JP2004152753A - Manufacturing method of positive electrode active material for non-aqueous secondary battery - Google Patents

Manufacturing method of positive electrode active material for non-aqueous secondary battery Download PDF

Info

Publication number
JP2004152753A
JP2004152753A JP2003350447A JP2003350447A JP2004152753A JP 2004152753 A JP2004152753 A JP 2004152753A JP 2003350447 A JP2003350447 A JP 2003350447A JP 2003350447 A JP2003350447 A JP 2003350447A JP 2004152753 A JP2004152753 A JP 2004152753A
Authority
JP
Japan
Prior art keywords
compound
positive electrode
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003350447A
Other languages
Japanese (ja)
Other versions
JP4747485B2 (en
Inventor
Kenji Nakane
堅次 中根
Hiroshi Inukai
洋志 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003350447A priority Critical patent/JP4747485B2/en
Publication of JP2004152753A publication Critical patent/JP2004152753A/en
Application granted granted Critical
Publication of JP4747485B2 publication Critical patent/JP4747485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple manufacturing method of a positive electrode active material for a non-aqueous secondary battery which is made of a compound that contains lithium, nickel, and manganese, and has a layered structure. <P>SOLUTION: In the manufacturing method of the positive electrode active material for the non-aqueous secondary battery, a mixture of a metal compound which contains lithium, nickel, manganese, and boron, and is made of a compound that contains lithium, nickel, and manganese and has a layered structure, is calcinated. The compound which contains lithium, nickel, and manganese and has the layered structure is expressed in the X-ray diffraction in formula Li[Ni<SB>(x-y)</SB>Li<SB>(1/3-2x/3)</SB>Mn<SB>(2/3-x/3-y)</SB>Co<SB>2y</SB>] O<SB>2</SB>(provided that x is larger than 0 and 0.5 or less, y is 0 or more and 1/6 or less, and x > y), and is a compound identified as a compound having the layered structure. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、非水二次電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for a non-aqueous secondary battery.

非水二次電池には正極活物質が用いられている。
電子機器のポータブル化、コードレス化の急速な進行に伴い、従来の二次電池より小型で軽量、大容量を実現できる非水二次電池の開発が進められている。その中でリチウム二次電池は、既に携帯電話やノートパソコン等の電源として実用化されており、さらに自動車用や通信電力バックアップ用の電源として大型化、高出力化が検討されている。
A positive electrode active material is used for a nonaqueous secondary battery.
With the rapid progress of portable and cordless electronic devices, development of non-aqueous secondary batteries capable of realizing smaller, lighter, and larger capacities than conventional secondary batteries has been promoted. Among them, lithium secondary batteries have already been put to practical use as power sources for mobile phones, notebook computers, and the like. Further, enlargement and high output are being studied as power sources for automobiles and communication power backup.

非水二次電池用正極活物質としては、従来から例えばスピネル型リチウムマンガン酸化物が用いられているが、より大容量の非水二次電池を製造することができる正極活物質が求められていた。   As a positive electrode active material for a non-aqueous secondary battery, for example, a spinel-type lithium manganese oxide has been conventionally used, but a positive electrode active material capable of producing a non-aqueous secondary battery with a larger capacity has been demanded. Was.

このような状況の中で、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物である組成式LiCo1/3Ni1/3Mn1/32やLiNi1/2Mn1/22(例えば、非特許文献1参照。)、また、Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2(0≦x≦1/2)、Li[NixCo1-2xMnx]O2(0<x≦1/2)で表される新しい化合物(例えば、非特許文献2参照。)等が上述のような問題点を解決し得る非水二次電池用正極活物質として提案され、注目されている。ここで、層状構造とは、X線回折により結晶構造がα−NaFeO2型であると同定される構造をいう(例えば、非特許文献3参照。)。 Under such circumstances, a composition formula of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 or LiNi 1/2 Mn 1/2 which is a compound containing lithium, nickel and manganese and having a layered structure. O 2 (for example, see Non-Patent Document 1) and Li [Ni x Li (1 / 3-2x / 3) Mn (2 / 3-x / 3) ] O 2 (0 ≦ x ≦ 1/2) ), Li [Ni x Co 1-2x Mn x] O 2 (0 <x ≦ 1/2) new compounds represented by (e.g., see non-Patent Document 2.) or the like solve the problems as described above It has been proposed and attracted attention as a positive electrode active material for non-aqueous secondary batteries that can be used. Here, the layered structure refers to a structure whose crystal structure is identified to be α-NaFeO 2 type by X-ray diffraction (for example, see Non-Patent Document 3).

従来、これらの化合物を合成するためには、ニッケルとマンガンの複合水酸化物が用いられていた(例えば、非特許文献1〜3参照。)。しかしながら、該複合水酸化物中の2価のマンガンが容易に酸化されて3価となってしまうため、該複合水酸化物の合成条件の制御とその後のハンドリングを行う雰囲気の制御を厳密に行う必要があり、該複合水酸化物の製造が困難であった。そこで、雰囲気の制御を厳密に行う必要のない簡便な製造方法が求められていた。   Conventionally, composite hydroxides of nickel and manganese have been used to synthesize these compounds (for example, see Non-Patent Documents 1 to 3). However, since the divalent manganese in the composite hydroxide is easily oxidized to be trivalent, the control of the synthesis conditions of the composite hydroxide and the control of the atmosphere for the subsequent handling are strictly performed. And the production of the composite hydroxide was difficult. Therefore, a simple manufacturing method that does not require strict control of the atmosphere has been demanded.

ケミストリー・レターズ(Chemistry Letters),日本化学会,2001年8月,p.744Chemistry Letters, The Chemical Society of Japan, August 2001, p. 744 第42回電池討論会予稿集、2001年11月21日、講演番号2I12Proceedings of the 42nd Battery Symposium, November 21, 2001, Lecture No. 2I12 エレクトロケミカル・アンド・ソリッド−ステート・レターズ(Electrochemical and Solid−State Letters),(米国),エレクトロケミカル・ソサエティ,インク(Electrochemical Society,Inc.),2001年12月,Vol.4,p.A200−A203Electrochemical and Solid-State Letters, (USA), Electrochemical Society, Inc., December 2001, Vol. 4, p. A200-A203

本発明の目的は、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質の簡便な製造方法を提供することにある。   An object of the present invention is to provide a simple method for producing a positive electrode active material for a non-aqueous secondary battery, comprising a compound having a layered structure, containing lithium, nickel and manganese.

本発明者らは、金属化合物の混合物でありリチウムとニッケルとマンガンを含有する混合物を焼成することにより、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質を製造する方法について鋭意検討した結果、前記混合物としてホウ素が含有された混合物を用いると、雰囲気の制御を厳密に行う必要がなく、焼成するだけで簡便に該正極活物質が製造できることを見出し、本発明を完成するに至った。   The present inventors fired a mixture containing lithium, nickel and manganese, which is a mixture of metal compounds, containing lithium, nickel and manganese, and for a non-aqueous secondary battery comprising a compound having a layered structure. As a result of intensive studies on the method for producing the positive electrode active material, it was found that when a mixture containing boron was used as the mixture, it was not necessary to strictly control the atmosphere, and the positive electrode active material could be easily produced simply by firing. And completed the present invention.

すなわち本発明は、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質の製造方法において、金属化合物の混合物であって、リチウムとニッケルとマンガンとホウ素とを含有する混合物を焼成する製造方法を提供する。   That is, the present invention provides a method for producing a positive electrode active material for a non-aqueous secondary battery comprising a compound having a layered structure, containing lithium, nickel and manganese, wherein the mixture of metal compounds comprises lithium, nickel and manganese. Provided is a production method for firing a mixture containing boron.

本発明の製造方法によれば、リチウムとニッケルとマンガンとを含む層状構造の非水二次電池正極活物質を簡便に製造することができ、これを用いた非水二次電池は大きな容量を有するので、本発明は工業的に極めて有用である。   According to the production method of the present invention, a nonaqueous secondary battery positive electrode active material having a layered structure containing lithium, nickel, and manganese can be easily produced, and a nonaqueous secondary battery using the same has a large capacity. Therefore, the present invention is extremely useful industrially.

次に、本発明を詳細に説明する。
本発明の製造方法は、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質の製造方法であり、ホウ素またはホウ素化合物を含む混合物であって、リチウムとニッケルとマンガン以外にホウ素を含有する混合物を焼成することを特徴とする。なお、本発明においてはホウ素は金属の中に含まれる。
Next, the present invention will be described in detail.
The production method of the present invention is a method for producing a positive electrode active material for a non-aqueous secondary battery comprising a compound having a layered structure, containing lithium, nickel and manganese, and is a mixture containing boron or a boron compound. It is characterized by firing a mixture containing boron in addition to lithium, nickel and manganese. In the present invention, boron is contained in the metal.

該混合物を最も簡便に製造するには、リチウム化合物、ニッケル化合物、マンガン化合物、ホウ素化合物を混合すればよい。リチウム化合物、ニッケル化合物、マンガン化合物としては、酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、酢酸塩、塩化物、有機金属化合物、アルコキシドを例示することができる。ホウ素化合物としては、三酸化ニホウ素、ホウ酸(オルトホウ酸)、メタホウ酸、四ホウ酸、ホウ酸リチウム等の各種ホウ酸塩等が挙げられる。これらのホウ素化合物のうち、乾式での混合プロセスに適する点で、ホウ酸(オルトホウ酸)が好ましい。該混合物中のホウ素またはホウ素化合物の含有量は、該混合物中のリチウムのモル数に対して0.1〜10モル%が好ましい。0.1モル%より少ないと層状構造を有する化合物の生成が不十分となるおそれがあり好ましくない。また10モル%を上回ると、電池に用いた場合の過電圧が大きくなり、特に低温での放電容量が低下するおそれがある。   In order to produce the mixture most simply, a lithium compound, a nickel compound, a manganese compound, and a boron compound may be mixed. Examples of the lithium compound, nickel compound and manganese compound include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, acetates, chlorides, organometallic compounds, and alkoxides. Examples of the boron compound include various borates such as diboron trioxide, boric acid (orthoboric acid), metaboric acid, tetraboric acid, and lithium borate. Of these boron compounds, boric acid (orthoboric acid) is preferred because it is suitable for a dry mixing process. The content of boron or boron compound in the mixture is preferably 0.1 to 10 mol% based on the number of moles of lithium in the mixture. If the amount is less than 0.1 mol%, the formation of a compound having a layered structure may be insufficient, which is not preferable. On the other hand, when the content exceeds 10 mol%, the overvoltage when used in a battery is increased, and the discharge capacity at low temperatures may be reduced.

これらの金属化合物の混合方法については公知の方法を用いることができる。混合は乾式でも湿式でも行なうことができるが、乾燥工程が省略でき簡便な乾式混合によっても、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物を得ることができるため、乾式混合が好ましく、乾式混合としては、V型混合機、W型混合機、リボン混合機、ドラムミキサー、乾式ボールミル等工業的に通常行われる公知の方法によって行うことができる。   Known methods can be used for mixing these metal compounds. Mixing can be performed either in a dry manner or in a wet manner, but the drying step can be omitted and simple dry blending can also be used, because lithium, nickel and manganese are contained and a compound having a layered structure can be obtained. The dry mixing can be performed by a known method generally used in industry such as a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a dry ball mill, and the like.

このように、リチウムとニッケルとマンガンとホウ素とを含有する金属化合物混合物は、リチウム化合物とニッケル化合物とマンガン化合物とホウ素化合物を混合することにより製造することができるが、本発明においては該混合物の製造方法は特に限定されない。例えば、リチウムとニッケルとマンガンとホウ素を含有する水溶液から水を除去する製造方法、水中にニッケルとマンガンを含む水溶液とアルカリ水溶液を滴下してニッケルとマンガンを含む沈澱を得て、その沈澱とリチウム化合物とホウ素化合物を混合して製造する方法なども用いることもできる。   As described above, the metal compound mixture containing lithium, nickel, manganese, and boron can be produced by mixing a lithium compound, a nickel compound, a manganese compound, and a boron compound. The production method is not particularly limited. For example, a production method of removing water from an aqueous solution containing lithium, nickel, manganese and boron, an aqueous solution containing nickel and manganese and an alkaline aqueous solution are dropped into water to obtain a precipitate containing nickel and manganese, and the precipitate and lithium A method in which a compound is mixed with a boron compound to produce the compound and the like can also be used.

混合物を必要に応じて圧縮成形した後、好ましくは600℃以上1200℃以下の温度範囲、より好ましくは800℃以上1100℃以下の温度範囲で2時間から30時間保持して焼成することにより、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質を製造することができる。その際、焼成容器が破損しない範囲で急速に保持温度まで到達させることが好ましい。また、焼成の雰囲気としては、窒素、アルゴンなどの不活性雰囲気;空気、酸素、酸素含有アルゴン、酸素含有窒素などの酸化性雰囲気;水素含有窒素、水素含有アルゴンなどの還元性雰囲気のいずれも用いることができるが、酸化性雰囲気が好ましい。焼成の後、振動ミル、ジェットミル、乾式ボールミル等の工業的に通常行われる公知の方法によって、所定の粒度に調整することができる。   After compression-molding the mixture, if necessary, the mixture is kept at a temperature in the range of preferably 600 ° C. or more and 1200 ° C. or less, more preferably 800 ° C. or more and 1100 ° C. or less for 2 to 30 hours, and fired to obtain lithium And a nickel- and manganese-containing positive electrode active material for a non-aqueous secondary battery comprising a compound having a layered structure. At that time, it is preferable to quickly reach the holding temperature as long as the firing container is not damaged. As the firing atmosphere, any of an inert atmosphere such as nitrogen and argon; an oxidizing atmosphere such as air, oxygen, oxygen-containing argon and oxygen-containing nitrogen; and a reducing atmosphere such as hydrogen-containing nitrogen and hydrogen-containing argon are used. However, an oxidizing atmosphere is preferred. After the calcination, the particle size can be adjusted to a predetermined particle size by a known method that is generally used in industry such as a vibration mill, a jet mill, and a dry ball mill.

本発明における非水二次電池用正極活物質は、リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなり、X線回折において組成式
Li[Ni(x-y)Li(1/3-2x/3)Mn(2/3-x/3-y)Co2y]O2 (I)
(0<x≦0.5、0≦y≦1/6、x>y)
で表される化合物と同定される化合物である場合が好ましい。組成式(I)においてy>0、即ちCoを含有すると、サイクル特性が向上するので好ましい。また、リチウム、ニッケル、マンガンおよびコバルトの各サイトを、Na、K、Mg、Ca、Sr、Ba、B、Al、Ga、In、Si、Zr、Sn、Ti、V、Cr、Fe、Cu、Ag、Zn等で各サイトの50モル%以内の範囲で置換してもよい。また、酸素についても、5モル%以内の範囲でハロゲンや硫黄、窒素で置換しても、結晶構造が変化せず、X線回折において組成式(I)で表わされる化合物と同定される化合物であればよい。
The positive electrode active material for a non-aqueous secondary battery according to the present invention contains a compound having a layered structure containing lithium, nickel, and manganese, and has a composition formula Li [Ni (xy) Li (1 / 3- 2x / 3) Mn (2/ 3-x / 3-y) Co 2y] O 2 (I)
(0 <x ≦ 0.5, 0 ≦ y ≦ 1/6, x> y)
It is preferable that the compound is a compound identified as a compound represented by the formula: In the composition formula (I), it is preferable that y> 0, that is, Co is contained, since the cycle characteristics are improved. In addition, each site of lithium, nickel, manganese and cobalt is represented by Na, K, Mg, Ca, Sr, Ba, B, Al, Ga, In, Si, Zr, Sn, Ti, V, Cr, Fe, Cu, It may be substituted with Ag, Zn or the like within a range of 50 mol% of each site. In addition, even when oxygen is substituted with halogen, sulfur, or nitrogen within a range of 5 mol% or less, the crystal structure does not change, and the compound is identified as a compound represented by the composition formula (I) in X-ray diffraction. I just need.

以下に本発明の非水二次電池用正極活物質をリチウム二次電池の正極に用いる場合を例として、電池を作製する際の好適な構成について説明する。
本発明の実施態様の一つであるリチウム二次電池の正極は、本発明の非水二次電池用活物質を含み、さらに導電材としての炭素質材料、バインダーなどを含む正極合剤を正極集電体に担持させて製造することができる。
また、必要に応じ、コバルト酸リチウム、ニッケル酸リチウム、スピネル型リチウムマンガン酸化物、オリビン型リン酸鉄リチウム、およびそれらの構成元素の一部を他元素で置換したもの等、本発明の非水二次電池用活物質以外の活物質を混合してもよい。
Hereinafter, a preferred configuration for producing a battery will be described by taking as an example a case where the positive electrode active material for a nonaqueous secondary battery of the present invention is used for a positive electrode of a lithium secondary battery.
The positive electrode of a lithium secondary battery, which is one of the embodiments of the present invention, contains a positive electrode mixture containing the active material for a non-aqueous secondary battery of the present invention, and further contains a carbonaceous material as a conductive material, a binder, and the like. It can be manufactured by being supported on a current collector.
Further, if necessary, the non-aqueous water of the present invention such as lithium cobaltate, lithium nickelate, spinel lithium manganese oxide, olivine lithium iron phosphate, and those in which some of their constituent elements are replaced by other elements. An active material other than the secondary battery active material may be mixed.

該炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどが挙げられる。導電材として、それぞれ単独で用いてもよいし、例えば人造黒鉛とカーボンブラックとを混合して用いてもよい。   Examples of the carbonaceous material include natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, or for example, a mixture of artificial graphite and carbon black may be used.

バインダーとしては通常は熱可塑性樹脂が用いられ、具体的には、ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などが挙げられる。これらをそれぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。   As the binder, a thermoplastic resin is usually used, and specifically, polyvinylidene fluoride (hereinafter, sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter, sometimes referred to as PTFE), and tetrafluoroethylene. • Propylene hexafluoride / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, ethylene tetrafluoride / perfluorovinyl ether copolymer, and the like. Each of these may be used alone, or two or more of them may be used in combination.

また、バインダーとしてフッ素樹脂とポリオレフィン樹脂とを、正極合剤中の該フッ素樹脂の割合が1〜10重量%であり、該ポリオレフィン樹脂の割合が0.1〜2重量%となるように、本発明の正極活物質と組み合わせて用いると、集電体との結着性に優れ、また外部加熱に対する安全性をさらに向上できるので好ましい。   Further, a fluororesin and a polyolefin resin are used as binders such that the ratio of the fluororesin in the positive electrode mixture is 1 to 10% by weight and the ratio of the polyolefin resin is 0.1 to 2% by weight. When used in combination with the positive electrode active material of the present invention, it is preferable because it has excellent binding properties to the current collector and can further improve safety against external heating.

正極集電体としては、Al、Ni、ステンレスなどを用いることができるが、薄膜に加工しやすく、安価であるという点でAlが好ましい。正極集電体に正極合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、正極集電体上に塗布乾燥後プレスするなどして固着する方法が挙げられる。   As the positive electrode current collector, Al, Ni, stainless steel, or the like can be used, but Al is preferable because it can be easily processed into a thin film and is inexpensive. Examples of a method for supporting the positive electrode mixture on the positive electrode current collector include a method of pressure molding, a method of forming a paste using a solvent or the like, and a method of applying a paste on the positive electrode current collector, followed by drying and pressing to fix the mixture. .

本発明の実施態様の一つであるリチウム二次電池の負極としては、例えばリチウム金属、リチウム合金またはリチウムイオンをドープ・脱ドープ可能な材料などを用いることができる。リチウムイオンをドープ・脱ドープ可能な材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープが行える酸化物、硫化物等のカルコゲン化合物が挙げられる。   As the negative electrode of the lithium secondary battery which is one of the embodiments of the present invention, for example, a lithium metal, a lithium alloy, a material capable of doping / dedoping lithium ions, or the like can be used. Materials capable of doping / dedoping lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds; a lower potential than the positive electrode And chalcogen compounds such as oxides and sulfides which can be doped and dedoped with lithium ions.

炭素質材料の形状は、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよく、必要に応じてバインダーとして熱可塑性樹脂を添加することができる。熱可塑性樹脂としては、PVDF、ポリエチレン、ポリプロピレンなどが挙げられる。   The shape of the carbonaceous material may be any of, for example, a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder. A thermoplastic resin can be added as a binder. Examples of the thermoplastic resin include PVDF, polyethylene, and polypropylene.

負極として用いられる酸化物、硫化物等のカルコゲン化合物としては、例えば周期律表の第13、14、15族元素の酸化物などが挙げられる。これらについても、必要に応じて導電材として炭素質材料を、バインダーとして熱可塑性樹脂を添加することができる。   Examples of chalcogen compounds such as oxides and sulfides used as the negative electrode include oxides of elements of Groups 13, 14, and 15 of the periodic table. Also in these, a carbonaceous material can be added as a conductive material and a thermoplastic resin can be added as a binder, if necessary.

負極集電体としては、Cu、Ni、ステンレスなどを用いることができるが、特にリチウム二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。該負極集電体に負極活物質を含む合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、負極集電体上に塗布乾燥後プレスするなどして固着する方法が挙げられる。   As the negative electrode current collector, Cu, Ni, stainless steel, or the like can be used. In particular, in a lithium secondary battery, Cu is preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or a method of forming a paste using a solvent or the like, applying the mixture on the negative electrode current collector, drying, and then pressing and fixing is performed. Method.

本発明の実施態様の一つであるリチウム二次電池で用いるセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミドなどの材質からなり多孔質膜、不織布、織布などの形態を有する材料を用いることができる。該セパレータの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄いほど好ましく、10〜200μm程度が好ましい。   Examples of the separator used in the lithium secondary battery that is one of the embodiments of the present invention include, for example, a porous film, a nonwoven fabric, and a woven fabric made of a material such as polyolefin resin such as polyethylene and polypropylene, a fluorine resin, nylon, and aromatic aramid. A material having a form such as cloth can be used. From the viewpoint that the volume energy density of the battery increases and the internal resistance decreases, the thickness of the separator is preferably as thin as possible while maintaining the mechanical strength, and is preferably about 10 to 200 μm.

本発明の実施態様の一つであるリチウム二次電池で用いる電解質としては、例えばリチウム塩を有機溶媒に溶解させた非水電解質溶液、または固体電解質のいずれかから選ばれる公知のものを用いることができる。リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、Li210Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl4、LiB(C242などのうち一種あるいは二種以上の混合物が挙げられる。 As the electrolyte used in the lithium secondary battery which is one of the embodiments of the present invention, for example, a nonaqueous electrolyte solution obtained by dissolving a lithium salt in an organic solvent, or a known electrolyte selected from solid electrolytes may be used. Can be. Examples of lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , One or a mixture of two or more of lithium aliphatic carboxylate, LiAlCl 4 , LiB (C 2 O 4 ) 2 and the like can be mentioned.

本発明の実施態様の一つであるリチウム二次電池で用いる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン、エチレンサルファイト、プロピレンサルファイト、ジメチルサルファイト、ジエチルサルファイトなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができるが、通常はこれらのうちの二種以上を混合して用いる。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。   Examples of the organic solvent used in the lithium secondary battery according to an embodiment of the present invention include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and 4-trifluoromethyl-1,3. Carbonates such as dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3 Ethers such as tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethyl sulfoxide, 1,3-propane sultone, ethylene sulphite, propylene sulphite; Sulfur-containing compounds such as dimethylsulfite and diethylsulfite, or those obtained by further introducing a fluorine substituent into the above-mentioned organic solvent can be used. Usually, two or more of these are used as a mixture. Among them, a mixed solvent containing a carbonate is preferable, and a mixed solvent of a cyclic carbonate and an acyclic carbonate, or a mixed solvent of a cyclic carbonate and an ether is more preferable.

環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。   The mixed solvent of cyclic carbonate and acyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as an active material of the negative electrode. And a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferred.

また、特に優れた安全性向上効果が得られる点で、LiPF6等のフッ素を含むリチウム塩および/またはフッ素置換基を有する有機溶媒を含む電解質を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル等のフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、大電流放電特性にも優れており、さらに好ましい。 In addition, it is preferable to use an electrolyte containing a lithium salt containing fluorine such as LiPF 6 and / or an organic solvent having a fluorine substituent, since a particularly excellent effect of improving safety can be obtained. The mixed solvent containing dimethyl carbonate and ethers having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether has excellent high-current discharge characteristics. preferable.

固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの高分子電解質を用いることができる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。Li2S−SiS2、Li2S−GeS2、Li2S−P25、Li2S−B23などの硫化物電解質、またはLi2S−SiS2−Li3PO4、Li2S−SiS2−Li2SO4などの硫化物を含む無機化合物電解質を用いると、安全性を高めることができることがある。 As the solid electrolyte, for example, a polymer electrolyte such as a polyethylene oxide polymer compound and a polymer compound containing at least one polyorganosiloxane chain or polyoxyalkylene chain can be used. Further, a so-called gel type in which a non-aqueous electrolyte solution is held in a polymer can also be used. A sulfide electrolyte such as Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , or Li 2 S—SiS 2 —Li 3 PO 4 ; When an inorganic compound electrolyte containing a sulfide such as Li 2 S—SiS 2 —Li 2 SO 4 is used, safety may be improved in some cases.

なお、本発明の非水二次電池の形状は特に限定されず、ペーパー型、コイン型、円筒型、角型などのいずれであってもよい。   The shape of the nonaqueous secondary battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.

また、外装として負極または正極端子を兼ねる金属製ハードケースを用いずに、アルミニウムを含む積層シート等からなる袋状パッケージを用いてもよい。   Instead of using a metal hard case also serving as a negative electrode or a positive electrode terminal as a package, a bag-like package made of a laminated sheet containing aluminum or the like may be used.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、特に断らない限り、充放電試験用の電極と平板型電池の作製、粉末X線回折測定は下記の方法により行った。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Unless otherwise specified, preparation of electrodes for a charge / discharge test and a flat battery, and powder X-ray diffraction measurement were performed by the following methods.

(1)充放電試験用の平板型電池の作製
正極活物質と導電材のアセチレンブラックの混合物に、バインダーとしてPVDFの1−メチル−2−ピロリドン(以下、NMPということがある。)溶液を、活物質:導電材:バインダー=86:10:4(重量比)の組成となるように加えて混練することによりペーストとし、正極集電体となる#100ステンレスメッシュに該ペーストを塗布して150℃で8時間真空乾燥を行い、正極を得た。
(1) Preparation of Flat Battery for Charge / Discharge Test A 1-methyl-2-pyrrolidone (hereinafter, sometimes referred to as NMP) solution of PVDF as a binder is mixed with a mixture of a positive electrode active material and acetylene black as a conductive material. Active material: conductive material: binder = 86: 10: 4 (weight ratio) and kneaded to form a paste. The paste is applied to a # 100 stainless steel mesh serving as a positive electrode current collector, and the paste is applied. Vacuum drying was performed at 8 ° C. for 8 hours to obtain a positive electrode.

得られた正極に、電解液としてエチレンカーボネート(以下、ECということがある。)とジメチルカーボネート(以下、DMCということがある。)とエチルメチルカーボネート(以下、EMCということがある。)との30:35:35(体積比)混合液にLiPF6を1モル/リットルとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)、セパレータとしてポリプロピレン多孔質膜を、また負極として金属リチウムを組み合わせて平板型電池を作製した。 In the obtained positive electrode, ethylene carbonate (hereinafter, sometimes referred to as EC), dimethyl carbonate (hereinafter, sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter, sometimes referred to as EMC) are used as electrolytes. LiPF 6 dissolved in a 30:35:35 (volume ratio) mixed solution at a concentration of 1 mol / liter (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC), a polypropylene porous membrane as a separator, and A flat battery was produced by combining metallic lithium as the negative electrode.

(2)粉末X線回折測定
測定は、理学電機株式会社製RINT型を使用し、以下の条件で行った。
X線 :CuKα
電圧−電流 :40kV−140mA
測定角度範囲:2θ=10〜90°
スリット :DS−1°、RS−0.3mm、SS−1°
ステップ :0.02°
(2) X-Ray Powder Diffraction Measurement The measurement was performed under the following conditions using a RINT type manufactured by Rigaku Corporation.
X-ray: CuKα
Voltage-current: 40kV-140mA
Measurement angle range: 2θ = 10 to 90 °
Slit: DS-1 °, RS-0.3mm, SS-1 °
Step: 0.02 °

実施例1
(1)正極活物質の合成
まず水酸化リチウム(本荘ケミカル株式会社製)、水酸化ニッケル(株式会社田中化学研究所製、ニッケル含有量61.8重量%)、炭酸マンガン(和光純薬工業株式会社製、試薬特級、マンガン含有量46.4重量%)、ホウ酸(H3BO3:和光純薬工業株式会社製、試薬特級)を各元素のモル比がLi:Ni:Mn:B=1.0:0.5:0.5:0.02となるように秤取した後、乳鉢でよく混合した。得られた混合粉体を箱型炉に入れて、空気中において1000℃で15時間保持して焼成することで、非水二次電池用正極活物質E1(組成式(I)においてx=0.5、y=0の場合であり、組成式Li[Ni0.5Mn0.5]O2により表わされる化合物である。)を得た。E1の粉末X線回折測定結果を図1に示した。E1はOhzukuらの報告(非特許文献1)と同様の層状構造を有することが確認された。
Example 1
(1) Synthesis of positive electrode active material First, lithium hydroxide (manufactured by Honjo Chemical Co., Ltd.), nickel hydroxide (manufactured by Tanaka Chemical Laboratory Co., Ltd., nickel content: 61.8% by weight), manganese carbonate (Wako Pure Chemical Industries, Ltd.) company, Ltd., special grade reagent, manganese content 46.4% by weight), boric acid (H 3 BO 3: manufactured by Wako Pure Chemical Industries, Ltd., guaranteed reagent) is the molar ratio of each element Li: Ni: Mn: B = After weighing so as to be 1.0: 0.5: 0.5: 0.02, they were mixed well in a mortar. The obtained mixed powder is placed in a box furnace, and is baked at 1000 ° C. for 15 hours in the air to obtain a positive electrode active material E1 for a nonaqueous secondary battery (x = 0 in the composition formula (I)). 0.5 , y = 0, which is a compound represented by the composition formula Li [Ni 0.5 Mn 0.5 ] O 2 ). The result of the powder X-ray diffraction measurement of E1 is shown in FIG. E1 was confirmed to have the same layered structure as reported by Ohzuku et al. (Non-Patent Document 1).

(2)リチウム二次電池の正極活物質とした場合の充放電性能評価
E1を用いて平板型電池を作製し、以下の条件で定電流定電圧充電、定電流放電による充放電試験を実施した。
充電最大電圧4.3V、充電時間8時間、充電電流0.5mA/cm2
放電最小電圧3.0V、放電電流0.5mA/cm2
放電容量の変化を図2に示した。10および20サイクル目の放電容量は、それぞれ127および124mAh/gとなり、高容量で、良好なサイクル特性を示した。
(2) Charge / discharge performance evaluation when a positive electrode active material of a lithium secondary battery was used A flat battery was manufactured using E1, and a charge / discharge test using constant current / constant voltage charge and constant current discharge was performed under the following conditions. .
Maximum charging voltage 4.3V, charging time 8 hours, charging current 0.5mA / cm 2
Minimum discharge voltage 3.0 V, discharge current 0.5 mA / cm 2
FIG. 2 shows the change in discharge capacity. The discharge capacities at the 10th and 20th cycles were 127 and 124 mAh / g, respectively, indicating high capacity and good cycle characteristics.

比較例1
(1)正極活物質の合成
ホウ酸を加えなかったこと以外は実施例1と同様にして、非水二次電池用正極活物質C1を得た。C1の粉末X線回折測定結果を図1に示した。C1にはOhzukuらの報告と同様の層状構造の他に、NiOとLi2MnO3の回折線が認められた。
Comparative Example 1
(1) Synthesis of positive electrode active material A positive electrode active material C1 for a non-aqueous secondary battery was obtained in the same manner as in Example 1 except that boric acid was not added. The result of the powder X-ray diffraction measurement of C1 is shown in FIG. In C1, diffraction lines of NiO and Li 2 MnO 3 were observed in addition to the same layer structure as reported by Ohzuku et al.

(2)リチウム二次電池の正極活物質とした場合の充放電性能評価
C1を用いて平板型電池を作製し、実施例1と同様に充放電試験を実施した。
放電容量の変化を図2に示した。10および20サイクル目の放電容量は、それぞれ84および83mAh/gと低容量であった。
(2) Evaluation of Charge / Discharge Performance When Using Positive Electrode Active Material of Lithium Secondary Battery A flat battery was manufactured using C1, and a charge / discharge test was performed in the same manner as in Example 1.
FIG. 2 shows the change in discharge capacity. The discharge capacity at the 10th and 20th cycles was as low as 84 and 83 mAh / g, respectively.

実施例2
(1)正極活物質の合成
まず、水酸化ニッケル(オーエムグループ,インク(OM Group,Inc.)製、プレーングレード、ニッケル含有量61.1重量%)、二酸化マンガン(株式会社高純度化学研究所製、純度99%)、四三酸化コバルト(正同化学工業株式会社製、製品名酸化コバルトHCO、コバルト含有量73.0%)を各元素のモル比がNi:Mn:Co=0.4:0.4:0.2となるように秤取した後、アルミナボールを用いた乾式ボールミルで混合した。その後水酸化リチウム(本荘ケミカル株式会社製)、該混合物、ホウ酸(H3BO3:和光純薬工業株式会社製、試薬特級)を各元素のモル比がLi:Ni:Mn:Co:B=1.0:0.4:0.4:0.2:0.02となるように秤取した後、乳鉢でよく混合した。得られた混合粉体を箱型炉に入れて、空気中において1000℃で15時間保持して焼成することで、非水二次電池用正極活物質E2(組成式(I)においてx=0.5、y=0.1の場合であり、組成式Li[Ni0.4Mn0.4Co0.2]O2により表わされる化合物である。)を得た。E2の粉末X線回折測定結果を図3に示した。E2はOhzukuらの報告(非特許文献1)と同様の層状構造を有することが確認された。
(2)リチウム二次電池の正極活物質とした場合の充放電性能評価
E2を用いて平板型電池を作製し、実施例1と同様に充放電試験を実施した。
放電容量の変化を図4に示した。10および20サイクル目の放電容量は、それぞれ139および138mAh/gとなり、高容量で、良好なサイクル特性を示した。
Example 2
(1) Synthesis of Positive Electrode Active Material First, nickel hydroxide (OM Group, Inc., manufactured by OM Group, Inc., plain grade, nickel content: 61.1% by weight), manganese dioxide (Kojundo Chemical Laboratory Co., Ltd.) (Purity: 99%), cobalt trioxide (manufactured by Seido Chemical Co., Ltd., product name: cobalt oxide HCO, cobalt content: 73.0%). : 0.4: 0.2 and then mixed in a dry ball mill using alumina balls. Then, lithium hydroxide (manufactured by Honjo Chemical Co., Ltd.), the mixture, and boric acid (H 3 BO 3 : manufactured by Wako Pure Chemical Industries, Ltd., special grade) were used in a molar ratio of each element of Li: Ni: Mn: Co: B. = 1.0: 0.4: 0.4: 0.2: 0.02, and then mixed well in a mortar. The obtained mixed powder is placed in a box furnace, and calcined at 1000 ° C. for 15 hours in the air, whereby a positive electrode active material E2 for a non-aqueous secondary battery (x = 0 in the composition formula (I)) is obtained. 0.5, y = 0.1, which is a compound represented by the composition formula Li [Ni 0.4 Mn 0.4 Co 0.2 ] O 2 ). The results of the powder X-ray diffraction measurement of E2 are shown in FIG. E2 was confirmed to have the same layered structure as reported by Ohzuku et al. (Non-Patent Document 1).
(2) Evaluation of Charge / Discharge Performance When Using Positive Electrode Active Material of Lithium Secondary Battery A flat battery was manufactured using E2, and a charge / discharge test was performed in the same manner as in Example 1.
FIG. 4 shows the change in the discharge capacity. The discharge capacities at the 10th and 20th cycles were 139 and 138 mAh / g, respectively, indicating high capacity and good cycle characteristics.

比較例2
ホウ酸を加えなかったこと以外は実施例2と同様にして、非水二次電池用正極活物質C2を得た。C2の粉末X線回折測定結果を図3に示した。C2にはOhzukuらの報告と同様の層状構造の他に、NiOとLi2MnO3の回折線が認められた。
Comparative Example 2
A positive electrode active material C2 for a non-aqueous secondary battery was obtained in the same manner as in Example 2 except that boric acid was not added. The result of the powder X-ray diffraction measurement of C2 is shown in FIG. In C2, diffraction lines of NiO and Li 2 MnO 3 were recognized in addition to the same layered structure as reported by Ohzuku et al.

実施例1および比較例1における粉末X線回折測定結果を示す図。The figure which shows the powder X-ray diffraction measurement result in Example 1 and Comparative Example 1. 実施例1および比較例1における放電容量のサイクル変化を示す図。FIG. 4 is a diagram showing a cycle change of a discharge capacity in Example 1 and Comparative Example 1. 実施例2および比較例2における粉末X線回折測定結果を示す図。The figure which shows the powder X-ray diffraction measurement result in Example 2 and Comparative Example 2. 実施例2における放電容量のサイクル変化を示す図。FIG. 9 is a diagram showing a cycle change of a discharge capacity in Example 2.

Claims (5)

リチウムとニッケルとマンガンとを含有し、層状構造を有する化合物からなる非水二次電池用正極活物質の製造方法において、金属化合物の混合物であって、リチウムとニッケルとマンガンとホウ素とを含有する混合物を焼成することを特徴とする製造方法。   A method for producing a positive electrode active material for a non-aqueous secondary battery comprising a compound having a layered structure, containing lithium, nickel, and manganese, wherein the mixture of metal compounds contains lithium, nickel, manganese, and boron. A production method characterized by firing the mixture. リチウムとニッケルとマンガンを含有し、層状構造を有する化合物が、X線回折において、組成式Li[Ni(x-y)Li(1/3-2x/3)Mn(2/3-x/3-y)Co2y]O2(ただし、xは0より大きく0.5以下であり、yは0以上1/6以下であり、x>yである。)で表され層状構造を有する化合物と同定される化合物である請求項1に記載の製造方法。 A compound containing lithium, nickel, and manganese and having a layered structure can be analyzed by X-ray diffraction to find a composition represented by the composition formula Li [Ni (xy) Li (1 / 3-2x / 3) Mn (2 / 3-x / 3-y ) Co 2y ] O 2 (where x is greater than 0 and 0.5 or less, y is 0 or more and 1/6 or less, and x> y) and identified as a compound having a layered structure. 2. The method according to claim 1, wherein the compound is a compound. 金属化合物の混合物が乾式混合により得られる混合物である請求項1または2に記載の製造方法。   The method according to claim 1, wherein the mixture of metal compounds is a mixture obtained by dry mixing. 請求項1〜3のいずれかに記載の製造方法により得られることを特徴とする非水二次電池用正極活物質。   A positive electrode active material for a non-aqueous secondary battery obtained by the production method according to claim 1. 請求項4に記載の非水二次電池用正極活物質を用いてなることを特徴とする非水二次電池。
A non-aqueous secondary battery comprising the positive electrode active material for a non-aqueous secondary battery according to claim 4.
JP2003350447A 2002-10-10 2003-10-09 Method for producing positive electrode active material for non-aqueous secondary battery Expired - Fee Related JP4747485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350447A JP4747485B2 (en) 2002-10-10 2003-10-09 Method for producing positive electrode active material for non-aqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002297239 2002-10-10
JP2002297239 2002-10-10
JP2003350447A JP4747485B2 (en) 2002-10-10 2003-10-09 Method for producing positive electrode active material for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2004152753A true JP2004152753A (en) 2004-05-27
JP4747485B2 JP4747485B2 (en) 2011-08-17

Family

ID=32473551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350447A Expired - Fee Related JP4747485B2 (en) 2002-10-10 2003-10-09 Method for producing positive electrode active material for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4747485B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2007053081A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2007103141A (en) * 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
US7754389B2 (en) 2004-02-12 2010-07-13 Sony Corporation Battery including an electrolyte solution comprising a halogenated carbonate derivative
WO2011040383A1 (en) * 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2013051210A (en) * 2012-11-07 2013-03-14 Sanyo Electric Co Ltd Lithium secondary battery
JP2020173993A (en) * 2019-04-11 2020-10-22 トヨタ自動車株式会社 Positive electrode active material layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855624A (en) * 1994-03-07 1996-02-27 Tdk Corp Layer structured oxide and secondary battery
JPH09110431A (en) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol Production of lithium-manganese oxide based on limno2
JP2001076724A (en) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd Positive electrode material for lithium battery and its manufacture
JP2002304993A (en) * 2001-04-04 2002-10-18 Yuasa Corp Positive electrode active material, its manufacturing method, and secondary battery using the same
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855624A (en) * 1994-03-07 1996-02-27 Tdk Corp Layer structured oxide and secondary battery
JPH09110431A (en) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol Production of lithium-manganese oxide based on limno2
JP2001076724A (en) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd Positive electrode material for lithium battery and its manufacture
JP2002304993A (en) * 2001-04-04 2002-10-18 Yuasa Corp Positive electrode active material, its manufacturing method, and secondary battery using the same
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754389B2 (en) 2004-02-12 2010-07-13 Sony Corporation Battery including an electrolyte solution comprising a halogenated carbonate derivative
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2007053081A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2007103141A (en) * 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
EP2341570A1 (en) 2006-12-26 2011-07-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
EP2337125A1 (en) 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
EP2278642A1 (en) 2007-11-12 2011-01-26 GS Yuasa International Ltd. Method for producing an active material for lithium secondary battery and a lithium secondary battery
WO2011040383A1 (en) * 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
US9249034B2 (en) 2009-09-30 2016-02-02 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2013051210A (en) * 2012-11-07 2013-03-14 Sanyo Electric Co Ltd Lithium secondary battery
JP2020173993A (en) * 2019-04-11 2020-10-22 トヨタ自動車株式会社 Positive electrode active material layer
JP7211232B2 (en) 2019-04-11 2023-01-24 トヨタ自動車株式会社 Positive electrode active material layer

Also Published As

Publication number Publication date
JP4747485B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
KR101102287B1 (en) Method for preparing positive electrode active material for non-aqueous secondary battery
CN113169338B (en) Positive electrode additive for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery comprising same
JP6726102B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11024847B2 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP6549565B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP5870930B2 (en) Composite metal oxide, method for producing composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP5035834B2 (en) Lithium manganese composite oxide
JP5765705B2 (en) Composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP5762828B2 (en) Sodium secondary battery
JP2014160653A (en) Complex metal oxide, sodium secondary battery positive electrode active material, sodium secondary battery positive electrode, and sodium secondary battery
CN110462897B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2010135187A (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JPWO2018021453A1 (en) Method of manufacturing lithium nickel composite oxide
JP4639573B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery
JP2016103463A (en) Complex metal oxide, complex metal oxide for sodium secondary battery positive electrode, and sodium secondary battery
JP4747485B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery
EP1909346A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP5770020B2 (en) Manufacturing method of inorganic material
KR101244737B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material
TWI822956B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery
JP2017174510A (en) Composite metal oxide, composite metal oxide for sodium secondary battery positive electrode, and sodium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R151 Written notification of patent or utility model registration

Ref document number: 4747485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees