JP2004223378A - Liquid drop jet device - Google Patents

Liquid drop jet device Download PDF

Info

Publication number
JP2004223378A
JP2004223378A JP2003012950A JP2003012950A JP2004223378A JP 2004223378 A JP2004223378 A JP 2004223378A JP 2003012950 A JP2003012950 A JP 2003012950A JP 2003012950 A JP2003012950 A JP 2003012950A JP 2004223378 A JP2004223378 A JP 2004223378A
Authority
JP
Japan
Prior art keywords
droplet
liquid
droplets
supply pipe
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012950A
Other languages
Japanese (ja)
Inventor
Masatoshi Hirokawa
昌利 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP2003012950A priority Critical patent/JP2004223378A/en
Publication of JP2004223378A publication Critical patent/JP2004223378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new liquid drop jet device capable of forming a necessary amount of liquid drops with a uniform particle size and capable of sufficiently accelerating liquid drops. <P>SOLUTION: A liquid drop feed-out pipe 3, a liquid drop feeding gas supply pipe 5 and a liquid supply pipe are respectively connected to a liquid drop forming chamber 2 to which a vibrator 1 is attached, and a liquid 10 and a liquid drop feeding gas 37 are supplied into the liquid drop forming chamber 2 to produce liquid drops with a uniform particle size in the liquid drop forming chamber 2 or the liquid drop feed-out pipe 3. The liquid drop feed-out pipe 3 and an accelerating gas supply pipe 17 are respectively connected to a mixer 16 comprising a mixing chamber for mixing liquid drops and the gas fluid and a liquid drop jet orifice 18 and the liquid drops with a uniform particle size are ejected in a desired direction or to a region along with an accelerating gas 11 from the liquid drop jet orifice 18 of the mixer 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は液滴噴射装置、詳しくは、小粒径の液滴を加圧ガスによって被対象物に向って噴射する装置に関するものである。
【0002】
【従来の技術】
液滴噴射装置は、被対象物表面への特定物質の噴霧や塗布、塗装あるいは洗浄作業、異物の除去作業、その他の表面加工や表面処理などの為、各種産業分野において広く用いられている。
【0003】
図1は従来の液滴噴射装置の一例の概念図であり、図中31は密閉貯槽で、この密閉貯槽31の内部空間23の上部寄りには液体搬送用ガス供給管32の先端開口部6が、中程には液体供給管7の先端開口部8が、下部寄りには液体送出管14の後端開口部15が、それぞれ位置せしめられている。又、これら液体搬送用ガス供給管32、液体供給管7、液体送出管14の管路途中には管路開閉バルブ9がそれぞれ取付けられており、管路を流れる液体やガスなど流体の流量や圧力を任意に制御できる様になっている。
【0004】
又、図中16は混合器であり、図3に示す様に、混合室27及びこれと連通した液滴噴射口18とからなっており、液体送出管14の先端及び加速用ガス供給管34の先端がそれぞれ接続され、液体送出管14から送られて来た液体10と加速用ガス35とが混合され、加速用ガス35の圧力により液滴24が生成され、混合器16の先端に設けられた液滴噴射口18から被対象物19に向かって噴射される様になっている。なお、加速用ガス供給管34は液体搬送用ガス供給管32とは別系統であり、その途中にも管路開閉バルブ9が設けられており、加速用ガス35の流量や圧力を任意に調整できる様になっている。
【0005】
この従来例においては、液体供給管7によって密閉貯槽31内に液体10を供給すると共に、液体搬送用ガス供給管32によって液体搬送用ガス36を密閉貯槽31内に供給すると、密閉貯槽31内の内圧が変化し、これに伴って生じる圧力差によって密閉貯槽31内の液体10は液体送出管14内を流動し、混合器16に送られる。一方、この混合器16には、加速用ガス供給管34を介して加速用ガス35が供給されており、混合器16内において液体10はこの加速用ガス35の圧力によって小さな粒径の液滴24となり、加速用ガス35と共に液滴噴射口18から勢い良く被対象物19に向かって噴射され、各種加工作業の用に供されることになる。
【0006】
一方、図2は同じく従来の液滴噴射装置の他の例であり、この液滴噴射装置においては、図1に示した従来例にある様な貯槽31に液体搬送用ガス36を導入する液体搬送用ガス供給管32は設けられておらず、液体送出管14の途中にポンプ20を介装し、このポンプ20を駆動することにより混合器16に液体10を移送する様になっている。なお、この図2に示す従来例においては、貯槽33は密閉状態にある必要はない。他の部分は図1に示す従来例と全く同じであり、同一符号を付してその説明を省略する。
【0007】
この図2に示す液滴噴射装置においては、貯槽33内の液体10は、ポンプ20によってポンプアップされ、混合器16に送られ、加速用ガス供給管34を介して供給される加速用ガス35の圧力によって小粒径の液滴24になり、加速用ガス35と共に被対象物19に向かって噴射される。
【0008】
【発明が解決しようとする課題】
これら従来の液滴噴射装置においては、いずれも混合器16内の混合室27において液体10から液滴24を生成しているが、この様な方法では均一な粒径の液滴24の生成は困難であり、図3に示す様にその粒径は不ぞろいになってしまい、表面処理や加工作業の品質や精度を低下させる原因の一つとなっていた。ましてや、液滴24の粒径を制御し、所望の粒径の液滴24を作ることなど到底不可能であった。又、加速用ガス供給管34から供給される加速用ガス35のエネルギーは、その一部が混合室27内における液滴24の生成の為に消費されてしまい、その分圧力損失が生じるので、液滴噴射口18から噴射される液滴24を十分に加速させる為には圧力損失分を見越した、より高圧のガスを用いる必要があった。又これに伴い、配管等もこの高圧のガスに耐える様、堅牢に作る必要があり、各部材の製作コストも高額にならざるを得なかった。
【0009】
この様に、従来の液滴噴射装置においては、液滴24の生成を十分にコントロールできない上に、高圧なガスを必要とし、それに見合った堅牢な構成としなければならないという欠点があり、必ずしも満足の行くものではなかった。
【0010】
本発明者は、従来の液滴噴射装置の上記欠点を解決すべく研究を行った結果、必要量の均一な粒径の液滴を生成可能で、液滴を十分に加速できる新たな液滴噴射装置を開発するに至り、本発明としてここに提案するものである。
【0011】
【課題を解決するための手段】
振動子1を取付けた液滴生成室2に液滴送出管3、液滴搬送用ガス供給管5、液体供給管7をそれぞれ接続し、前記液滴生成室2内に液体10及び液滴搬送用ガス37を供給し、液滴生成室2内あるいは液滴送出管3内において均一な粒径の液滴30を発生させられる様にすると共に、液滴30と液滴加速用ガス11とを混合する混合室27と液滴噴射口18とからなる混合器16に液滴送出管3及び液滴加速用ガス供給管17をそれぞれ接続し、前記混合器16の液滴噴射口18から均一な粒径の液滴30を液滴加速用ガス11と共に所望の方向あるいは部位に向かって噴射できる様にして上記課題を解決した。
又、振動子1を有し、その内部空間23が外部と連通している液滴生成室2に液滴送出管3及び液体供給管7をそれぞれ接続し、前記液滴生成室2内あるいは液滴送出管3内において均一な粒径の液滴30を発生できる様にすると共に、二種の流体の圧力差によって一方の流体を吸引するアスピレーター式の混合器26に液滴送出管3及び液滴加速用ガス供給管17をそれぞれ接続し、該アスピレーター式の混合器26に付設された液滴噴射口18から均一な粒径の液滴30を液滴加速用ガス11と共に所望の方向あるいは部位に向かって噴射できる様にして上記課題を解決した。
【0012】
【実施の形態】
図4は請求項1に係る発明の一実施の形態の概念図である。
【0013】
図中2は内部空間23を有する液滴生成室であり、この液滴生成室2の下部には振動子1が取付けられており、この振動子1は発振器22によって制御される様になっている。そして、前記液滴生成室2の内部空間23の上部寄りには液滴送出管3の後端開口部4及び液滴搬送用ガス供給管5の先端開口部6が、それより下部寄りには液体供給管7の先端開口部8がそれぞれ位置せしめられており、前記液体供給管7及び液滴搬送用ガス供給管5の管路途中にはそれぞれ管路開閉バルブ9が取付けられ、液滴生成室2内に液体10及び液滴搬送用ガス37をそれぞれ流量及び圧力を調整しながら供給できる様になっている。
【0014】
又、図中16は混合器であり、図6に示す様に、従来の混合器と基本的に同じ構造で、混合室27と液滴噴射口18とを有しており、液滴送出管3の先端及び液滴加速用ガス供給管17の先端がそれぞれ接続され、混合室27において液滴送出管3から送られて来た液滴30を液滴加速用ガス11により加速し、混合器16の先端に設けられた液滴噴射口18から被対象物19に向かって噴射される様になっている。なお、液滴加速用ガス供給管17の管路途中にも管路開閉バルブ9が設けられており、混合器16に送る液滴加速用ガス11の流量や圧力を任意に調整できる様になっている。
【0015】
この実施の形態は上記の通りの構成を有するものであり、液体供給管7から液滴生成室2内に液体10を供給して貯留させる。この状態で振動子1を駆動し、液体10を振動させると、液体10からは均一な粒径の液滴30が連続的に生成され、液滴生成室2の内部空間23に充満する。一方、液滴搬送用ガス供給管5によって液滴生成室2の内部空間23に液滴搬送用ガス37を供給すると、生成された液滴30は液滴搬送用ガス37と共に液滴送出管3中に流入し、混合器16に送られる。
【0016】
一方、この混合器16には、液滴加速用ガス供給管17を介して液滴加速用ガス11が供給されており、混合室27において液滴30は液滴加速用ガス11により加速され、均一な粒径の液滴30は液滴加速用ガス11と共に液滴噴射口18から勢い良く被対象物19に向かって噴射されることになる。
この時、振動子1と発振器22とによって振動周波数と出力を制御することにより、所望な液滴粒径と液滴量を作り出すことが出来る。又、液体供給管7の管路開閉バルブ9を操作することにより、液滴生成室2内への液体10の流入量を調整してその液面の高さを変化させ、これによって液滴30の粒径と液滴30の発生量を制御することが出来る。なお、上述の実施の形態においては、液滴生成室2内において液滴30を生成せしめているが、図7に示す実施の形態の様に、液滴搬送用ガス供給管5と液滴送出管3とをインライン状に配管し、この液滴送出管3内において液滴30を生成させる様にしても良い。
【0017】
この様に、この実施の形態においては、振動子1と発振器22とによって液滴30を生成しているので、均一な粒径の液滴30の生成が可能であるだけでなく、従来は困難であった液滴30の粒径や発生量のコントロールが自由に実施でき、しかも液滴30の生成に伴う液滴加速ガス11の圧力損失がないので、従来より低圧のガスでも液滴30を十分に加速させることが出来る。又、従来より低圧のガスで足りるので装置全体の構成の簡略化、耐久性の向上、コスト削減を図ることも可能である。
【0018】
次に、図5に示す請求項2に係る発明の一実施形態についた説明する。
【0019】
図中2は外部に連通している液滴生成室であり、この液滴生成室2の下部には振動子1が取付けられており、この振動子1は発振器22によって制御される様になっている。なお、図中25は液滴生成室2に吸気を行う吸気パイプである。
そして、前記液滴生成室2の内部空間23には液滴送出管3の後端開口部4と液体供給管7の先端開口部8がそれぞれ位置せしめられており、前記液体供給管7の管路途中には管路開閉バルブ9が取付けられ、液滴生成室2内に液体10をその流量を調整しながら供給できる様になっている。
【0020】
又、26は二種の流体の圧力差を利用して一方の流体の吸引を行うアスピレーター式の混合器であり、液滴送出管3の先端及び液滴加速用ガス供給管17の先端がそれぞれ接続されており、気流体である液滴加速用ガス11と液滴30を含むガスとの圧力差により、液滴30を液滴生成室2から吸引しその内部において液滴加速用ガス11により加速し、先端に設けられた液滴噴射口18から被対象物19に向かって噴射する様になっている。
【0021】
この実施の形態は上記の通りの構成を有するものであり、液体供給管7から液滴生成室2内に液体10を供給して貯留させる。この状態で振動子1を駆動し、液体10を振動させると、液体10からは均一な粒径の液滴30が連続的に生成され、液滴生成室2の内部空間23に充満する。なお、液滴30の生成は液滴生成室2内においてのみではなく、液滴送出管3内において行われる場合もある。
【0022】
一方、アスピレーター式の混合器26に液滴加速用ガス供給管17を介して液滴加速用ガス11を供給すると、この混合器26に接続されている液滴送出管3の内圧が変化し、それに伴って生じる圧力差によって、液滴生成室2の内部空間23に充満している液滴30はこの混合器26に向かって吸引され、均一な粒径の液滴30は液滴加速用ガス11と共に液滴噴射口18から被対象物19に向かって噴射される。
【0023】
この際、振動子1と発振器22とによって振動周波数と出力を制御することにより、所望な液滴30の粒径と液滴量を作り出すことが出来る。又、液体供給管7の管路開閉バルブ9を操作することにより、液滴生成室2内への液体10の流入量を調整してその液面の高さを変化させ、これによって液滴30の粒径と液滴30の発生量を制御することが出来る。
この実施の形態においては、上述の図4に示す実施の形態と同様、均一な粒径の液滴30の生成、液滴30の粒径及びその発生量の制御、液滴加速用ガス11の圧力損失の阻止等が図られるだけではなく、液滴生成室2への液滴搬送用ガス37の供給管が不要なので、配管設備をより簡略化することができるメリットを有している。
【0024】
【効果】
この様に、この発明に係る液滴噴射装置においては、振動子1と発振器22とによって液滴30を生成しているので、均一な粒径の液滴30の生成が可能であるだけでなく、従来は困難であった液滴30の粒径や発生量のコントロールが自由に実施でき、しかも液滴30の生成に伴う液滴加速用ガス11の圧力損失がないので、従来より低圧のガスでも液滴30を十分に加速することが出来、装置全体の構成の簡略化、耐久性の向上、コスト削減を図りながら、より高品質の処理作業を行い得る効果を有し、極めて高い実用的価値を有するものである。
【図面の簡単な説明】
【図1】従来の液滴噴射装置の一例の概念図。
【図2】同じく従来の液滴噴射装置の他の例の概念図。
【図3】液滴噴射装置における混合器の一例の液滴挙動図。
【図4】請求項1に係る液滴噴射装置の一実施形態の概念図。
【図5】請求項2に係る液滴噴射装置の一実施形態の概念図。
【図6】請求項1及び請求項2に係る液滴噴射装置において用いる混合器の一実施形態の液滴挙動図。
【図7】
他の実施形態の概念図。
【符号の説明】
1 振動子
2 液滴生成室
3 液滴送出管
4 後端開口部
5 液滴搬送用ガス供給管
6 先端開口部
7 液体供給管
8 先端開口部
9 管路開閉バルブ
10 液体
11 液滴加速用ガス
14 液体送出管
15 後端開口部
16 混合器
17 液滴加速用ガス供給管
18 液滴噴射口
19 被対象物
20 ポンプ
22 発振器
23 内部空間
24 液滴
25 吸気パイプ
26 アスピレーター式の混合器
27 混合室
30 液滴
31 密閉貯槽
32 液体搬送用ガス供給管
33 貯槽
34 加速用ガス供給管
35 加速用ガス
36 液体搬送用ガス
37 液滴搬送用ガス
[0001]
[Industrial applications]
The present invention relates to a droplet ejecting apparatus, and more particularly, to an apparatus that ejects droplets having a small particle diameter toward an object by using a pressurized gas.
[0002]
[Prior art]
2. Description of the Related Art Droplet ejecting apparatuses are widely used in various industrial fields for spraying and applying a specific substance to a surface of an object, painting or washing, removing foreign matter, and performing other surface processing and surface treatment.
[0003]
FIG. 1 is a conceptual view of an example of a conventional liquid droplet ejecting apparatus. In the figure, reference numeral 31 denotes a closed storage tank. However, the front end opening 8 of the liquid supply pipe 7 is located in the middle, and the rear end opening 15 of the liquid delivery pipe 14 is located near the lower part. A pipe opening / closing valve 9 is attached to each of the liquid supply gas supply pipe 32, the liquid supply pipe 7, and the liquid delivery pipe 14 in the middle of each of the pipes. The pressure can be controlled arbitrarily.
[0004]
In the figure, reference numeral 16 denotes a mixer, which comprises a mixing chamber 27 and a droplet ejection port 18 communicating with the mixing chamber 27, as shown in FIG. Are connected to each other, the liquid 10 sent from the liquid delivery pipe 14 and the accelerating gas 35 are mixed, and the droplet 24 is generated by the pressure of the accelerating gas 35, and provided at the end of the mixer 16. The droplet is ejected from the droplet ejection port 18 toward the object 19. The accelerating gas supply pipe 34 is a separate system from the liquid transport gas supply pipe 32, and a conduit opening / closing valve 9 is provided in the middle thereof, whereby the flow rate and pressure of the accelerating gas 35 are arbitrarily adjusted. I can do it.
[0005]
In this conventional example, when the liquid 10 is supplied into the closed storage tank 31 by the liquid supply pipe 7 and the liquid transfer gas 36 is supplied into the closed storage tank 31 by the liquid transfer gas supply pipe 32, The internal pressure changes, and the liquid 10 in the closed storage tank 31 flows through the liquid delivery pipe 14 and is sent to the mixer 16 due to the pressure difference caused by the change. On the other hand, an accelerating gas 35 is supplied to the mixer 16 via an accelerating gas supply pipe 34. In the mixer 16, a liquid 10 having a small particle diameter is formed by the pressure of the accelerating gas 35. As a result, the droplet is jetted from the droplet jetting port 18 together with the accelerating gas 35 toward the object 19 to be used for various processing operations.
[0006]
On the other hand, FIG. 2 shows another example of a conventional liquid droplet ejecting apparatus. In this liquid droplet ejecting apparatus, a liquid transport gas 36 is introduced into a storage tank 31 as in the conventional example shown in FIG. The transfer gas supply pipe 32 is not provided, and the pump 20 is interposed in the middle of the liquid delivery pipe 14, and the liquid 20 is transferred to the mixer 16 by driving the pump 20. In the conventional example shown in FIG. 2, the storage tank 33 does not need to be in a closed state. The other parts are exactly the same as those in the conventional example shown in FIG.
[0007]
In the droplet ejecting apparatus shown in FIG. 2, the liquid 10 in the storage tank 33 is pumped up by the pump 20, sent to the mixer 16, and supplied to the mixer 16 via the accelerating gas supply pipe 34. The droplets 24 have a small particle diameter due to the pressure, and are jetted toward the object 19 together with the accelerating gas 35.
[0008]
[Problems to be solved by the invention]
In all of these conventional droplet ejecting apparatuses, droplets 24 are generated from the liquid 10 in the mixing chamber 27 in the mixer 16. However, as shown in FIG. 3, the particle diameters become irregular, which is one of the causes of lowering the quality and accuracy of the surface treatment and processing work. Furthermore, it has never been possible to control the particle size of the droplets 24 to produce droplets 24 having a desired particle size. Further, a part of the energy of the acceleration gas 35 supplied from the acceleration gas supply pipe 34 is consumed for the generation of the droplets 24 in the mixing chamber 27, and a pressure loss occurs correspondingly. In order to sufficiently accelerate the droplets 24 ejected from the droplet ejection ports 18, it is necessary to use a higher-pressure gas in anticipation of the pressure loss. Along with this, pipes and the like must be made robust so as to withstand this high-pressure gas, and the manufacturing cost of each member must be high.
[0009]
As described above, the conventional droplet ejecting apparatus has the drawbacks that the generation of the droplets 24 cannot be sufficiently controlled, and that a high-pressure gas is required and a robust configuration corresponding to the gas is required. It wasn't going to go.
[0010]
The present inventor has conducted research to solve the above-mentioned disadvantages of the conventional droplet ejecting apparatus, and as a result, has been able to generate a required amount of droplets having a uniform particle diameter, and to obtain a new droplet which can sufficiently accelerate the droplets. The development of the injection device has been proposed here as the present invention.
[0011]
[Means for Solving the Problems]
A droplet delivery pipe 3, a droplet supply gas supply pipe 5, and a liquid supply pipe 7 are connected to a droplet generation chamber 2 to which a vibrator 1 is attached, respectively. A supply gas 37 is supplied so that the droplets 30 having a uniform particle size can be generated in the droplet generation chamber 2 or the droplet delivery pipe 3, and the droplets 30 and the droplet accelerating gas 11 are combined. The droplet delivery pipe 3 and the droplet supply gas supply pipe 17 are connected to the mixer 16 including the mixing chamber 27 and the droplet ejection port 18 for mixing, respectively. The above problem has been solved by enabling the droplet 30 having the particle diameter to be jetted together with the droplet accelerating gas 11 toward a desired direction or site.
Further, the liquid drop sending chamber 3 and the liquid supply pipe 7 are connected to the liquid drop generating chamber 2 having the vibrator 1 and the internal space 23 communicating with the outside. The droplet delivery pipe 3 and the liquid are supplied to an aspirator-type mixer 26 that allows the generation of droplets 30 having a uniform particle size in the droplet delivery pipe 3 and suctions one of the fluids by a pressure difference between the two fluids. The droplet accelerating gas supply pipes 17 are connected to each other, and droplets 30 having a uniform particle size are discharged together with the droplet accelerating gas 11 in a desired direction or region from a droplet jetting port 18 attached to the aspirator type mixer 26. The above-mentioned problem was solved by making it possible to inject the fuel toward the nozzle.
[0012]
Embodiment
FIG. 4 is a conceptual diagram of one embodiment of the invention according to claim 1.
[0013]
In the figure, reference numeral 2 denotes a droplet generation chamber having an internal space 23, and a vibrator 1 is attached to a lower portion of the droplet generation chamber 2, and the vibrator 1 is controlled by an oscillator 22. I have. A rear end opening 4 of the liquid drop delivery pipe 3 and a front end opening 6 of the liquid supply gas supply pipe 5 are located closer to an upper portion of the internal space 23 of the droplet generation chamber 2, and closer to a lower portion thereof. The front end openings 8 of the liquid supply pipes 7 are located respectively, and pipe opening / closing valves 9 are respectively attached to the liquid supply pipes 7 and the gas supply pipes 5 for transporting the liquid drops in the middle of the pipes, thereby forming the liquid drops. The liquid 10 and the droplet transport gas 37 can be supplied into the chamber 2 while adjusting the flow rate and the pressure, respectively.
[0014]
Further, in the drawing, reference numeral 16 denotes a mixer, which has basically the same structure as that of the conventional mixer, and has a mixing chamber 27 and a droplet ejection port 18 as shown in FIG. 3 and the tip of the droplet acceleration gas supply pipe 17 are connected to each other, and the droplet 30 sent from the droplet delivery pipe 3 is accelerated by the droplet acceleration gas 11 in the mixing chamber 27, The liquid is ejected from a droplet ejection port 18 provided at the tip of the object 16 toward the object 19. A conduit opening / closing valve 9 is also provided in the middle of the conduit of the droplet accelerating gas supply pipe 17 so that the flow rate and pressure of the droplet accelerating gas 11 sent to the mixer 16 can be arbitrarily adjusted. ing.
[0015]
In this embodiment, the liquid 10 is supplied from the liquid supply pipe 7 into the droplet generation chamber 2 and stored therein. When the vibrator 1 is driven in this state to vibrate the liquid 10, droplets 30 having a uniform particle size are continuously generated from the liquid 10, and the liquid 30 fills the internal space 23 of the droplet generation chamber 2. On the other hand, when the droplet transport gas 37 is supplied to the internal space 23 of the droplet generation chamber 2 by the droplet transport gas supply pipe 5, the generated droplets 30 are transferred together with the droplet transport gas 37 to the droplet delivery pipe 3. And flows into the mixer 16.
[0016]
On the other hand, the gas 16 for droplet acceleration is supplied to the mixer 16 via the gas supply pipe 17 for droplet acceleration, and the droplet 30 is accelerated in the mixing chamber 27 by the gas 11 for droplet acceleration. The droplets 30 having a uniform particle diameter are urged toward the object 19 from the droplet ejection port 18 together with the droplet acceleration gas 11.
At this time, by controlling the oscillation frequency and the output by the oscillator 1 and the oscillator 22, a desired droplet diameter and droplet amount can be produced. Further, by operating the conduit opening / closing valve 9 of the liquid supply pipe 7, the flow amount of the liquid 10 into the droplet generation chamber 2 is adjusted to change the height of the liquid level. And the amount of droplets 30 generated can be controlled. In the above-described embodiment, the droplet 30 is generated in the droplet generation chamber 2. However, as in the embodiment shown in FIG. The pipe 3 and the pipe 3 may be connected in an in-line manner, and the droplet 30 may be generated in the droplet delivery pipe 3.
[0017]
As described above, in this embodiment, since the droplet 30 is generated by the vibrator 1 and the oscillator 22, not only the droplet 30 having a uniform particle size can be generated, but also the conventional method has been difficult. The control of the particle size and the amount of generation of the droplet 30 was free, and the pressure loss of the droplet accelerating gas 11 accompanying the generation of the droplet 30 was eliminated. It can be accelerated enough. Further, since a gas having a lower pressure than in the conventional case is sufficient, it is possible to simplify the configuration of the entire apparatus, improve durability, and reduce costs.
[0018]
Next, one embodiment of the invention according to claim 2 shown in FIG. 5 will be described.
[0019]
In the drawing, reference numeral 2 denotes a droplet generation chamber which communicates with the outside, and a vibrator 1 is attached to a lower portion of the droplet generation chamber 2, and the vibrator 1 is controlled by an oscillator 22. ing. In the figure, reference numeral 25 denotes an intake pipe for taking air into the droplet generation chamber 2.
In the internal space 23 of the droplet generation chamber 2, a rear end opening 4 of the droplet delivery pipe 3 and a front end opening 8 of the liquid supply pipe 7 are respectively positioned. A conduit opening / closing valve 9 is attached in the middle of the road so that the liquid 10 can be supplied into the droplet generation chamber 2 while adjusting the flow rate.
[0020]
Reference numeral 26 denotes an aspirator-type mixer for sucking one of the fluids by utilizing the pressure difference between the two fluids. The tip of the droplet delivery pipe 3 and the tip of the droplet acceleration gas supply pipe 17 are respectively provided. The droplet 30 is suctioned from the droplet generation chamber 2 by a pressure difference between the droplet acceleration gas 11, which is a gaseous fluid, and the gas containing the droplet 30. The liquid is accelerated, and is ejected toward the object 19 from a droplet ejection port 18 provided at the tip.
[0021]
In this embodiment, the liquid 10 is supplied from the liquid supply pipe 7 into the droplet generation chamber 2 and stored therein. When the vibrator 1 is driven in this state to vibrate the liquid 10, droplets 30 having a uniform particle size are continuously generated from the liquid 10, and the liquid 30 fills the internal space 23 of the droplet generation chamber 2. The droplet 30 may be generated not only in the droplet generation chamber 2 but also in the droplet delivery pipe 3.
[0022]
On the other hand, when the droplet accelerating gas 11 is supplied to the aspirator type mixer 26 via the droplet accelerating gas supply tube 17, the internal pressure of the droplet sending tube 3 connected to the mixer 26 changes, Due to the resulting pressure difference, the liquid droplets 30 filling the internal space 23 of the liquid droplet generation chamber 2 are sucked toward the mixer 26, and the liquid droplets 30 having a uniform particle diameter are converted into a liquid droplet accelerating gas. The droplet 11 is ejected from the droplet ejection port 18 toward the object 19.
[0023]
At this time, by controlling the vibration frequency and the output by the vibrator 1 and the oscillator 22, it is possible to produce a desired particle diameter and a droplet amount of the droplet 30. Further, by operating the conduit opening / closing valve 9 of the liquid supply pipe 7, the flow amount of the liquid 10 into the droplet generation chamber 2 is adjusted to change the height of the liquid level. And the amount of droplets 30 generated can be controlled.
In this embodiment, similarly to the embodiment shown in FIG. 4 described above, generation of droplets 30 having a uniform particle diameter, control of the particle diameter of droplets 30 and generation amount thereof, Not only can pressure loss be prevented, but also there is no need for a supply pipe for the droplet transport gas 37 to the droplet generation chamber 2, so that there is an advantage that piping equipment can be further simplified.
[0024]
【effect】
As described above, in the droplet ejecting apparatus according to the present invention, since the droplet 30 is generated by the vibrator 1 and the oscillator 22, not only the droplet 30 having a uniform particle diameter can be generated, but also It is possible to freely control the particle size and the amount of the droplets 30 which have been difficult in the past, and there is no pressure loss of the droplet accelerating gas 11 accompanying the generation of the droplets 30. However, the droplet 30 can be sufficiently accelerated, and has an effect that a higher quality processing operation can be performed while simplifying the configuration of the entire apparatus, improving durability and reducing costs, and has an extremely high practicality. It has value.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an example of a conventional droplet ejecting apparatus.
FIG. 2 is a conceptual diagram of another example of the conventional droplet ejecting apparatus.
FIG. 3 is a droplet behavior diagram of an example of a mixer in the droplet ejecting apparatus.
FIG. 4 is a conceptual diagram of one embodiment of a droplet ejecting apparatus according to claim 1.
FIG. 5 is a conceptual diagram of one embodiment of a droplet ejecting apparatus according to claim 2.
FIG. 6 is a droplet behavior diagram of an embodiment of a mixer used in the droplet ejecting apparatus according to claim 1 and claim 2.
FIG. 7
The conceptual diagram of other embodiments.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oscillator 2 Droplet generation chamber 3 Droplet sending pipe 4 Rear end opening 5 Droplet transport gas supply pipe 6 Tip opening 7 Liquid supply pipe 8 Tip opening 9 Pipe opening / closing valve 10 Liquid 11 Droplet acceleration Gas 14 Liquid delivery pipe 15 Rear end opening 16 Mixer 17 Droplet accelerating gas supply pipe 18 Droplet injection port 19 Object 20 Pump 22 Oscillator 23 Internal space 24 Droplet 25 Intake pipe 26 Aspirator type mixer 27 Mixing chamber 30 Droplet 31 Closed storage tank 32 Liquid transfer gas supply pipe 33 Storage tank 34 Acceleration gas supply pipe 35 Acceleration gas 36 Liquid transfer gas 37 Droplet transfer gas

Claims (8)

振動子1を取付けた液滴生成室2に液滴送出管3、液滴搬送用ガス供給管5、液体供給管7をそれぞれ接続し、前記液滴生成室2内に液体10及び液滴搬送用ガス37を供給し、液滴生成室2内あるいは液滴送出管3内において均一な粒径の液滴30を発生できる様にすると共に、液滴とガス流体とを混合する混合室27と液滴噴射口18とからなる混合器16に液滴送出管3及び液滴加速用ガス供給管17をそれぞれ接続し、前記混合器16の液滴噴射口18から均一な粒径の液滴30を液滴加速用ガス11と共に所望の方向あるいは部位に向かって噴射できる様にしたことを特徴とする液滴噴射装置。A droplet delivery pipe 3, a droplet supply gas supply pipe 5, and a liquid supply pipe 7 are connected to a droplet generation chamber 2 to which a vibrator 1 is attached, respectively. And a mixing chamber 27 for mixing droplets and a gaseous fluid, while supplying droplets 30 for supplying droplets 30 having a uniform particle size in the droplet generation chamber 2 or the droplet delivery pipe 3. The droplet delivery pipe 3 and the droplet acceleration gas supply pipe 17 are connected to a mixer 16 having a droplet ejection port 18, respectively. A liquid droplet ejecting apparatus which is capable of injecting the liquid droplets together with the liquid droplet accelerating gas 11 in a desired direction or position. 振動子1を有し、その内部空間23が外部と連通している液滴生成室2に液滴送出管3及び液体供給管7をそれぞれ接続し、前記液滴生成室2内あるいは液滴送出管3内において均一な粒径の液滴30を発生できる様にすると共に、二種の流体の圧力差によって一方の流体を吸引するアスピレーター式の混合器26に液滴送出管3及び液滴加速用ガス供給管17をそれぞれ接続し、該アスピレーター式の混合器26に付設された液滴噴射口18から均一な粒径の液滴30を液滴加速用ガス11と共に所望の方向あるいは部位に向かって噴射できる様にしたことを特徴とする液滴噴射装置。The droplet delivery pipe 3 and the liquid supply pipe 7 are connected to the droplet generation chamber 2 having the vibrator 1 and the internal space 23 of which is in communication with the outside. A drop delivery pipe 3 and a droplet acceleration are provided to an aspirator-type mixer 26 which can generate droplets 30 having a uniform particle diameter in the tube 3 and suction one of the fluids by a pressure difference between the two fluids. And a droplet 30 having a uniform particle size is directed together with the droplet accelerating gas 11 in a desired direction or position from a droplet jetting port 18 attached to the aspirator type mixer 26. A liquid droplet ejecting apparatus characterized in that the liquid can be ejected. 振動子1の周波数を変動させることにより、液滴生成室2内の液体10より生成される液滴30の粒径を制御することを特徴とする請求項1又は2記載の液滴噴射装置。3. The droplet ejecting apparatus according to claim 1, wherein the particle size of the droplet generated from the liquid in the droplet generating chamber is controlled by changing the frequency of the vibrator. 振動子1の周波数を変動させることにより、液滴生成室2内の液体10より生成される液滴30の発生量を制御することを特徴とする請求項1又は2記載の液滴噴射装置。3. The droplet ejecting apparatus according to claim 1, wherein the amount of droplets generated from the liquid in the droplet generation chamber is controlled by changing the frequency of the vibrator. 振動子1の出力を変動させることにより、液滴生成室2内の液体10より生成される液滴30の粒径を制御することを特徴とする請求項1又は2記載の液滴噴射装置。The droplet ejecting apparatus according to claim 1, wherein the output of the vibrator 1 is changed to control the particle diameter of the droplet 30 generated from the liquid 10 in the droplet generation chamber 2. 振動子1の出力を変動させることにより、液滴生成室2内の液体10より生成される液滴30の発生量を制御することを特徴とする請求項1又は2記載の液滴噴射装置。3. The droplet ejecting apparatus according to claim 1, wherein an amount of the droplet generated from the liquid in the droplet generating chamber is controlled by changing an output of the vibrator. 液滴生成室2内に貯留される液体10の液面高さを変動させることにより、液体10から生成される液滴30の粒径を制御することを特徴とする請求項1又は2記載の液滴噴射装置。The particle size of a droplet (30) generated from the liquid (10) is controlled by varying the liquid level of the liquid (10) stored in the droplet generation chamber (2). Droplet ejector. 液滴生成室2内に貯留される液体10の液面高さを変動させることにより、液体10から生成される液滴30の発生量を制御することを特徴とする請求項1又は2記載の液滴噴射装置。The amount of the droplets (30) generated from the liquid (10) is controlled by varying the liquid level of the liquid (10) stored in the droplet generation chamber (2). Droplet ejector.
JP2003012950A 2003-01-22 2003-01-22 Liquid drop jet device Pending JP2004223378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012950A JP2004223378A (en) 2003-01-22 2003-01-22 Liquid drop jet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012950A JP2004223378A (en) 2003-01-22 2003-01-22 Liquid drop jet device

Publications (1)

Publication Number Publication Date
JP2004223378A true JP2004223378A (en) 2004-08-12

Family

ID=32901399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012950A Pending JP2004223378A (en) 2003-01-22 2003-01-22 Liquid drop jet device

Country Status (1)

Country Link
JP (1) JP2004223378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324359A (en) * 2006-05-31 2007-12-13 Choonpa Jozosho Kk Cleaning method and cleaning device
US20110048471A1 (en) * 2009-09-03 2011-03-03 Shibaura Mechatronics Corporation Substrate processing apparatus and substrate processing method
JP2013085984A (en) * 2011-10-13 2013-05-13 Ricoh Co Ltd Dry cleaning device and dry cleaning method
WO2015064438A1 (en) * 2013-10-30 2015-05-07 株式会社ニコン Thin film production method and transparent conductive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324359A (en) * 2006-05-31 2007-12-13 Choonpa Jozosho Kk Cleaning method and cleaning device
US20110048471A1 (en) * 2009-09-03 2011-03-03 Shibaura Mechatronics Corporation Substrate processing apparatus and substrate processing method
JP2013085984A (en) * 2011-10-13 2013-05-13 Ricoh Co Ltd Dry cleaning device and dry cleaning method
WO2015064438A1 (en) * 2013-10-30 2015-05-07 株式会社ニコン Thin film production method and transparent conductive film
JPWO2015064438A1 (en) * 2013-10-30 2017-03-09 株式会社ニコン Thin film manufacturing method, transparent conductive film
US10328453B2 (en) 2013-10-30 2019-06-25 Nikon Corporation Thin film production method and transparent conductive film
US10702887B2 (en) 2013-10-30 2020-07-07 Nikon Corporation Thin film forming apparatus and transparent conductive film

Similar Documents

Publication Publication Date Title
KR101153188B1 (en) The spray for a medicinal fluid
WO1998018543A1 (en) Method and apparatus for dissolving/mixing gas in liquid
JP2011183538A (en) Nozzle device and injection device
JPH09173804A (en) Method for dissolving and mixing gas and liquid and device therefor
JP2006062024A (en) Mist generation device
CN101155693B (en) Method for removing air from ink jet device, and ink jet device
JP2004223378A (en) Liquid drop jet device
KR100843390B1 (en) Water jet cutting device
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP4056243B2 (en) Chemical supply system
JP4104898B2 (en) Chemical supply system
JP2004223379A (en) Liquid drop jet device
CN103871929B (en) For the method and apparatus processing wafer shape article
JP2014031760A (en) Jet pump and negative pressure forming method by means of composite jet flow type jet pump
JP2009160587A (en) Cleaning device and cleaning method
JP2004223486A (en) Trigger type spray gun
JP2011072903A5 (en)
JP3392361B2 (en) Mist supply device
JP2007330939A (en) Fine air bubble generator
JP2004276230A (en) Mist generation device
JPH07270097A (en) Method and apparatus for generating cavitation
JP2004261919A (en) Mist production device
JP2014092065A (en) Jet pump, method for generating negative pressure with jet pump, and method for feeding suction flow with jet pump
CN103732412B (en) Ink cartridge and use the method for kneading ink of this ink cartridge
KR101149924B1 (en) Droplet generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081106

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Effective date: 20090115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201