JP2004249897A - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- JP2004249897A JP2004249897A JP2003044177A JP2003044177A JP2004249897A JP 2004249897 A JP2004249897 A JP 2004249897A JP 2003044177 A JP2003044177 A JP 2003044177A JP 2003044177 A JP2003044177 A JP 2003044177A JP 2004249897 A JP2004249897 A JP 2004249897A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- work amount
- correction
- air conditioner
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000012937 correction Methods 0.000 claims description 61
- 238000001816 cooling Methods 0.000 claims description 25
- 239000003507 refrigerant Substances 0.000 claims description 11
- 238000005057 refrigeration Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000004378 air conditioning Methods 0.000 abstract description 39
- 230000001133 acceleration Effects 0.000 description 62
- 238000001704 evaporation Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
- B60H1/3211—Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
- B60H1/3213—Control means therefor for increasing the efficiency in a vehicle heat pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3266—Cooling devices information from a variable is obtained related to the operation of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3269—Cooling devices output of a control signal
- B60H2001/327—Cooling devices output of a control signal related to a compressing unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3269—Cooling devices output of a control signal
- B60H2001/327—Cooling devices output of a control signal related to a compressing unit
- B60H2001/3272—Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3269—Cooling devices output of a control signal
- B60H2001/327—Cooling devices output of a control signal related to a compressing unit
- B60H2001/3275—Cooling devices output of a control signal related to a compressing unit to control the volume of a compressor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3286—Constructional features
- B60H2001/3292—Compressor drive is electric only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3286—Constructional features
- B60H2001/3294—Compressor drive is hybrid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21173—Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にする。
【解決手段】圧縮機の規定時間あたりの目標仕事量を熱負荷に基づいて算出する目標仕事量算出手段を備え、目標仕事量となるように圧縮機を作動させる通常制御の状態から、圧縮機の仕事量を目標仕事量よりも強制的に小さくするカット制御の状態に推移し、カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標仕事量を、増加させるように補正する。これにより、カット制御が終了した直後における圧縮機の仕事量は、熱負荷に基づいて算出された目標仕事量よりも大きくなるので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【選択図】 図4
【解決手段】圧縮機の規定時間あたりの目標仕事量を熱負荷に基づいて算出する目標仕事量算出手段を備え、目標仕事量となるように圧縮機を作動させる通常制御の状態から、圧縮機の仕事量を目標仕事量よりも強制的に小さくするカット制御の状態に推移し、カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標仕事量を、増加させるように補正する。これにより、カット制御が終了した直後における圧縮機の仕事量は、熱負荷に基づいて算出された目標仕事量よりも大きくなるので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【選択図】 図4
Description
【0001】
【発明の属する技術分野】
本発明は、車両用空調装置に関するものである。
【0002】
【従来の技術】
従来より、前方他車を追い越すとき等の加速走行時に、車両エンジンに対する圧縮機の駆動負荷を軽減して車両エンジンの加速性を確保する、いわゆる「加速カット制御」が知られている(例えば、特許文献1参照)。この加速カット制御は、具体的には、アクセルペダルの踏み込み量等により車両エンジンの走行負荷が所定負荷を越えた高負荷時に行う制御であり、当該高負荷時の例としては、上記加速走行時の他にも登坂走行時等が挙げられる。
【0003】
そして、加速カット制御による圧縮機の駆動負荷軽減の具体例としては、固定容量型圧縮機の場合には、電磁クラッチを遮断して圧縮機を停止状態とし、また、可変容量型圧縮機の場合には、圧縮機の吐出容量を小容量に引き下げ、また、電動圧縮機の場合には、圧縮機の回転数を低下させて走行アシスト用電力を十分に確保させる事が挙げられる。
【0004】
また、加速カット制御以外のときには、圧縮機の仕事量が、熱負荷に基づいて算出された目標仕事量となるように、圧縮機の作動を制御している。上記仕事量を具体的に説明すると、固定容量型圧縮機の場合には、規定時間あたりの電磁クラッチ接続時間が上記仕事量に相当し、可変容量型圧縮機の場合には、圧縮機1回転あたりの吐出容量が上記仕事量に相当し、電動圧縮機の場合には、圧縮機の回転速度が上記仕事量に相当する。
【0005】
【特許文献1】
特開平5−58151号公報
【0006】
【発明が解決しようとする課題】
ここで、上記加速カット制御を行うとエバポレータの温度が上昇するため、加速カット終了直後には即座にエバポレータの温度を低下させる必要がある。これに対し、上記従来の圧縮機制御によれば、加速カット終了直後には熱負荷が大きくなるため、目標仕事量が加速カット直前の目標仕事量に比べて大きくなるものの、即座にエバポレータの温度を低下させるのには十分でない。
【0007】
なお、上述の圧縮機制御は冷房運転時の制御について説明しているが、ヒートポンプサイクルに適用された圧縮機の作動により室内熱交換器で放熱して暖房運転する場合においても、加速カット終了直後には即座に室内熱交換器の温度を上昇させる必要がある。しかしながら、圧縮機の仕事量が、熱負荷に基づいて算出された目標仕事量となるように、圧縮機の作動を制御するだけでは、即座に室内熱交換器の温度を上昇させるのには十分でない。
【0008】
本発明は、上記点に鑑み、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、冷凍サイクルの圧縮機(23)と、圧縮機(23)の作動により冷媒が循環して車室内吹出空気と熱交換する室内熱交換器(21)と、圧縮機(23)の規定時間あたりの目標仕事量を熱負荷に基づいて算出する目標仕事量算出手段とを備え、目標仕事量となるように圧縮機(23)を作動させる通常制御の状態から、圧縮機(23)の仕事量を目標仕事量よりも強制的に小さくするカット制御の状態に推移し、カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標仕事量を、増加させるように補正することを特徴とする。
【0010】
これにより、カット制御が終了した直後における圧縮機(23)の仕事量は、熱負荷に基づいて算出された目標仕事量よりも大きくなるので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0011】
カット制御の具体例として、請求項2に記載のように、車両の走行負荷が所定負荷を越えたときに圧縮機(23)の仕事量を強制的に低下させる制御が挙げられる。
【0012】
また、請求項3に記載の発明では、所定時間が長いほど、補正により増加させる仕事量を大きすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0013】
また、請求項4に記載の発明では、カット制御開始直前の圧縮機(23)による仕事量が大きいほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0014】
また、請求項5に記載の発明では、所定時間が経過した直後における熱負荷が大きいほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0015】
また、請求項6に記載の発明では、所定時間が経過した直後における日射量が多いほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0016】
また、請求項7に記載の発明では、補正により増加された目標仕事量を、圧縮機(23)が可能な最大の仕事量に設定することを特徴とするので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることを、確実にできる。
【0017】
また、請求項8に記載の発明では、補正により増加させる仕事量は、カット制御時の不足仕事量を一定時間内で補うことができるような仕事量に設定されていることを特徴とするので、一定時間内に、カット制御時の不足仕事量を補いたい場合に用いて好適である。
【0018】
また、請求項9に記載の発明では、補正による制御を実行しているときには、カット制御の実行を禁止することを特徴とするので、カット制御よりも優先させて補正を行いたい場合に用いて好適である。
【0019】
なお、請求項10〜14のような場合に上記請求項1〜9に記載の車両用空調装置を用いて好適である。すなわち、請求項10に記載の発明では、圧縮機(23)には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、目標仕事量算出手段は、回転速度を規定時間あたりの目標仕事量として算出し、目標仕事量を増加させる補正は、回転速度を増加させる補正であることを特徴とする。
【0020】
なお、上記請求項10に記載の発明において、請求項11に記載のように、電動モータの他に走行用エンジンを駆動源として回転可能に構成された圧縮機(23)を適用してもよい。
【0021】
また、請求項12に記載の発明では、圧縮機(23)には、1回転あたりの吐出容量を可変することで仕事量を可変する可変容量圧縮機が用いられており、目標仕事量算出手段は、吐出容量を規定時間あたりの目標仕事量として算出し、目標仕事量を増加させる補正は、吐出容量を増加させる補正であることを特徴とする。
【0022】
また、請求項13に記載の発明では、目標仕事量算出手段は、室内熱交換器(21)の目標温度を規定時間あたりの目標仕事量として算出し、室内熱交換器(21)の実際の温度が目標温度となるように、圧縮機(23)への動力伝達を遮断するようになっており、目標仕事量を増加させる補正は、冷房運転時に目標温度を低下させる補正および暖房運転時に目標温度を上昇させる補正のうち少なくとも一方の補正であることを特徴とする。
【0023】
なお、上記請求項13に記載の発明において、請求項14に記載のように、走行用エンジンの他に電動モータを駆動源として回転可能に構成された圧縮機(23)を適用してもよい。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0025】
【発明の実施の形態】
以下、本発明の各実施形態を図に基づいて説明する。
【0026】
(第1実施形態)
図1および図3は本発明の車両用空調装置をハイブリッド自動車に適用した本実施形態を示したもので、図1はハイブリッド自動車の概略構成を示した図、図2はハイブリッド自動車用空調装置の全体構成を示した図である。
【0027】
本実施形態のハイブリッド自動車用空調装置は、ハイブリッド自動車5の車室内を冷房するエアコンユニット6の各空調手段(アクチュエータ)を、空調制御装置(以下エアコンECUと言う)7によって制御することにより、車室内の温度を常に設定温度に保つよう自動制御するように構成されたオートエアコンである。
【0028】
なお、ハイブリッド自動車5には、エアコンユニット6の他に、例えば走行用ガソリンエンジン(以下走行用エンジンと略す)1、電動モータおよび発電機として機能する電動発電機2、走行用エンジン1を始動させるための始動用モータや点火装置を含むエンジン始動装置3、および電動発電機2やエンジン始動装置3に電力を供給する車載バッテリ4が搭載されている。
【0029】
そして、電動発電機2は、エンジン1により駆動されるときは発電機として機能して電気を発生し、バッテリ4から給電されるときは電動モータとして機能して車両走行用の駆動力を発生するものであり、従って、電動発電機2は、本発明の発電機に相当すると共に、本発明の走行用電動モータに相当する。
【0030】
走行用エンジン1は、ハイブリッド自動車5の車軸に係脱自在に駆動連結されている。また、電動発電機2は、ハイブリッド自動車5の車軸に係脱自在に駆動連結され、走行用エンジン1と車軸が連結していない時に車軸と連結されるようになっている。そして、電動発電機2は、ハイブリッド制御装置(以下ハイブリッドECUと言う)8により自動制御(例えばインバータ制御)されるように構成されている。なお、ハイブリッドECU8は、ハイブリッド自動車5の発進時や低速走行時に電動発電機2だけでハイブリッド自動車5を動かすように電動発電機2を通電制御する。
【0031】
さらに、エンジン始動装置3は、エンジン制御装置(以下エンジンECUと言う)9によりガソリンの燃焼効率が最適になるよう自動制御されるように構成されている。なお、エンジンECU9は、ハイブリッド自動車5の通常の走行および車載バッテリ4の充電が必要な時に、エンジン始動装置3を通電制御して走行用エンジン1を運転する。
【0032】
エアコンユニット6は、空調ダクト11、この空調ダクト11内において車室内に向かう空気流を発生させる遠心式送風機12、および空調ダクト11内を流れる空気を冷却して車室内を冷房するためのエバポレータ21等から構成されている。空調ダクト11は、ハイブリッド自動車5の車室内の前方側に配設され、内部にハイブリッド自動車5の車室内に空調空気(冷風)を導く空気通路を形成している。
【0033】
なお、空調ダクト11の最も上流側には、車室内空気(以下内気と言う)を取り入れる内気吸込口(図示せず)、車室外空気(以下外気と言う)を取り入れる外気吸込口(図示せず)、および吸込口モードを切り替える内外気切替ドア(図示せず)が設けられている。また、空調ダクト11の最も下流側には、デフロスタ吹出口(図示せず)、フェイス吹出口(図示せず)、フット吹出口(図示せず)、および吹出口モードを切り替えるモード切替ドア(図示せず)が設けられている。
【0034】
遠心式送風機12は、空調ダクト11と一体的に構成されたスクロールケースに回転自在に収容された遠心式ファン13、およびこの遠心式ファン13を回転駆動するブロワモータ14を有している。そして、ブロワモータ14は、ブロワ駆動回路(ブロワ駆動手段)15を介して印加されるブロワ端子電圧(以下ブロワ電圧と言う)に基づいて、ブロワ風量(遠心式ファン14の回転速度)が制御される。
【0035】
エバポレータ21は、本発明のに相当し、冷凍サイクル20の一構成部品を成すもので、空調ダクト11内の空気通路を全面塞ぐようにして配設されている。そして、冷凍サイクル20は、電動モータ22によって回転駆動されて、エバポレータ21より吸引したガス冷媒を圧縮する圧縮機23と、この圧縮機23で圧縮された冷媒を凝縮液化させる室外熱交換器としてのコンデンサ24と、このコンデンサ24で凝縮液化された冷媒を気液分離して液冷媒のみを下流側に流すレシーバ25と、このレシーバ25より流出した液冷媒を減圧膨張させる減圧手段を成すエキスパンションバルブ26と、このエキスパンションバルブ26で減圧膨張された気液二相状態の冷媒を蒸発気化させる上記のエバポレータ21と、これらを環状に連結する冷媒配管とから構成されている。
【0036】
さらに、本実施形態の冷凍サイクル20には、コンデンサ24の室外空気(冷却風)を強制的に送風するための冷却ファン27、およびこの冷却ファン27を回転駆動する電動モータ28が設けられている。
【0037】
なお、本実施形態の冷凍サイクル20では、電動モータ22が通電状態の時に、電動モータ22の動力が圧縮機23に伝達されてエバポレータ21による空気冷却作用が行われ、電動モータ22の通電が停止された時に、電動モータ22の作動が止まってエバポレータ21による空気冷却作用が停止するように構成されている。
【0038】
そして、車載バッテリ4から電動モータ22へ供給される電力が、エアコン用インバータ(回転速度制御手段)29によって連続的または段階的に可変制御されることにより、電動モータ22の回転速度が可変制御される。また、電動モータ22の回転速度の変化によって、圧縮機23による冷媒吐出容量を変化させて冷凍サイクル20内を循環する冷媒の循環量(流量)を調節することにより、エバポレータ21の冷却能力(冷凍サイクル20の冷房能力)が制御される。換言すれば、圧縮機23による仕事量が制御される。
【0039】
次に、本実施形態のエアコンユニット6の制御系の構成を説明する。エアコンECU7には、エンジンECU9から出力される通信信号、車室内前面に設けられたコントロールパネル(図示せず)上の各スイッチからのスイッチ信号、および各センサからのセンサ信号が入力される。ここで、エンジンECU9から出力される上記通信信号には、後述する加速カット制御を要求する加速カット要求信号が含まれている。
【0040】
また、コントロールパネル上の各スイッチとしては、車室内の温度を所望の温度に設定するための温度設定手段としての温度設定スイッチ31、冷凍サイクル20(圧縮機23)の起動および運転停止を指令するための、図示しないエアコンスイッチ、遠心式ファン13のブロワ風量を切り替えるための風量切替スイッチ、吸込口モードを切り替えるための吸込口切替スイッチ、および吹出口モードとしてデフロスタモードを設定するためのデフロスタスイッチ等がある。
【0041】
そして、各センサのうち、車室内の空調状態(冷房状態)を検出する状態検出手段としては、図2に示したように、車室内の空気温度(内気温度)を検出する内気温検出手段としての内気温センサ32、車室外の空気温度(外気温度)を検出する外気温検出手段としての外気温センサ33、車室内に照射される日射量を検出する日射検出手段としての日射センサ34、およびエバポレータ21の空気冷却度合を検出する空気冷却度合検出手段としてのエバ後温度センサ35等がある。
【0042】
このうち、内気温センサ32、外気温センサ33およびエバ後温度センサ35にはサーミスタが使用されている。また、日射センサ34にはフォトダイオードが使用されている。ここで、エバ後温度センサ35は、具体的にはエバポレータ21を通過した直後の空気温度TE(以下、エバ後温度TEという)を検出するエバ後温度検出手段である。
【0043】
そして、各センサのうち、ハイブリッド自動車5の運転状態を検出する状態検出手段としては、図2に示したように、車載バッテリ4の容量(残量)を検出する容量検出手段としての容量センサ36等である。車載バッテリ4の容量の測定方法としては、車載バッテリ4の放電量と充電量が測定できる充放電量測定器(例えばバッテリチャージカウンタ等)を使用して、車載バッテリ4の充放電収支を計量して、車載バッテリ4の容量を検出する方法がある。
【0044】
また、車載バッテリ4の容量(AH)は、放電電流の大きさ、放電時間、電解液の温度または電解液の比重から算出しても良いし、それらを組み合わせて算出しても良い。そして、本実施形態では、車載バッテリ4の容量が80%以下に低下した際にエアコンECU7に、圧縮機23の電動モータ22の駆動を停止させる旨の電気信号(加速カット要求信号)を出力して加速カット制御を行うようになっている。
【0045】
ここで、加速カット制御とは、車両の走行負荷が所定負荷を越えたときに圧縮機23の仕事量を強制的に低下させる制御のことであり、従って、前方他車を追い越すとき等の加速走行時に、車両エンジンの他に車載バッテリ4を駆動源とするモータ駆動により、走行駆動源をアシストするアシスト走行するにあたり、車載バッテリ4の容量負荷を軽減して加速性を確実に確保することを図った制御である。
【0046】
この加速カット制御は、具体的には、アクセルペダルの踏み込み量等により車両エンジンの走行負荷および車載バッテリ4の容量負荷が所定負荷を越えた高負荷時に行う制御であり、当該高負荷時の例としては、上記加速走行時のように実際に加速している場合に限られず、登坂走行時等が挙げられる。
【0047】
因みに、ハイブリッド自動車5の運転状態を検出する状態検出手段として、エンジンECU9に接続されるエンジン回転速度センサ(図示せず)や車速センサ(図示せず)からエンジン回転速度や車速を通信回線を介してエアコンECU7に受信するようにしても良い。
【0048】
エアコンECU7の内部には、CPU、ROM、RAM等からなるマイクロコンピュータが設けられ、各センサ32〜36からのセンサ信号は、エアコンECU7内の入力回路(図示せず)によってA/D変換された後にマイクロコンピュータに入力されるように構成されている。また、エアコンECU7は、ハイブリッド自動車5のキースイッチがIG位置に設定されたときに、車載バッテリ4から直流電流が供給されて作動する。
【0049】
次に、本実施形態の作動を説明する。ここで、図3および図4はエアコンECU7による空調制御(主に電動式の圧縮機23の回転速度制御)を示したフローチャートである。
【0050】
はじめに、キースイッチがIG位置に操作されてエアコンECU7に直流電源が供給されると、図3のルーチンが起動されて各イニシャライズおよび初期設定を行い、ステップS10にて、空調環境状態に関する信号として、温度設定スイッチ31および風量切替スイッチ等の各スイッチからスイッチ信号を読み込む。また、ステップS20にて、車両環境状態に関する信号として、車速センサからの車速信号等を読み込む。
【0051】
次に、ステップS30では、設定温度、内気温度、外気温度、日射量等に基づいて、車室内へ吹き出される送風空気の目標吹出温度TAOを算出する。この目標吹出温度TAOは、内気温を設定温度に維持するために必要な吹出空気の温度である。また、ステップS30では、目標吹出温度TAOに基づいて、吹出口モード、目標ブロワ風量、目標エバ後温度TEO等を決定する。
【0052】
そして、実際のエバ後温度TEが目標エバ後温度TEOとなるように、圧縮機23の回転速度を目標仕事量として算出する。すなわち、圧縮機23の目標仕事量としての目標回転速度が、熱負荷に基づいて算出されることとなる。
【0053】
次に、ステップS40にて、加速カット要求信号がエンジンECU9からエアコンECU7に入力されているか否かを判定し、加速カット要求信号がなければ、ステップS50に進み、算出された目標回転速度となるように圧縮機23を作動させる通常制御を行う。具体的には、算出された回転速度に基づいて、エアコン用インバータ29の作動を制御することで、電動モータ22の回転数を制御する。また、決定された吹出口モードおよび目標ブロワ風量となるように、各種アクチュエータおよびブロワモータ14の作動を制御する。
【0054】
一方、加速カット要求信号の入力がない場合には、ステップS60に進み、圧縮機23の作動を停止させる。このように加速カット要求信号に応じて圧縮機23を停止させる制御を加速カット制御と呼ぶ。そして、当該加速カット制御は、所定時間経過すると終了するようになっている。
【0055】
具体的には、ステップS70にて圧縮機23の作動停止時間のカウントを開始し、ステップS80にて、加速カット要求信号が継続して入力されていると判定されればステップS90にて圧縮機23の停止時間カウントを継続させる。そして、ステップS100にて、カウントされた圧縮機23の停止時間が所定時間に達しているか否かを判定し、所定時間に達していなければステップS80に戻り、所定時間に達していればステップS110にて加速カット制御を終了する。
【0056】
加速カット制御が終了した場合、或いはステップS80にて加速カット要求がないと判定された場合には、図4に示すステップS120にて圧縮機23の停止時間をカウントすることを終了し、目標仕事量算出手段としてのステップS130〜S160において、ステップS30にて熱負荷に基づいて算出された圧縮機23の回転速度を、増加させるように補正する。
【0057】
具体的には、ステップS130にて回転速度を増加させる補正量を算出し、当該補正量だけ増加された回転速度が、電動モータ22が回転可能な最大の回転速度以上である場合には(S140)、目標回転速度を最大回転速度とする(S150)。一方、補正量だけ増加された回転速度が最大回転速度未満であれば、補正量だけ増加された回転速度を目標回転速度とする。そして、ステップS160にて、圧縮機23の回転速度が上記目標回転速度となるようにエアコン用インバータ29の作動を制御することで、電動モータ22の回転数を制御する。
【0058】
なお、上記補正量は、図4のステップS130に示されるマップに基づいて算出される。具体的には、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように算出する。但し、停止時間が所定時間(例えば5秒)以上である場合には、所定の補正量(例えば1000rpm)を上限値とする。
【0059】
以上により、ステップS30にて熱負荷に基づいて算出された目標回転速度となるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標回転速度は増加するように補正されることとなる。よって、加速カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0060】
図5は、上述した本実施形態による効果を説明するタイムチャートであり、車速0にて停車しているときには通常制御により空調を行っている。具体的には、熱負荷に基づいて算出された目標回転速度となるように圧縮機23の回転数を制御している。そして、走行を開始してから所定時間T1の間は加速カット制御により圧縮機23の作動を停止させ、回転数が0rpmとなっている。そして、所定時間T1が経過した直後には、熱負荷に基づいて算出された回転数を増加するように補正した目標回転速度となるように、圧縮機23の回転数を制御している。
【0061】
ここで、上記補正を行わず、熱負荷に基づいて算出された回転数により圧縮機23の回転数を制御した場合には、図5中の点線に示すように圧縮機23の実際の回転数は急激に高くなることはなく、加速カット制御による冷房能力不足分をT2に示す時間をかけて補っている。これに対し、本実施形態による補正を行った場合には、図5中の実線に示すように圧縮機23の実際の回転数は急激に高くなるため、加速カット制御による冷房能力不足分を補うのに必要な時間T3を上記T2よりも短くできる。よって、加速カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0062】
(第2実施形態)
上記第1実施形態では、圧縮機23には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、加速カット制御直後には目標回転速度を増加させる補正を行っているのに対し、本実施形態では、圧縮機23には、1回転あたりの吐出容量(回転容量)を可変することで仕事量を可変する周知の可変容量圧縮機が用いられており、加速カット制御直後には目標吐出容量を増加させる補正を行っている。
【0063】
具体的には、第1実施形態のステップS130、S140およびS150を、図6に示すステップS131、S141およびS151に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標回転容量となるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間T1経過した後に再び通常制御の状態に推移した場合には、所定時間T1が経過した直後における目標回転容量は増加するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0064】
(第3実施形態)
上記第1実施形態では、圧縮機23には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、加速カット制御直後には目標回転速度を増加させる補正を行っているのに対し、本実施形態では、圧縮機23への動力伝達を遮断する電磁クラッチを備え、実際のエバ後温度TEが目標エバ後温度TEOとなるように、電磁クラッチをオンオフ制御している。そして、加速カット制御直後には、冷房運転時には目標エバ後温度TEOを低下させる補正を行っている。
【0065】
具体的には、第1実施形態のステップS130、S140およびS150を、図7に示すステップS132、S142およびS152に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標エバ後温度TEOとなるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間T1経過した後に再び通常制御の状態に推移した場合には、所定時間T1が経過した直後における目標エバ後温度TEOは冷房運転時には低下するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0066】
(第4実施形態)
上記第1実施形態では、加速カット制御を行うか否かをエンジンECU9にて判定し、加速カット要求信号をエンジンECU9からエアコンECU7に出力するように構成されているのに対し、本実施形態では、エアコンECU7にて加速カット制御を行うか否かを判定するように構成されている。この構成の変更にともなって、第1実施形態のステップS40およびS80を、図8に示すステップS41およびS81に変更している。
【0067】
以上により、第1実施形態では、加速カット要求信号をエンジンECU9からエアコンECU7に通信する時間が必要であったが、本実施形態によれば上記通信時間を不要にできるため、加速カット制御を行うと判定されてから実際に加速カット制御が行われるまでの時間を短縮でき、加速カット制御の応答性を良好にできる。
【0068】
(第5実施形態)
上記第1〜第4実施形態では、圧縮機23の仕事量を目標仕事量よりも強制的に小さくするカット制御として、車両の走行負荷が所定負荷を越えたときに圧縮機23の仕事量を強制的に低下させる加速カット制御を適用させている。これに対し、本実施形態では、乗員の誤操作により、上述のエアコンスイッチを短時間オフさせた後にオンさせた場合において、実質的に、圧縮機23の仕事量が目標仕事量よりも小さくなった場合を、本発明のカット制御として適用させている。
【0069】
具体的には、第1実施形態のステップS40、S80およびS110を、図9に示すステップS42、S82およびS111に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標回転容量となるように圧縮機23を作動させる通常制御の状態から、乗員の誤操作により圧縮機23が一時的に停止した状態に推移した後、再び通常制御の状態に復帰した場合には、復帰直後における目標回転速度は増加するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0070】
(第6実施形態)
上記第1実施形態では、ステップS130にて、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように算出しているが、本実施形態では、図4におけるステップS130を図10に示すステップS133に変更しており、停止時間が所定時間(例えば1秒)以上であるか否かにより回転速度を増加させるか否かを決定している。そして、所定時間以上であれば、停止時間の長さに拘わらず補正により増加させる補正量を、圧縮機23が可能な最大の回転数となるように設定している。
【0071】
(第7実施形態)
本実施形態では、図4におけるステップS130を図11に示すステップS134に変更しており、カット制御開始直前の圧縮機23の回転速度が大きいほど、補正による回転速度増加量を大きくするようにしている。なお、本発明の実施にあたり、所定時間T1が経過した直後における熱負荷が大きいほど、上記補正による回転速度増加量を大きくするようにしてもよい。
【0072】
(第8実施形態)
本実施形態では、図4におけるステップS130を図12に示すステップS135に変更しており、カット制御開始直前の圧縮機23の回転速度が大きく、かつ、圧縮機23の停止時間T1が長いほど、補正による回転速度増加量を大きくするようにしている。すなわち、カット制御により不足した冷房能力量を、カット制御開始直前の圧縮機23の回転速度に停止時間T1を乗じて得た値であると推測し、このように推測された冷房能力不足量が大きいほど、補正による回転速度増加量を大きくするようにしている。
【0073】
(第9実施形態)
本実施形態では、加速カット制御による冷房能力不足分を補う補正制御を行う時間T3の間には、再び加速カット制御が実行されることを禁止するようにしている。具体的には図13に示すように、図4におけるステップS160以降にステップS170、S180を追加しており、ステップS160にて、圧縮機23の回転速度が上記目標回転速度となるようにエアコン用インバータ29の作動を制御した後、ステップS170にて、加速カット制御による冷房能力不足分が補正により補われて、前記補正が終了したか否かを判定する。
【0074】
補正が終了したと判定された場合に、加速カット制御を許可する信号をエンジンECU9に送信する。エンジンECU9では、この許可信号がない限り加速カット要求信号をエアコンECU7に出力することを禁止している。
【0075】
(第10実施形態)
上記第1実施形態では、ステップS130において、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように補正量を算出しているのに対し、本実施形態では、補正により増加させる仕事量を、前記カット制御時の不足仕事量を一定時間内で補うことができるような仕事量に設定している。
【0076】
具体的には、下記の数1の式に基づいて冷房不足量を算出し、下記の数2の式に基づいて回転速度を増加させる量を算出している。
【0077】
【数1】
「冷房不足量」=「カット制御開始直前の圧縮機23の回転速度(rpm)」×「カット制御時間T1(秒)」
【0078】
【数2】
「回転速度増加量」=「冷房不足量(rpm×秒)」÷「一定時間(秒)」
ここで、エンジンECU9では、加速カット要求信号の出力が終了して再度加速カット要求信号を出力させたい場合であっても、所定のインターバル時間が経過していなければ連続して加速カット要求信号を出力させないようにして、空調装置がハンチングして作動してしまうことの防止を図っている。
【0079】
このようなエンジンECU9の制御を鑑みて本実施形態では、数2の式中の一定時間を、上記インターバル時間内に設定するようにしている。これにより、1回目の加速カット制御が終了した後、2回目の加速カット要求信号が出力されるまでの間に、1回目の加速カット制御時の不足仕事量を補正制御により補うことができ、好適である。
【0080】
(他の実施形態)
上記第1〜第10実施形態では、冷房運転中のカット制御直後に、目標仕事量を増加させるように補正する場合に本発明を適用させているが、本発明の実施にあたり、ヒートポンプサイクルによ適用された圧縮機23の作動により室内熱交換器21で放熱して暖房運転する場合においても、カット制御終了直後に目標仕事量を増加させるように補正するようにして本発明を適用させてもよい。
【0081】
また、上記第1〜第10実施形態では、カット制御終了直後に目標仕事量を増加させるように補正するステップS130〜S160による制御を、通常制御に用いる目標吹出温度TAOを算出するステップS30とは別のステップにて行っているが、本発明の実施にあたり、ステップS30において、カット制御終了直後になされる補正を実質的に行うようにしてもよい。
【0082】
具体的には、カット制御終了直後にはステップS30における目標吹出温度TAOを算出する式を変更するようにしてもよい。より具体的には、設定温度、内気温度、外気温度、日射量等の変数にかける係数を変更させたり、上記変数と目標吹出温度TAOとの関係を示すマップを変更させるようにすればよい。
【0083】
また、上記第1〜4および第6〜10実施形態による加速カット制御では、圧縮機23を停止させていたが、本発明のカット制御は、圧縮機23を停止させることなく、圧縮機23の仕事量を目標仕事量よりも強制的に小さくする場合にも適用できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るハイブリッド自動車の概略構成を示した図である。
【図2】第1実施形態に係るハイブリッド自動車用空調装置の全体構成を示した図である。
【図3】第1実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図4】第1実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図5】第1実施形態による効果を説明するタイムチャートを示した図である。
【図6】本発明の第2実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図7】本発明の第3実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図8】本発明の第4実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図9】本発明の第5実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図10】本発明の第6実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図11】本発明の第7実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図12】本発明の第8実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図13】本発明の第9実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【符号の説明】
21…エバポレータ(室内熱交換器)、23…圧縮機。
【発明の属する技術分野】
本発明は、車両用空調装置に関するものである。
【0002】
【従来の技術】
従来より、前方他車を追い越すとき等の加速走行時に、車両エンジンに対する圧縮機の駆動負荷を軽減して車両エンジンの加速性を確保する、いわゆる「加速カット制御」が知られている(例えば、特許文献1参照)。この加速カット制御は、具体的には、アクセルペダルの踏み込み量等により車両エンジンの走行負荷が所定負荷を越えた高負荷時に行う制御であり、当該高負荷時の例としては、上記加速走行時の他にも登坂走行時等が挙げられる。
【0003】
そして、加速カット制御による圧縮機の駆動負荷軽減の具体例としては、固定容量型圧縮機の場合には、電磁クラッチを遮断して圧縮機を停止状態とし、また、可変容量型圧縮機の場合には、圧縮機の吐出容量を小容量に引き下げ、また、電動圧縮機の場合には、圧縮機の回転数を低下させて走行アシスト用電力を十分に確保させる事が挙げられる。
【0004】
また、加速カット制御以外のときには、圧縮機の仕事量が、熱負荷に基づいて算出された目標仕事量となるように、圧縮機の作動を制御している。上記仕事量を具体的に説明すると、固定容量型圧縮機の場合には、規定時間あたりの電磁クラッチ接続時間が上記仕事量に相当し、可変容量型圧縮機の場合には、圧縮機1回転あたりの吐出容量が上記仕事量に相当し、電動圧縮機の場合には、圧縮機の回転速度が上記仕事量に相当する。
【0005】
【特許文献1】
特開平5−58151号公報
【0006】
【発明が解決しようとする課題】
ここで、上記加速カット制御を行うとエバポレータの温度が上昇するため、加速カット終了直後には即座にエバポレータの温度を低下させる必要がある。これに対し、上記従来の圧縮機制御によれば、加速カット終了直後には熱負荷が大きくなるため、目標仕事量が加速カット直前の目標仕事量に比べて大きくなるものの、即座にエバポレータの温度を低下させるのには十分でない。
【0007】
なお、上述の圧縮機制御は冷房運転時の制御について説明しているが、ヒートポンプサイクルに適用された圧縮機の作動により室内熱交換器で放熱して暖房運転する場合においても、加速カット終了直後には即座に室内熱交換器の温度を上昇させる必要がある。しかしながら、圧縮機の仕事量が、熱負荷に基づいて算出された目標仕事量となるように、圧縮機の作動を制御するだけでは、即座に室内熱交換器の温度を上昇させるのには十分でない。
【0008】
本発明は、上記点に鑑み、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、冷凍サイクルの圧縮機(23)と、圧縮機(23)の作動により冷媒が循環して車室内吹出空気と熱交換する室内熱交換器(21)と、圧縮機(23)の規定時間あたりの目標仕事量を熱負荷に基づいて算出する目標仕事量算出手段とを備え、目標仕事量となるように圧縮機(23)を作動させる通常制御の状態から、圧縮機(23)の仕事量を目標仕事量よりも強制的に小さくするカット制御の状態に推移し、カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標仕事量を、増加させるように補正することを特徴とする。
【0010】
これにより、カット制御が終了した直後における圧縮機(23)の仕事量は、熱負荷に基づいて算出された目標仕事量よりも大きくなるので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0011】
カット制御の具体例として、請求項2に記載のように、車両の走行負荷が所定負荷を越えたときに圧縮機(23)の仕事量を強制的に低下させる制御が挙げられる。
【0012】
また、請求項3に記載の発明では、所定時間が長いほど、補正により増加させる仕事量を大きすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0013】
また、請求項4に記載の発明では、カット制御開始直前の圧縮機(23)による仕事量が大きいほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0014】
また、請求項5に記載の発明では、所定時間が経過した直後における熱負荷が大きいほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0015】
また、請求項6に記載の発明では、所定時間が経過した直後における日射量が多いほど、補正により増加させる仕事量を大きくすることを特徴とするので、補正により増加させる仕事量を過不足なく適度な仕事量にすることができる。
【0016】
また、請求項7に記載の発明では、補正により増加された目標仕事量を、圧縮機(23)が可能な最大の仕事量に設定することを特徴とするので、カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることを、確実にできる。
【0017】
また、請求項8に記載の発明では、補正により増加させる仕事量は、カット制御時の不足仕事量を一定時間内で補うことができるような仕事量に設定されていることを特徴とするので、一定時間内に、カット制御時の不足仕事量を補いたい場合に用いて好適である。
【0018】
また、請求項9に記載の発明では、補正による制御を実行しているときには、カット制御の実行を禁止することを特徴とするので、カット制御よりも優先させて補正を行いたい場合に用いて好適である。
【0019】
なお、請求項10〜14のような場合に上記請求項1〜9に記載の車両用空調装置を用いて好適である。すなわち、請求項10に記載の発明では、圧縮機(23)には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、目標仕事量算出手段は、回転速度を規定時間あたりの目標仕事量として算出し、目標仕事量を増加させる補正は、回転速度を増加させる補正であることを特徴とする。
【0020】
なお、上記請求項10に記載の発明において、請求項11に記載のように、電動モータの他に走行用エンジンを駆動源として回転可能に構成された圧縮機(23)を適用してもよい。
【0021】
また、請求項12に記載の発明では、圧縮機(23)には、1回転あたりの吐出容量を可変することで仕事量を可変する可変容量圧縮機が用いられており、目標仕事量算出手段は、吐出容量を規定時間あたりの目標仕事量として算出し、目標仕事量を増加させる補正は、吐出容量を増加させる補正であることを特徴とする。
【0022】
また、請求項13に記載の発明では、目標仕事量算出手段は、室内熱交換器(21)の目標温度を規定時間あたりの目標仕事量として算出し、室内熱交換器(21)の実際の温度が目標温度となるように、圧縮機(23)への動力伝達を遮断するようになっており、目標仕事量を増加させる補正は、冷房運転時に目標温度を低下させる補正および暖房運転時に目標温度を上昇させる補正のうち少なくとも一方の補正であることを特徴とする。
【0023】
なお、上記請求項13に記載の発明において、請求項14に記載のように、走行用エンジンの他に電動モータを駆動源として回転可能に構成された圧縮機(23)を適用してもよい。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0025】
【発明の実施の形態】
以下、本発明の各実施形態を図に基づいて説明する。
【0026】
(第1実施形態)
図1および図3は本発明の車両用空調装置をハイブリッド自動車に適用した本実施形態を示したもので、図1はハイブリッド自動車の概略構成を示した図、図2はハイブリッド自動車用空調装置の全体構成を示した図である。
【0027】
本実施形態のハイブリッド自動車用空調装置は、ハイブリッド自動車5の車室内を冷房するエアコンユニット6の各空調手段(アクチュエータ)を、空調制御装置(以下エアコンECUと言う)7によって制御することにより、車室内の温度を常に設定温度に保つよう自動制御するように構成されたオートエアコンである。
【0028】
なお、ハイブリッド自動車5には、エアコンユニット6の他に、例えば走行用ガソリンエンジン(以下走行用エンジンと略す)1、電動モータおよび発電機として機能する電動発電機2、走行用エンジン1を始動させるための始動用モータや点火装置を含むエンジン始動装置3、および電動発電機2やエンジン始動装置3に電力を供給する車載バッテリ4が搭載されている。
【0029】
そして、電動発電機2は、エンジン1により駆動されるときは発電機として機能して電気を発生し、バッテリ4から給電されるときは電動モータとして機能して車両走行用の駆動力を発生するものであり、従って、電動発電機2は、本発明の発電機に相当すると共に、本発明の走行用電動モータに相当する。
【0030】
走行用エンジン1は、ハイブリッド自動車5の車軸に係脱自在に駆動連結されている。また、電動発電機2は、ハイブリッド自動車5の車軸に係脱自在に駆動連結され、走行用エンジン1と車軸が連結していない時に車軸と連結されるようになっている。そして、電動発電機2は、ハイブリッド制御装置(以下ハイブリッドECUと言う)8により自動制御(例えばインバータ制御)されるように構成されている。なお、ハイブリッドECU8は、ハイブリッド自動車5の発進時や低速走行時に電動発電機2だけでハイブリッド自動車5を動かすように電動発電機2を通電制御する。
【0031】
さらに、エンジン始動装置3は、エンジン制御装置(以下エンジンECUと言う)9によりガソリンの燃焼効率が最適になるよう自動制御されるように構成されている。なお、エンジンECU9は、ハイブリッド自動車5の通常の走行および車載バッテリ4の充電が必要な時に、エンジン始動装置3を通電制御して走行用エンジン1を運転する。
【0032】
エアコンユニット6は、空調ダクト11、この空調ダクト11内において車室内に向かう空気流を発生させる遠心式送風機12、および空調ダクト11内を流れる空気を冷却して車室内を冷房するためのエバポレータ21等から構成されている。空調ダクト11は、ハイブリッド自動車5の車室内の前方側に配設され、内部にハイブリッド自動車5の車室内に空調空気(冷風)を導く空気通路を形成している。
【0033】
なお、空調ダクト11の最も上流側には、車室内空気(以下内気と言う)を取り入れる内気吸込口(図示せず)、車室外空気(以下外気と言う)を取り入れる外気吸込口(図示せず)、および吸込口モードを切り替える内外気切替ドア(図示せず)が設けられている。また、空調ダクト11の最も下流側には、デフロスタ吹出口(図示せず)、フェイス吹出口(図示せず)、フット吹出口(図示せず)、および吹出口モードを切り替えるモード切替ドア(図示せず)が設けられている。
【0034】
遠心式送風機12は、空調ダクト11と一体的に構成されたスクロールケースに回転自在に収容された遠心式ファン13、およびこの遠心式ファン13を回転駆動するブロワモータ14を有している。そして、ブロワモータ14は、ブロワ駆動回路(ブロワ駆動手段)15を介して印加されるブロワ端子電圧(以下ブロワ電圧と言う)に基づいて、ブロワ風量(遠心式ファン14の回転速度)が制御される。
【0035】
エバポレータ21は、本発明のに相当し、冷凍サイクル20の一構成部品を成すもので、空調ダクト11内の空気通路を全面塞ぐようにして配設されている。そして、冷凍サイクル20は、電動モータ22によって回転駆動されて、エバポレータ21より吸引したガス冷媒を圧縮する圧縮機23と、この圧縮機23で圧縮された冷媒を凝縮液化させる室外熱交換器としてのコンデンサ24と、このコンデンサ24で凝縮液化された冷媒を気液分離して液冷媒のみを下流側に流すレシーバ25と、このレシーバ25より流出した液冷媒を減圧膨張させる減圧手段を成すエキスパンションバルブ26と、このエキスパンションバルブ26で減圧膨張された気液二相状態の冷媒を蒸発気化させる上記のエバポレータ21と、これらを環状に連結する冷媒配管とから構成されている。
【0036】
さらに、本実施形態の冷凍サイクル20には、コンデンサ24の室外空気(冷却風)を強制的に送風するための冷却ファン27、およびこの冷却ファン27を回転駆動する電動モータ28が設けられている。
【0037】
なお、本実施形態の冷凍サイクル20では、電動モータ22が通電状態の時に、電動モータ22の動力が圧縮機23に伝達されてエバポレータ21による空気冷却作用が行われ、電動モータ22の通電が停止された時に、電動モータ22の作動が止まってエバポレータ21による空気冷却作用が停止するように構成されている。
【0038】
そして、車載バッテリ4から電動モータ22へ供給される電力が、エアコン用インバータ(回転速度制御手段)29によって連続的または段階的に可変制御されることにより、電動モータ22の回転速度が可変制御される。また、電動モータ22の回転速度の変化によって、圧縮機23による冷媒吐出容量を変化させて冷凍サイクル20内を循環する冷媒の循環量(流量)を調節することにより、エバポレータ21の冷却能力(冷凍サイクル20の冷房能力)が制御される。換言すれば、圧縮機23による仕事量が制御される。
【0039】
次に、本実施形態のエアコンユニット6の制御系の構成を説明する。エアコンECU7には、エンジンECU9から出力される通信信号、車室内前面に設けられたコントロールパネル(図示せず)上の各スイッチからのスイッチ信号、および各センサからのセンサ信号が入力される。ここで、エンジンECU9から出力される上記通信信号には、後述する加速カット制御を要求する加速カット要求信号が含まれている。
【0040】
また、コントロールパネル上の各スイッチとしては、車室内の温度を所望の温度に設定するための温度設定手段としての温度設定スイッチ31、冷凍サイクル20(圧縮機23)の起動および運転停止を指令するための、図示しないエアコンスイッチ、遠心式ファン13のブロワ風量を切り替えるための風量切替スイッチ、吸込口モードを切り替えるための吸込口切替スイッチ、および吹出口モードとしてデフロスタモードを設定するためのデフロスタスイッチ等がある。
【0041】
そして、各センサのうち、車室内の空調状態(冷房状態)を検出する状態検出手段としては、図2に示したように、車室内の空気温度(内気温度)を検出する内気温検出手段としての内気温センサ32、車室外の空気温度(外気温度)を検出する外気温検出手段としての外気温センサ33、車室内に照射される日射量を検出する日射検出手段としての日射センサ34、およびエバポレータ21の空気冷却度合を検出する空気冷却度合検出手段としてのエバ後温度センサ35等がある。
【0042】
このうち、内気温センサ32、外気温センサ33およびエバ後温度センサ35にはサーミスタが使用されている。また、日射センサ34にはフォトダイオードが使用されている。ここで、エバ後温度センサ35は、具体的にはエバポレータ21を通過した直後の空気温度TE(以下、エバ後温度TEという)を検出するエバ後温度検出手段である。
【0043】
そして、各センサのうち、ハイブリッド自動車5の運転状態を検出する状態検出手段としては、図2に示したように、車載バッテリ4の容量(残量)を検出する容量検出手段としての容量センサ36等である。車載バッテリ4の容量の測定方法としては、車載バッテリ4の放電量と充電量が測定できる充放電量測定器(例えばバッテリチャージカウンタ等)を使用して、車載バッテリ4の充放電収支を計量して、車載バッテリ4の容量を検出する方法がある。
【0044】
また、車載バッテリ4の容量(AH)は、放電電流の大きさ、放電時間、電解液の温度または電解液の比重から算出しても良いし、それらを組み合わせて算出しても良い。そして、本実施形態では、車載バッテリ4の容量が80%以下に低下した際にエアコンECU7に、圧縮機23の電動モータ22の駆動を停止させる旨の電気信号(加速カット要求信号)を出力して加速カット制御を行うようになっている。
【0045】
ここで、加速カット制御とは、車両の走行負荷が所定負荷を越えたときに圧縮機23の仕事量を強制的に低下させる制御のことであり、従って、前方他車を追い越すとき等の加速走行時に、車両エンジンの他に車載バッテリ4を駆動源とするモータ駆動により、走行駆動源をアシストするアシスト走行するにあたり、車載バッテリ4の容量負荷を軽減して加速性を確実に確保することを図った制御である。
【0046】
この加速カット制御は、具体的には、アクセルペダルの踏み込み量等により車両エンジンの走行負荷および車載バッテリ4の容量負荷が所定負荷を越えた高負荷時に行う制御であり、当該高負荷時の例としては、上記加速走行時のように実際に加速している場合に限られず、登坂走行時等が挙げられる。
【0047】
因みに、ハイブリッド自動車5の運転状態を検出する状態検出手段として、エンジンECU9に接続されるエンジン回転速度センサ(図示せず)や車速センサ(図示せず)からエンジン回転速度や車速を通信回線を介してエアコンECU7に受信するようにしても良い。
【0048】
エアコンECU7の内部には、CPU、ROM、RAM等からなるマイクロコンピュータが設けられ、各センサ32〜36からのセンサ信号は、エアコンECU7内の入力回路(図示せず)によってA/D変換された後にマイクロコンピュータに入力されるように構成されている。また、エアコンECU7は、ハイブリッド自動車5のキースイッチがIG位置に設定されたときに、車載バッテリ4から直流電流が供給されて作動する。
【0049】
次に、本実施形態の作動を説明する。ここで、図3および図4はエアコンECU7による空調制御(主に電動式の圧縮機23の回転速度制御)を示したフローチャートである。
【0050】
はじめに、キースイッチがIG位置に操作されてエアコンECU7に直流電源が供給されると、図3のルーチンが起動されて各イニシャライズおよび初期設定を行い、ステップS10にて、空調環境状態に関する信号として、温度設定スイッチ31および風量切替スイッチ等の各スイッチからスイッチ信号を読み込む。また、ステップS20にて、車両環境状態に関する信号として、車速センサからの車速信号等を読み込む。
【0051】
次に、ステップS30では、設定温度、内気温度、外気温度、日射量等に基づいて、車室内へ吹き出される送風空気の目標吹出温度TAOを算出する。この目標吹出温度TAOは、内気温を設定温度に維持するために必要な吹出空気の温度である。また、ステップS30では、目標吹出温度TAOに基づいて、吹出口モード、目標ブロワ風量、目標エバ後温度TEO等を決定する。
【0052】
そして、実際のエバ後温度TEが目標エバ後温度TEOとなるように、圧縮機23の回転速度を目標仕事量として算出する。すなわち、圧縮機23の目標仕事量としての目標回転速度が、熱負荷に基づいて算出されることとなる。
【0053】
次に、ステップS40にて、加速カット要求信号がエンジンECU9からエアコンECU7に入力されているか否かを判定し、加速カット要求信号がなければ、ステップS50に進み、算出された目標回転速度となるように圧縮機23を作動させる通常制御を行う。具体的には、算出された回転速度に基づいて、エアコン用インバータ29の作動を制御することで、電動モータ22の回転数を制御する。また、決定された吹出口モードおよび目標ブロワ風量となるように、各種アクチュエータおよびブロワモータ14の作動を制御する。
【0054】
一方、加速カット要求信号の入力がない場合には、ステップS60に進み、圧縮機23の作動を停止させる。このように加速カット要求信号に応じて圧縮機23を停止させる制御を加速カット制御と呼ぶ。そして、当該加速カット制御は、所定時間経過すると終了するようになっている。
【0055】
具体的には、ステップS70にて圧縮機23の作動停止時間のカウントを開始し、ステップS80にて、加速カット要求信号が継続して入力されていると判定されればステップS90にて圧縮機23の停止時間カウントを継続させる。そして、ステップS100にて、カウントされた圧縮機23の停止時間が所定時間に達しているか否かを判定し、所定時間に達していなければステップS80に戻り、所定時間に達していればステップS110にて加速カット制御を終了する。
【0056】
加速カット制御が終了した場合、或いはステップS80にて加速カット要求がないと判定された場合には、図4に示すステップS120にて圧縮機23の停止時間をカウントすることを終了し、目標仕事量算出手段としてのステップS130〜S160において、ステップS30にて熱負荷に基づいて算出された圧縮機23の回転速度を、増加させるように補正する。
【0057】
具体的には、ステップS130にて回転速度を増加させる補正量を算出し、当該補正量だけ増加された回転速度が、電動モータ22が回転可能な最大の回転速度以上である場合には(S140)、目標回転速度を最大回転速度とする(S150)。一方、補正量だけ増加された回転速度が最大回転速度未満であれば、補正量だけ増加された回転速度を目標回転速度とする。そして、ステップS160にて、圧縮機23の回転速度が上記目標回転速度となるようにエアコン用インバータ29の作動を制御することで、電動モータ22の回転数を制御する。
【0058】
なお、上記補正量は、図4のステップS130に示されるマップに基づいて算出される。具体的には、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように算出する。但し、停止時間が所定時間(例えば5秒)以上である場合には、所定の補正量(例えば1000rpm)を上限値とする。
【0059】
以上により、ステップS30にて熱負荷に基づいて算出された目標回転速度となるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間経過した後に再び通常制御の状態に推移した場合には、所定時間が経過した直後における目標回転速度は増加するように補正されることとなる。よって、加速カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0060】
図5は、上述した本実施形態による効果を説明するタイムチャートであり、車速0にて停車しているときには通常制御により空調を行っている。具体的には、熱負荷に基づいて算出された目標回転速度となるように圧縮機23の回転数を制御している。そして、走行を開始してから所定時間T1の間は加速カット制御により圧縮機23の作動を停止させ、回転数が0rpmとなっている。そして、所定時間T1が経過した直後には、熱負荷に基づいて算出された回転数を増加するように補正した目標回転速度となるように、圧縮機23の回転数を制御している。
【0061】
ここで、上記補正を行わず、熱負荷に基づいて算出された回転数により圧縮機23の回転数を制御した場合には、図5中の点線に示すように圧縮機23の実際の回転数は急激に高くなることはなく、加速カット制御による冷房能力不足分をT2に示す時間をかけて補っている。これに対し、本実施形態による補正を行った場合には、図5中の実線に示すように圧縮機23の実際の回転数は急激に高くなるため、加速カット制御による冷房能力不足分を補うのに必要な時間T3を上記T2よりも短くできる。よって、加速カット制御終了直後に、即座に、乗員のフィーリングにあった空調状態にすることができる。
【0062】
(第2実施形態)
上記第1実施形態では、圧縮機23には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、加速カット制御直後には目標回転速度を増加させる補正を行っているのに対し、本実施形態では、圧縮機23には、1回転あたりの吐出容量(回転容量)を可変することで仕事量を可変する周知の可変容量圧縮機が用いられており、加速カット制御直後には目標吐出容量を増加させる補正を行っている。
【0063】
具体的には、第1実施形態のステップS130、S140およびS150を、図6に示すステップS131、S141およびS151に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標回転容量となるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間T1経過した後に再び通常制御の状態に推移した場合には、所定時間T1が経過した直後における目標回転容量は増加するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0064】
(第3実施形態)
上記第1実施形態では、圧縮機23には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、加速カット制御直後には目標回転速度を増加させる補正を行っているのに対し、本実施形態では、圧縮機23への動力伝達を遮断する電磁クラッチを備え、実際のエバ後温度TEが目標エバ後温度TEOとなるように、電磁クラッチをオンオフ制御している。そして、加速カット制御直後には、冷房運転時には目標エバ後温度TEOを低下させる補正を行っている。
【0065】
具体的には、第1実施形態のステップS130、S140およびS150を、図7に示すステップS132、S142およびS152に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標エバ後温度TEOとなるように圧縮機23を作動させる通常制御の状態から、圧縮機23を強制的に停止させる加速カット制御の状態に推移し、加速カット制御の状態が所定時間T1経過した後に再び通常制御の状態に推移した場合には、所定時間T1が経過した直後における目標エバ後温度TEOは冷房運転時には低下するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0066】
(第4実施形態)
上記第1実施形態では、加速カット制御を行うか否かをエンジンECU9にて判定し、加速カット要求信号をエンジンECU9からエアコンECU7に出力するように構成されているのに対し、本実施形態では、エアコンECU7にて加速カット制御を行うか否かを判定するように構成されている。この構成の変更にともなって、第1実施形態のステップS40およびS80を、図8に示すステップS41およびS81に変更している。
【0067】
以上により、第1実施形態では、加速カット要求信号をエンジンECU9からエアコンECU7に通信する時間が必要であったが、本実施形態によれば上記通信時間を不要にできるため、加速カット制御を行うと判定されてから実際に加速カット制御が行われるまでの時間を短縮でき、加速カット制御の応答性を良好にできる。
【0068】
(第5実施形態)
上記第1〜第4実施形態では、圧縮機23の仕事量を目標仕事量よりも強制的に小さくするカット制御として、車両の走行負荷が所定負荷を越えたときに圧縮機23の仕事量を強制的に低下させる加速カット制御を適用させている。これに対し、本実施形態では、乗員の誤操作により、上述のエアコンスイッチを短時間オフさせた後にオンさせた場合において、実質的に、圧縮機23の仕事量が目標仕事量よりも小さくなった場合を、本発明のカット制御として適用させている。
【0069】
具体的には、第1実施形態のステップS40、S80およびS110を、図9に示すステップS42、S82およびS111に変更している。これにより、ステップS30にて熱負荷に基づいて算出された目標回転容量となるように圧縮機23を作動させる通常制御の状態から、乗員の誤操作により圧縮機23が一時的に停止した状態に推移した後、再び通常制御の状態に復帰した場合には、復帰直後における目標回転速度は増加するように補正されることとなり、第1実施形態と同様の効果を得ることができる。
【0070】
(第6実施形態)
上記第1実施形態では、ステップS130にて、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように算出しているが、本実施形態では、図4におけるステップS130を図10に示すステップS133に変更しており、停止時間が所定時間(例えば1秒)以上であるか否かにより回転速度を増加させるか否かを決定している。そして、所定時間以上であれば、停止時間の長さに拘わらず補正により増加させる補正量を、圧縮機23が可能な最大の回転数となるように設定している。
【0071】
(第7実施形態)
本実施形態では、図4におけるステップS130を図11に示すステップS134に変更しており、カット制御開始直前の圧縮機23の回転速度が大きいほど、補正による回転速度増加量を大きくするようにしている。なお、本発明の実施にあたり、所定時間T1が経過した直後における熱負荷が大きいほど、上記補正による回転速度増加量を大きくするようにしてもよい。
【0072】
(第8実施形態)
本実施形態では、図4におけるステップS130を図12に示すステップS135に変更しており、カット制御開始直前の圧縮機23の回転速度が大きく、かつ、圧縮機23の停止時間T1が長いほど、補正による回転速度増加量を大きくするようにしている。すなわち、カット制御により不足した冷房能力量を、カット制御開始直前の圧縮機23の回転速度に停止時間T1を乗じて得た値であると推測し、このように推測された冷房能力不足量が大きいほど、補正による回転速度増加量を大きくするようにしている。
【0073】
(第9実施形態)
本実施形態では、加速カット制御による冷房能力不足分を補う補正制御を行う時間T3の間には、再び加速カット制御が実行されることを禁止するようにしている。具体的には図13に示すように、図4におけるステップS160以降にステップS170、S180を追加しており、ステップS160にて、圧縮機23の回転速度が上記目標回転速度となるようにエアコン用インバータ29の作動を制御した後、ステップS170にて、加速カット制御による冷房能力不足分が補正により補われて、前記補正が終了したか否かを判定する。
【0074】
補正が終了したと判定された場合に、加速カット制御を許可する信号をエンジンECU9に送信する。エンジンECU9では、この許可信号がない限り加速カット要求信号をエアコンECU7に出力することを禁止している。
【0075】
(第10実施形態)
上記第1実施形態では、ステップS130において、圧縮機23の停止時間が長いほど回転速度を増加させる量(補正量)を大きくするように補正量を算出しているのに対し、本実施形態では、補正により増加させる仕事量を、前記カット制御時の不足仕事量を一定時間内で補うことができるような仕事量に設定している。
【0076】
具体的には、下記の数1の式に基づいて冷房不足量を算出し、下記の数2の式に基づいて回転速度を増加させる量を算出している。
【0077】
【数1】
「冷房不足量」=「カット制御開始直前の圧縮機23の回転速度(rpm)」×「カット制御時間T1(秒)」
【0078】
【数2】
「回転速度増加量」=「冷房不足量(rpm×秒)」÷「一定時間(秒)」
ここで、エンジンECU9では、加速カット要求信号の出力が終了して再度加速カット要求信号を出力させたい場合であっても、所定のインターバル時間が経過していなければ連続して加速カット要求信号を出力させないようにして、空調装置がハンチングして作動してしまうことの防止を図っている。
【0079】
このようなエンジンECU9の制御を鑑みて本実施形態では、数2の式中の一定時間を、上記インターバル時間内に設定するようにしている。これにより、1回目の加速カット制御が終了した後、2回目の加速カット要求信号が出力されるまでの間に、1回目の加速カット制御時の不足仕事量を補正制御により補うことができ、好適である。
【0080】
(他の実施形態)
上記第1〜第10実施形態では、冷房運転中のカット制御直後に、目標仕事量を増加させるように補正する場合に本発明を適用させているが、本発明の実施にあたり、ヒートポンプサイクルによ適用された圧縮機23の作動により室内熱交換器21で放熱して暖房運転する場合においても、カット制御終了直後に目標仕事量を増加させるように補正するようにして本発明を適用させてもよい。
【0081】
また、上記第1〜第10実施形態では、カット制御終了直後に目標仕事量を増加させるように補正するステップS130〜S160による制御を、通常制御に用いる目標吹出温度TAOを算出するステップS30とは別のステップにて行っているが、本発明の実施にあたり、ステップS30において、カット制御終了直後になされる補正を実質的に行うようにしてもよい。
【0082】
具体的には、カット制御終了直後にはステップS30における目標吹出温度TAOを算出する式を変更するようにしてもよい。より具体的には、設定温度、内気温度、外気温度、日射量等の変数にかける係数を変更させたり、上記変数と目標吹出温度TAOとの関係を示すマップを変更させるようにすればよい。
【0083】
また、上記第1〜4および第6〜10実施形態による加速カット制御では、圧縮機23を停止させていたが、本発明のカット制御は、圧縮機23を停止させることなく、圧縮機23の仕事量を目標仕事量よりも強制的に小さくする場合にも適用できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るハイブリッド自動車の概略構成を示した図である。
【図2】第1実施形態に係るハイブリッド自動車用空調装置の全体構成を示した図である。
【図3】第1実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図4】第1実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図5】第1実施形態による効果を説明するタイムチャートを示した図である。
【図6】本発明の第2実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図7】本発明の第3実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図8】本発明の第4実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図9】本発明の第5実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図10】本発明の第6実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図11】本発明の第7実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図12】本発明の第8実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【図13】本発明の第9実施形態に係るエアコンECUによる空調制御を示したフローチャートである。
【符号の説明】
21…エバポレータ(室内熱交換器)、23…圧縮機。
Claims (14)
- 冷凍サイクルの圧縮機(23)と、
前記圧縮機(23)の作動により冷媒が循環して車室内吹出空気と熱交換する室内熱交換器(21)と、
前記圧縮機(23)の規定時間あたりの目標仕事量を熱負荷に基づいて算出する目標仕事量算出手段とを備え、
前記目標仕事量となるように前記圧縮機(23)を作動させる通常制御の状態から、前記圧縮機(23)の仕事量を前記目標仕事量よりも強制的に小さくするカット制御の状態に推移し、前記カット制御の状態が所定時間経過した後に再び前記通常制御の状態に推移した場合には、前記所定時間が経過した直後における前記目標仕事量を、増加させるように補正することを特徴とする車両用空調装置。 - 前記カット制御とは、車両の走行負荷が所定負荷を越えたときに前記圧縮機(23)の仕事量を強制的に低下させる制御であることを特徴とする請求項1に記載の車両用空調装置。
- 前記所定時間が長いほど、前記補正により増加させる仕事量を大きくすることを特徴とする請求項1または2のいずれか1つに記載の車両用空調装置。
- 前記カット制御開始直前の前記圧縮機(23)による仕事量が大きいほど、前記補正により増加させる仕事量を大きくすることを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
- 前記所定時間が経過した直後における熱負荷が大きいほど、前記補正により増加させる仕事量を大きくすることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
- 前記所定時間が経過した直後における日射量が多いほど、前記補正により増加させる仕事量を大きくすることを特徴とする請求項5に記載の車両用空調装置。
- 前記補正により増加された目標仕事量を、前記圧縮機(23)が可能な最大の仕事量に設定することを特徴とする請求項1または2に記載の車両用空調装置。
- 前記補正により増加させる仕事量は、前記カット制御時の不足仕事量を一定時間内で補うことができるような仕事量に設定されていることを特徴とする請求項1ないし7のいずれか1つに記載の車両用空調装置。
- 前記補正による制御を実行しているときには、前記カット制御の実行を禁止することを特徴とする請求項1ないし8のいずれか1つに記載の車両用空調装置。
- 前記圧縮機(23)には、回転速度を可変することで仕事量を可変する電動圧縮機が用いられており、
前記目標仕事量算出手段は、前記回転速度を前記規定時間あたりの目標仕事量として算出し、
前記目標仕事量を増加させる補正は、前記回転速度を増加させる補正であることを特徴とする請求項1ないし9のいずれか1つに記載の車両用空調装置。 - 前記圧縮機(23)は、電動モータの他に走行用エンジンを駆動源として回転可能に構成されていることを特徴とする請求項10に記載の車両用空調装置。
- 前記圧縮機(23)には、1回転あたりの吐出容量を可変することで仕事量を可変する可変容量圧縮機が用いられており、
前記目標仕事量算出手段は、前記吐出容量を前記規定時間あたりの目標仕事量として算出し、
前記目標仕事量を増加させる補正は、前記吐出容量を増加させる補正であることを特徴とする請求項1ないし9のいずれか1つに記載の車両用空調装置。 - 前記目標仕事量算出手段は、前記室内熱交換器(21)の目標温度を前記規定時間あたりの目標仕事量として算出し、
前記室内熱交換器(21)の実際の温度が前記目標温度となるように、前記圧縮機(23)への動力伝達を遮断するようになっており、
前記目標仕事量を増加させる補正は、冷房運転時に前記目標温度を低下させる補正および暖房運転時に前記目標温度を上昇させる補正のうち少なくとも一方の補正であることを特徴とする請求項1ないし9のいずれか1つに記載の車両用空調装置。 - 前記圧縮機(23)は、走行用エンジンの他に電動モータを駆動源として回転可能に構成されていることを特徴とする請求項13に記載の車両用空調装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003044177A JP2004249897A (ja) | 2003-02-21 | 2003-02-21 | 車両用空調装置 |
US10/784,038 US20040172960A1 (en) | 2003-02-21 | 2004-02-20 | Air conditioner for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003044177A JP2004249897A (ja) | 2003-02-21 | 2003-02-21 | 車両用空調装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004249897A true JP2004249897A (ja) | 2004-09-09 |
Family
ID=32923239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003044177A Withdrawn JP2004249897A (ja) | 2003-02-21 | 2003-02-21 | 車両用空調装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040172960A1 (ja) |
JP (1) | JP2004249897A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014136468A (ja) * | 2013-01-16 | 2014-07-28 | Suzuki Motor Corp | 車両用エアコン制御装置 |
WO2018185875A1 (ja) * | 2017-04-05 | 2018-10-11 | 日産自動車株式会社 | 車両用空調の制御方法及び車両用空調装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4165330B2 (ja) * | 2003-04-16 | 2008-10-15 | 株式会社デンソー | 空調装置 |
US20070186573A1 (en) * | 2006-02-16 | 2007-08-16 | Ziehr Lawrence P | Methods of and systems for dual drive HVAC compressor controls in automotive vehicles |
JP5213966B2 (ja) * | 2008-11-25 | 2013-06-19 | 三菱電機株式会社 | 冷凍サイクル装置 |
AU2011383457B2 (en) * | 2011-12-14 | 2016-01-14 | Mitsubishi Electric Corporation | Heat pump device, and air conditioner, heat pump/hot-water supply machine, refrigerator, and freezer equipped with same |
FR3047926B1 (fr) * | 2016-02-24 | 2020-07-10 | Valeo Japan Co., Ltd. | Procede de regulation du fonctionnement d'un compresseur equipant une installation de conditionnement d'air d'un vehicule automobile |
KR20200133566A (ko) * | 2019-05-20 | 2020-11-30 | 현대자동차주식회사 | 공조 장치 및 그 제어 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178216A (ja) * | 1985-02-01 | 1986-08-09 | Sanden Corp | 車輛用空調装置における可変容量圧縮機の制御装置 |
DE69217300T2 (de) * | 1991-09-02 | 1997-06-26 | Sanden Corp | Fahrzeugklimaanlage mit einem, eine fremdgesteuert einstellbare Verdrängungseinrichtung aufweisenden, Kühlflüssigkeitskompressor |
JP4013318B2 (ja) * | 1997-07-17 | 2007-11-28 | 株式会社デンソー | 車両用冷凍サイクル装置 |
JP2000110734A (ja) * | 1998-08-07 | 2000-04-18 | Toyota Autom Loom Works Ltd | ハイブリッドコンプレッサ及びその制御方法 |
JP2000111179A (ja) * | 1998-10-05 | 2000-04-18 | Toyota Autom Loom Works Ltd | 空調装置 |
JP4186361B2 (ja) * | 1999-12-22 | 2008-11-26 | 株式会社デンソー | 車両用空調装置 |
JP2002205538A (ja) * | 2001-01-09 | 2002-07-23 | Toyota Industries Corp | 車両用空調システム |
-
2003
- 2003-02-21 JP JP2003044177A patent/JP2004249897A/ja not_active Withdrawn
-
2004
- 2004-02-20 US US10/784,038 patent/US20040172960A1/en not_active Abandoned
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014136468A (ja) * | 2013-01-16 | 2014-07-28 | Suzuki Motor Corp | 車両用エアコン制御装置 |
WO2018185875A1 (ja) * | 2017-04-05 | 2018-10-11 | 日産自動車株式会社 | 車両用空調の制御方法及び車両用空調装置 |
JPWO2018185875A1 (ja) * | 2017-04-05 | 2019-11-07 | 日産自動車株式会社 | 車両用空調の制御方法及び車両用空調装置 |
CN110520318A (zh) * | 2017-04-05 | 2019-11-29 | 日产自动车株式会社 | 车辆用空调的控制方法和车辆用空调装置 |
RU2728965C1 (ru) * | 2017-04-05 | 2020-08-03 | Ниссан Мотор Ко., Лтд. | Способ управления кондиционированием воздуха транспортного средства и устройство кондиционера транспортного средства |
US10780763B2 (en) | 2017-04-05 | 2020-09-22 | Nissan Motor Co., Ltd. | Vehicle air conditioning control method and vehicle air conditioning device |
CN110520318B (zh) * | 2017-04-05 | 2020-12-08 | 日产自动车株式会社 | 车辆用空调的控制方法和车辆用空调装置 |
Also Published As
Publication number | Publication date |
---|---|
US20040172960A1 (en) | 2004-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6955060B2 (en) | Air conditioner with control of compressor | |
JP4218123B2 (ja) | 空調装置 | |
CN103813915B (zh) | 用于车辆的空调 | |
JP5533816B2 (ja) | 車両用空調装置 | |
JP5532029B2 (ja) | 車両用空調装置 | |
JP2001063347A (ja) | 車両用空調制御システム | |
JP2005001523A (ja) | 車両用空調装置 | |
JP2004155264A (ja) | 車両用空調装置 | |
JP2003306031A (ja) | 車両用空調装置 | |
JP2004066847A (ja) | 車両用空調装置 | |
JP2010126136A (ja) | 車両用空調装置 | |
EP1285791A1 (en) | Vehicular air conditiong apparatus comprising hybrid compressor | |
WO2012043062A1 (ja) | 車両用空調装置 | |
JP2004249897A (ja) | 車両用空調装置 | |
JP2002370529A (ja) | 車両用空調装置 | |
JP5360006B2 (ja) | 車両用空調装置 | |
JP2012076610A (ja) | 車両用空調装置 | |
JP2012066793A (ja) | 車両用空調装置 | |
JP2004182165A (ja) | 車両用空調装置 | |
JP5472015B2 (ja) | 車両の運転モード入力装置 | |
JP6280480B2 (ja) | 車両用空調装置 | |
JP5569308B2 (ja) | 車両用空調装置 | |
JP2010137664A (ja) | 車両用空調制御装置 | |
JP3839627B2 (ja) | 車両用空調装置 | |
JP2003211954A (ja) | 車両用空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060509 |