆メッキ処理工程)、工程d(仕上げメッキ処理工程)、工程e(洗浄・乾燥工程)を経て、褐色化処理面を備えた表面処理銅箔を得たのである。
<Manufacture of surface-treated copper foil>
Step a: Here, a copper sulfate-based plating solution is used on the rough surface (Ra = 0.35 μm, Rz = 2.32 μm) of the very low profile copper foil that has not been subjected to the roughening treatment, under the condition of burnt plating. The basic plating treatment was performed to make the surface of the copper foil brown. The surface roughness of the rough surface of this very low profile copper foil was such a low profile surface that there was no problem even if it was a glossy surface. Hereinafter, step a (basic plating treatment step), step b (additional plating treatment step), step c. Through the (coating plating process), the process d (finish plating process), and the process e (cleaning / drying process), a surface-treated copper foil having a browned surface was obtained.

<表面処理銅箔の物性>
以上の工程を経て得られた褐色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図1に示したと同様の断面が得られ、当該褐色化処理面の断面高さが75nmであり、当該褐色化処理面のLab表色系におけるa値が3.6、光沢度[Gs(60°)]が1.2であった。また、褐色化処理面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the browning treatment surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 1 is obtained, and the cross-sectional height of the browning treatment surface is The a value in the Lab color system of the browned surface was 3.6 nm, and the glossiness [Gs (60 °)] was 1.2. Moreover, the powder fall in the tape test by sticking an adhesive tape on the browning surface and peeling it off was not confirmed.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

実施例2が電解銅箔である公称厚さ10μmのベリーロープロファイル銅箔の光沢面に黒色化処理面を形成したのに対し、本実施形態では粗面側に黒色化処理面を形成した表面処理銅箔を製造したのである。まず、実施例2と同様に実施例1の手順を用いて、その電解銅箔の表面の清浄化を行った。以下、工程ごとに説明することとする。   In Example 2, the blackened surface was formed on the glossy surface of the very low profile copper foil having a nominal thickness of 10 μm, which is an electrolytic copper foil. In this embodiment, the surface on which the blackened surface was formed on the rough surface side. A treated copper foil was produced. First, using the procedure of Example 1 as in Example 2, the surface of the electrolytic copper foil was cleaned. Hereinafter, each process will be described.

<表面処理銅箔の製造>
ここでは、実施例3と同様に粗化処理を行っていない上記ベリーロープロファイル銅箔の粗面(Ra=0.35μm、Rz=2.32μm)に対して、実施例1と同様の方法で工程a(基礎メッキ処理工程)、工程b(追加メッキ処理工程)、工程c.(被覆メッキ処理工程)、工程d(仕上げメッキ処理工程)までを行った。そして、実施例3とは異なり工程e.(防錆処理工程)を付加して、工程f.(洗浄・乾燥工程)を経て、褐色化処理面を備えた表面処理銅箔を得たのである。このときの工程e.(防錆処理工程)では、実施例2と同様の手順で亜鉛−ニッケル合金層を形成したのである。従って、以上の工程は、上記実施例中に説明しているため、重複した説明は省略するものとするのである。
<Manufacture of surface-treated copper foil>
Here, in the same manner as in Example 1, the rough surface (Ra = 0.35 μm, Rz = 2.32 μm) of the very low profile copper foil not subjected to the roughening treatment as in Example 3 was used. Step a (basic plating treatment step), step b (additional plating treatment step), step c. (Coating plating process) and d (finish plating process) were performed. And unlike Example 3, the process e. (Rust prevention treatment process) is added, and the process f. Through the (cleaning / drying step), a surface-treated copper foil having a browned surface was obtained. Step e. In the (rust prevention treatment step), a zinc-nickel alloy layer was formed by the same procedure as in Example 2. Therefore, since the above process was demonstrated in the said Example, the overlapping description shall be abbreviate | omitted.

<表面処理銅箔の物性>
以上の工程を経て得られた褐色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図1に示したと同様の断面が得られ、当該褐色化処理面の断面高さが74nmであり、当該褐色化処理面のLab表色系におけるa値が3.8、光沢度[Gs(60°)]が1.5であった。また、褐色化処理面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the browning treatment surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 1 is obtained, and the cross-sectional height of the browning treatment surface is The a value in the Lab color system of the browned surface was 3.8, and the glossiness [Gs (60 °)] was 1.5. Moreover, the powder fall in the tape test by sticking an adhesive tape on the browning surface and peeling it off was not confirmed.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

比較例1Comparative Example 1

この比較例では、実施例1の工程d.で用いた硫酸銅溶液の銅濃度を低くして、最適条件から外して極微細銅粒の付着形成を行った。従って、工程d.に関してのみ説明する事とする。   In this comparative example, the process d. The copper concentration of the copper sulfate solution used in Example 1 was lowered to remove the optimum conditions, thereby forming ultrafine copper particles. Therefore, step d. I will explain only about.

工程d: この仕上げメッキ処理工程では、実施例1で用いた9−フェニルアクリジンを添加した以下の硫酸銅溶液の銅濃度を8g/lとしたのである。そして、この仕上げメッキ処理工程での電着量は、実施例1と同様に換算厚さとして300mg/mの電着量とした。 Step d: In this finish plating step, the copper concentration of the following copper sulfate solution to which 9-phenylacridine used in Example 1 was added was 8 g / l. And the electrodeposition amount in this finish plating process was set to 300 mg / m 2 as the equivalent thickness as in Example 1.

<表面処理銅箔の物性>
以上の工程を経て得られた褐色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図2に示した断面が得られ、当該褐色化処理面の断面高さ(d)が180nmであり、当該褐色化処理面のLab表色系におけるa値が3.6、光沢度[Gs(60°)]が2.6であった。上記実施例と比較したときに、図1と図2との比較から分かるように仕上げメッキ処理による処理コブが異常成長しており、粉落ちを起こす表面であることが分かる。しかも、褐色化処理面の同一面内での色ムラが見受けられた。また、褐色化処理面に粘着性テープを貼り、引き剥がすことによるテープテストで、粉落ちが確認された。
<Physical properties of surface-treated copper foil>
As a result of observing the cross section of the surface-treated copper foil provided with the browning treatment surface obtained through the above steps with a FIB apparatus, the cross section shown in FIG. 2 is obtained, and the cross-sectional height (d) of the browning treatment surface is obtained. The a value in the Lab color system of the browned surface was 3.6, and the glossiness [Gs (60 °)] was 2.6. When compared with the above example, as can be seen from the comparison between FIG. 1 and FIG. 2, it can be seen that the processed bumps by the finish plating treatment are abnormally grown and the surface causes powder falling. In addition, color unevenness was observed in the same surface of the browning surface. Moreover, powder fall was confirmed by the tape test by sticking an adhesive tape on the browning surface and peeling it off.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障はなかったものの、この比較例で得られた表面処理銅箔の褐色化処理面は、ハンドリング時に擦れた状態の傷が生じやすく、当所の褐色化処理面をエッチング加工終了まで維持することが困難であった。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, although there was no hindrance to the etching operation even if a rust-proofing layer was present, the browned surface of the surface-treated copper foil obtained in this comparative example was easily rubbed during handling. It was difficult to maintain our browning surface until the end of the etching process.

本件発明に係る褐色化処理面を備えた表面処理銅箔は、色ムラのない耐傷性に優れた褐色化処理面を備え、黒色化処理面からの粉落ちが無く、しかも、通常の銅エッチング液を用いてのエッチング加工が可能であり、プラズマディスプレイパネルの前面パネルの電磁波遮蔽導電性メッシュに用いることで、高品質のブラックマスクの形成が可能となる。また、褐色化処理面を備えた表面処理銅箔として供給することで、前面パネルの製造プロセスでの黒色化処理工程の省略が可能となる。   The surface-treated copper foil provided with the browning surface according to the present invention has a browning surface excellent in scratch resistance with no color unevenness, no powder falling off from the blackening surface, and normal copper etching Etching using a liquid is possible, and a high-quality black mask can be formed by using it for an electromagnetic wave shielding conductive mesh of a front panel of a plasma display panel. Moreover, by supplying as a surface-treated copper foil having a browning surface, the blackening step in the front panel manufacturing process can be omitted.

また、褐色化処理面の形成に当たって、多段階の銅ヤケメッキ方法を採用し、平滑メッキと、仕上げヤケメッキを行うという製造方法を採用することで、本件発明に係る表面処理銅箔を歩留まり良く製造できるため、生産コストの削減が可能となる。   In addition, in forming the browning surface, the surface-treated copper foil according to the present invention can be manufactured with a high yield by adopting a manufacturing method in which a multi-step copper burn plating method is adopted, and smooth plating and finish burn plating are performed. Therefore, the production cost can be reduced.

褐色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a browning process surface. 褐色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a browning process surface.

符号の説明Explanation of symbols

1 表面処理銅箔
2 褐色化処理面
1 Surface-treated copper foil 2 Browning surface

Claims (10)

多段階に行う銅メッキにより形成された褐色化処理面を備える銅箔であって、
当該褐色化処理面の断面高さが150nm以下である請求項1に記載の褐色化表面処理銅箔。
A copper foil provided with a browning surface formed by copper plating performed in multiple stages,
The browning surface-treated copper foil according to claim 1, wherein a cross-sectional height of the browning surface is 150 nm or less.
前記褐色化処理面は、Lab表色系におけるa値が4.0以下である請求項1に記載の褐色化表面処理銅箔。 The browning surface-treated copper foil according to claim 1, wherein the browning surface has an a value in the Lab color system of 4.0 or less. 前記褐色化処理面に防錆処理層を備えるものである請求項1又は請求項2に記載の褐色化表面処理銅箔。 The browning surface-treated copper foil according to claim 1 or 2, wherein the browning surface is provided with a rust-proofing layer. 前記褐色化処理面は、電解銅箔の光沢面若しくは圧延銅箔の表面に当該褐色化処理面を形成したものであり、且つ、光沢度[Gs(60°)]が10以下である請求項1〜請求項3のいずれかに記載の褐色化表面処理銅箔。 The browning-treated surface is obtained by forming the browning-treated surface on the glossy surface of an electrolytic copper foil or the surface of a rolled copper foil, and the glossiness [Gs (60 °)] is 10 or less. The browning surface-treated copper foil in any one of Claims 1-3. 前記褐色化処理面は、電解銅箔の粗面に当該褐色化処理面を形成したものであり、且つ、光沢度[Gs(60°)]が3以下である請求項1〜請求項3のいずれかに記載の褐色化表面処理銅箔。 The browning treatment surface is obtained by forming the browning treatment surface on a rough surface of an electrolytic copper foil, and has a gloss [Gs (60 °)] of 3 or less. The browning surface-treated copper foil in any one. 請求項1〜請求項5のいずれかに記載の褐色化表面処理銅箔の製造方法であって、以下の工程a〜工程eの各工程を備えることを特徴とした褐色化表面処理銅箔の製造方法。
工程a: 硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための最初のメッキ処理(以下、「基礎メッキ処理」と称する。)を施す基礎メッキ処理工程。
工程b: 基礎メッキ処理された銅箔の表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて1回以上の追加のメッキ処理を施す追加メッキ処理工程。
工程c: 工程a及び工程bによりヤケメッキを施した銅箔面に、硫酸銅系メッキ溶液を用いて平滑メッキ条件でメッキ処理を行う被覆メッキ処理工程。
工程d: 工程cが終了し平滑メッキ処理のなされた表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔表面を褐色に仕上げるためのメッキ処理(以下、「仕上げメッキ処理」と称する。)を施す仕上げメッキ処理工程。
工程e: 上述の各工程の終了後、水洗、乾燥し、褐色化表面処理銅箔とする洗浄・乾燥工程。
It is a manufacturing method of the browning surface treatment copper foil in any one of Claims 1-5, Comprising: Each process of the following process a-process e is provided, The browning surface treatment copper foil characterized by the above-mentioned. Production method.
Step a: A basic plating treatment step of applying an initial plating treatment (hereinafter referred to as “basic plating treatment”) for making the surface of the copper foil brown using a copper sulfate-based plating solution under burn plating conditions.
Step b: An additional plating treatment step in which the surface of the basic plated copper foil is subjected to one or more additional plating treatments using a copper sulfate-based plating solution under burn plating conditions.
Step c: A coating plating step in which the copper foil surface that has been burnt-plated in Steps a and b is plated using a copper sulfate plating solution under smooth plating conditions.
Step d: Plating treatment for finishing the copper foil surface brown (hereinafter referred to as “finish plating treatment”) using a copper sulfate-based plating solution on the surface that has been subjected to the smooth plating treatment after the completion of the step c. .) Finish plating process.
Step e: Washing / drying step after completion of each step described above, followed by washing with water and drying to obtain a browned surface-treated copper foil.
請求項3〜請求項5のいずれかに記載の褐色化表面処理銅箔の製造方法であって、以下の工程a〜工程fの各工程を備えることを特徴とした褐色化表面処理銅箔の製造方法。
工程a: 硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔の表面を褐色にするための最初のメッキ処理(以下、「基礎メッキ処理」と称する。)を施す基礎メッキ処理工程。
工程b: 基礎メッキ処理された銅箔の表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて1回以上の追加のメッキ処理を施す追加メッキ処理工程。
工程c: 工程a及び工程bによりヤケメッキを施した銅箔面に、硫酸銅系メッキ溶液を用いて平滑メッキ条件でメッキ処理を行う被覆メッキ処理工程。
工程d: 工程cが終了し平滑メッキ処理のなされた表面に、硫酸銅系メッキ溶液をヤケメッキ条件で用いて、銅箔表面を褐色に仕上げるためのメッキ処理(以下、「仕上げメッキ処理」と称する。)を施す仕上げメッキ処理工程。
工程e: 以上の工程により褐色化処理の終了した銅箔の表面に防錆処理を施す防錆処理工程。
工程f: 上述の各工程の終了後、水洗、乾燥し、褐色化表面処理銅箔とする洗浄・乾燥工程。
It is a manufacturing method of the browning surface treatment copper foil in any one of Claims 3-5, Comprising: Each process of the following process a-process f is provided, The browning surface treatment copper foil characterized by the above-mentioned. Production method.
Step a: A basic plating treatment step of applying an initial plating treatment (hereinafter referred to as “basic plating treatment”) for making the surface of the copper foil brown using a copper sulfate-based plating solution under burn plating conditions.
Step b: An additional plating treatment step in which the surface of the basic plated copper foil is subjected to one or more additional plating treatments using a copper sulfate-based plating solution under burn plating conditions.
Step c: A coating plating step in which the copper foil surface that has been burnt-plated in Steps a and b is plated using a copper sulfate plating solution under smooth plating conditions.
Step d: Plating treatment for finishing the copper foil surface brown (hereinafter referred to as “finish plating treatment”) using a copper sulfate-based plating solution on the surface that has been subjected to the smooth plating treatment after the completion of the step c. .) Finish plating process.
Step e: A rust prevention treatment step for carrying out a rust prevention treatment on the surface of the copper foil that has been browned by the above steps.
Step f: A washing / drying step after completion of each of the above steps, followed by washing with water and drying to obtain a browned surface-treated copper foil.
工程aにおいてヤケメッキを行う際に採用する電流密度(Ia)に対し、工程bでヤケメッキを行う際に採用する電流密度(Ib)は、Iaの50%以下の電流密度である請求項6又は請求項7に記載の褐色化表面処理銅箔の製造方法。 7. The current density (Ib) employed when performing the burn plating in the step b is 50% or less of the current density of the current Ia (Ia) employed when performing the burn plating in the step a. Item 8. A method for producing a browned surface-treated copper foil according to Item 7. 工程dにおいてヤケメッキを行う際に用いる銅メッキ溶液は、銅濃度が5〜15g/l、フリー硫酸40〜100g/l、9−フェニルアクリジン50〜300mg/l、塩素濃度20ppm〜32ppmである請求項6〜請求項8のいずれかに記載の褐色化表面処理銅箔の製造方法。 The copper plating solution used for the burn plating in step d has a copper concentration of 5 to 15 g / l, free sulfuric acid 40 to 100 g / l, 9-phenylacridine 50 to 300 mg / l, and a chlorine concentration of 20 ppm to 32 ppm. The manufacturing method of the browning surface treatment copper foil in any one of Claims 6-8. 請求項1〜請求項5のいずれかに記載の褐色化表面処理銅箔を用いたプラズマディスプレイの前面パネル用の電磁波遮蔽導電性メッシュ An electromagnetic wave shielding conductive mesh for a front panel of a plasma display using the browned surface-treated copper foil according to any one of claims 1 to 5.
JP2003433053A 2003-12-26 2003-12-26 Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil Expired - Fee Related JP4354271B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003433053A JP4354271B2 (en) 2003-12-26 2003-12-26 Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil
KR1020057021874A KR100738164B1 (en) 2003-12-26 2004-12-20 Bronzing-surface-treated copper foil, process for producing the same, and electromagnetic wave shielding conductive mesh for front panel of plasma display utilizing the bronzing-surface-treated copper foil
CNB2004800104109A CN100567584C (en) 2003-12-26 2004-12-20 Brown surface treatment copper foil and manufacture method, with the electromagnetic wave shielding conductive mesh for front panel of plasma display of this Copper Foil
PCT/JP2004/019006 WO2005064044A1 (en) 2003-12-26 2004-12-20 Bronzing-surface-treated copper foil, process for producing the same, and electromagnetic wave shielding conductive mesh for front panel of plasma display utilizing the bronzing-surface-treated copper foil
TW093139820A TW200526111A (en) 2003-12-26 2004-12-21 Bronzing-surface-treated copper foil, process for producing the same, and electromagnetic wave shielding conductive mesh for front panel of plasma display utilizing the bronzing-surface-treated copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433053A JP4354271B2 (en) 2003-12-26 2003-12-26 Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP2005187913A true JP2005187913A (en) 2005-07-14
JP4354271B2 JP4354271B2 (en) 2009-10-28

Family

ID=34736497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433053A Expired - Fee Related JP4354271B2 (en) 2003-12-26 2003-12-26 Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil

Country Status (5)

Country Link
JP (1) JP4354271B2 (en)
KR (1) KR100738164B1 (en)
CN (1) CN100567584C (en)
TW (1) TW200526111A (en)
WO (1) WO2005064044A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021964A (en) * 2006-03-28 2008-01-31 Fujifilm Corp Conductive film, manufacturing method, and light transparency electromagnetic wave shield film
CN106358377A (en) * 2015-07-16 2017-01-25 Jx金属株式会社 Copper foil with carrier laminate production method for laminate production method for printed wiring board and production method for electronic device
KR20170028968A (en) 2014-09-02 2017-03-14 미쓰이금속광업주식회사 Blackened surface treated copper foil and copper foil with carrier foil
KR20190010394A (en) * 2017-07-21 2019-01-30 친텅 린 Copper powder metal plating layer, metal substrate, energy-saving anti-burst heat dissipation device and preparation process thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI432615B (en) * 2009-02-13 2014-04-01 Furukawa Electric Co Ltd A metal foil, a method for manufacturing the same, an insulating substrate, and a wiring substrate
CN109440157B (en) * 2018-12-05 2021-05-25 常德力元新材料有限责任公司 Preparation method of brown conductive sponge
CN116761716A (en) 2021-02-19 2023-09-15 三井金属矿业株式会社 Method for manufacturing laminated plate and heating element, and defroster
WO2022176698A1 (en) 2021-02-19 2022-08-25 三井金属鉱業株式会社 Method for producing laminate and heating element, and defroster
US20240123722A1 (en) 2021-02-19 2024-04-18 Mitsui Mining & Smelting Co., Ltd. Methods for manufacturing laminated plate and heat generator, and defroster
CN114836801B (en) * 2022-06-21 2023-04-28 中船九江精达科技股份有限公司 Multilayer electroplating process of beryllium bronze elastic device
WO2024122927A1 (en) * 2022-12-06 2024-06-13 에스케이넥실리스 주식회사 High-strength and high-elongation copper foil, electrode comprising same, secondary battery comprising same, and manufacturing method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8333752D0 (en) * 1983-12-19 1984-01-25 Thorpe J E Matte surface on metal layer
JP2001177204A (en) * 1999-12-15 2001-06-29 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil and method of manufacturing the same
JP3661763B2 (en) * 2000-01-28 2005-06-22 三井金属鉱業株式会社 Method for producing surface-treated copper foil for printed wiring board
JP2002341783A (en) * 2001-05-18 2002-11-29 Shuho:Kk Display filter in electronic image display device
JP2003122303A (en) * 2001-10-16 2003-04-25 Matsushita Electric Ind Co Ltd El display panel and display device using the same, and its driving method
JP2003201597A (en) * 2002-01-09 2003-07-18 Nippon Denkai Kk Copper foil, production method therefor and electromagnetic wave shield body obtained by using the copper foil
JP2003218583A (en) * 2002-01-22 2003-07-31 Nitto Denko Corp Manufacturing method for translucent electromagnetic shield member
JP2003318596A (en) * 2002-02-21 2003-11-07 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021964A (en) * 2006-03-28 2008-01-31 Fujifilm Corp Conductive film, manufacturing method, and light transparency electromagnetic wave shield film
KR20170028968A (en) 2014-09-02 2017-03-14 미쓰이금속광업주식회사 Blackened surface treated copper foil and copper foil with carrier foil
CN106358377A (en) * 2015-07-16 2017-01-25 Jx金属株式会社 Copper foil with carrier laminate production method for laminate production method for printed wiring board and production method for electronic device
CN106358377B (en) * 2015-07-16 2019-09-13 Jx金属株式会社 Copper foil with carrier, laminate, the manufacturing method of laminate, the manufacturing method of the manufacturing method of printing distributing board and e-machine
KR20190010394A (en) * 2017-07-21 2019-01-30 친텅 린 Copper powder metal plating layer, metal substrate, energy-saving anti-burst heat dissipation device and preparation process thereof
KR102077896B1 (en) 2017-07-21 2020-02-14 친텅 린 Copper powder metal plating layer, metal substrate, energy-saving anti-burst heat dissipation device and preparation process thereof

Also Published As

Publication number Publication date
KR20060067921A (en) 2006-06-20
TW200526111A (en) 2005-08-01
JP4354271B2 (en) 2009-10-28
WO2005064044A1 (en) 2005-07-14
CN1777705A (en) 2006-05-24
CN100567584C (en) 2009-12-09
KR100738164B1 (en) 2007-07-10
TWI301049B (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP3313277B2 (en) Electrodeposited copper foil for fine pattern and its manufacturing method
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP3081026B2 (en) Electrolytic copper foil for printed wiring boards
JPH08158100A (en) Roughening of copper foil surface
JPWO2007007870A1 (en) Blackened surface treated copper foil and electromagnetic shielding conductive mesh for front panel of plasma display using the blackened surface treated copper foil
KR100450510B1 (en) Surface- Treated Copper Foil, Method of Producing the Surface- treated Copper foil, and Copper- Clad Laminate Employing the Surface- Treated Copper Foil
JP4354271B2 (en) Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil
JP4458521B2 (en) Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP5913356B2 (en) Copper foil for printed circuit
KR100435298B1 (en) Electrolytic copper foil
JP4202840B2 (en) Copper foil and method for producing the same
JP2002322586A (en) Electrolytic copper foil for fine pattern and its manufacturing method
US20040108211A1 (en) Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
JP4458519B2 (en) Surface-treated copper foil having a blackened surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP2002246712A (en) Electrolytic copper foil for fine patterning
TW202221169A (en) Roughened copper foil, copper-clad laminate, and printed wiring board
JP2008166655A (en) Copper foil for electromagnetic shielding material
JP2004256832A (en) Surface treated copper foil provided with blackening treated face, and magnetic shielding conductive mesh for front panel of plasma display obtained by using the surface treated copper foil
JP4017628B2 (en) Electrolytic copper foil
JP2005139546A (en) Blacking surface-treated copper foil, process for producing the blackening surface-treated copper foil and, using the blacking surface-treated copper foil, electromagnetic wave shielding conductive mesh
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JPH04318997A (en) Copper foil for printed circuit and manufacture thereof
JP4575719B2 (en) Surface-treated copper foil having a browned surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
KR100603428B1 (en) Method for manufacturing black surface-treated copper foil for EMI Shield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R150 Certificate of patent or registration of utility model

Ref document number: 4354271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140807

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees