JP2003201147A - Precision drilling method for glass, method of manufacturing ferrule for optical fiber connector and method of manufacturing magnetic disk glass substrate - Google Patents

Precision drilling method for glass, method of manufacturing ferrule for optical fiber connector and method of manufacturing magnetic disk glass substrate

Info

Publication number
JP2003201147A
JP2003201147A JP2001400134A JP2001400134A JP2003201147A JP 2003201147 A JP2003201147 A JP 2003201147A JP 2001400134 A JP2001400134 A JP 2001400134A JP 2001400134 A JP2001400134 A JP 2001400134A JP 2003201147 A JP2003201147 A JP 2003201147A
Authority
JP
Japan
Prior art keywords
glass
mold
shape
molding
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001400134A
Other languages
Japanese (ja)
Other versions
JP3991682B2 (en
Inventor
Makoto Umetani
梅谷  誠
Hiroshi Riyounai
領内  博
Shoji Nakamura
正二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001400134A priority Critical patent/JP3991682B2/en
Publication of JP2003201147A publication Critical patent/JP2003201147A/en
Application granted granted Critical
Publication of JP3991682B2 publication Critical patent/JP3991682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/10Construction of plunger or mould for making hollow or semi-hollow articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/26Punching reheated glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the difficulty in high-accuracy drilling of submicron order in a machining method, etching method and thermal processing method in subjecting glass to precision drilling and to prevent the occurrence of flashes in molding and the possibility of the occurrence of crack in the glass in a method of forming through-holes in glass substrates together with molding as the clearances exists in the mold. <P>SOLUTION: The extremely inexpensive precision drilling method for the glass involving only the forming and surface polishing process steps is provided by holding a blank for forming consisting of the glass between a mold for forming having a high-accuracy projecting shape of a height above the necessary pore depth and a plane mold, heating the blank for forming up to a temperature at which the blank can be deformed, press forming the blank to form a recess precisely transferred with an inverted shape of the projecting shape, cooling the formed body, parting the formed body from the molds and polishing the formed body from a plane side until the thickness to provide the prescribed pore depth is attained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス材料に高精
度な孔あけ加工を施す方法並びに高精度な孔あけ加工を
施された貫通孔付きガラス製品の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for highly accurately punching a glass material and a method for producing a glass product with through holes that has been highly accurately drilled.

【0002】[0002]

【従来の技術】従来、ガラス製品に孔あけ加工を施す方
法としては、回転砥石、ドリル、超音波加工、ブラスト
加工などの機械加工法や、化学的処理によるエッチング
加工法や、バーナーなどで焼き切る熱加工法(特開20
00−16815号公報、特開2000−53435号
公報)や、イオンビーム、レーザー、電子ビームなどに
よるエネルギービーム加工法(特開2000−6166
7号公報)や、加熱軟化したガラスを金型によってプレ
ス成形する方法(特開2000−319026号公報)
などがある。
2. Description of the Related Art Conventionally, as a method for making a hole in a glass product, a mechanical processing method such as a rotary grindstone, a drill, an ultrasonic processing, a blast processing, an etching processing method by a chemical treatment, or a burner is used for burning. Thermal processing method
No. 00-16815, Japanese Patent Laid-Open No. 2000-53435), and an energy beam processing method using an ion beam, a laser, an electron beam, etc. (Japanese Patent Laid-Open No. 2000-6166).
No. 7) or a method of press-molding heat-softened glass with a mold (Japanese Patent Laid-Open No. 2000-319026).
and so on.

【0003】上記のような孔あけ加工法を用いて、磁気
ディスク用ガラス基板の製造や、光ファイバーコネクタ
ー用フェルールなどが製造されている。
Using the above-described drilling method, glass substrates for magnetic disks, ferrules for optical fiber connectors, etc. are manufactured.

【0004】磁気ディスク用ガラス基板の一般的な製造
方法としては、所定の表面平滑性を得るための研磨工
程、その後の、機械加工法による外型加工、内孔あけ加
工工程、そして、内外周面取り加工による最終仕上げ工
程からなる。
As a general method for manufacturing a glass substrate for a magnetic disk, a polishing step for obtaining a predetermined surface smoothness, an outer die processing by a machining method, an inner hole drilling step, and an inner and outer circumference are then performed. It consists of a final finishing process by chamfering.

【0005】また、特開2000−319026号公報
では、研磨工程と孔あけ工程を成形によって、同時に行
うことを提案している。
Further, Japanese Patent Laid-Open No. 2000-319026 proposes that the polishing step and the punching step are simultaneously performed by molding.

【0006】光ファイバーコネクター用フェルールは、
光ファイバー同士の軸を一致させて接続するため、フェ
ルールの内外径には、非常に高い精度(サブミクロンオ
ーダー)が求められている。
The ferrule for the optical fiber connector is
In order to connect the optical fibers so that their axes coincide with each other, the inner and outer diameters of the ferrule are required to have extremely high accuracy (submicron order).

【0007】このようなフェルールの製造方法として
は、金属材料あるいはセラミックス材料を高精度な加工
機を用いた機械加工法によって、内外径を仕上げる方法
が実施されているが、加工コストが非常にかかる。一
方、特開平10−186176号公報記載の方法によれ
ば、溶融した非晶質合金を金型で成形加工することで安
価にフェルールを製造する方法を提案している。
As a method of manufacturing such a ferrule, a method of finishing the inner and outer diameters of a metal material or a ceramic material by a machining method using a highly accurate processing machine is carried out, but the processing cost is very high. . On the other hand, according to the method described in Japanese Patent Application Laid-Open No. 10-186176, a method of manufacturing a ferrule at low cost by molding a molten amorphous alloy with a mold is proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、機械加
工法、エッチング加工法、熱加工法は、サブミクロンオ
ーダーの高精度な孔あけ加工が困難であり、特に微細な
孔あけを必要とする場合には、これらの工法では不可能
である。
However, the mechanical working method, the etching working method, and the thermal working method are difficult to perform submicron-order high-precision drilling, especially when fine drilling is required. Is not possible with these construction methods.

【0009】エネルギービーム加工法は一般に装置が高
価であり、加工速度も遅く、量産性がない。特開200
0−61667号公報に記載の方法では、YAGレーザ
ーの吸収率の高い成分をガラス材料に含ませることで、
YAGレーザーの吸収率を上げて、加工効率を上げてい
るが、ガラス材料に吸収率の良い成分を予め含ませる必
要がある。
In the energy beam processing method, the apparatus is generally expensive, the processing speed is slow, and mass production is not possible. JP 200
In the method described in Japanese Patent Publication No. 0-61667, a glass material contains a component having a high YAG laser absorption rate,
Although the processing efficiency is increased by increasing the absorptance of the YAG laser, it is necessary to preliminarily include a component having a high absorptivity in the glass material.

【0010】特開2000−319026号公報記載の
磁気ディスクガラス基板の成形による製造方法では、図
11に示したような、プレス成形面が平面である上下一
対の金型111、112の中心部分から同心円状に形成
された貫通孔に内側金型113、114を配置すること
で、成形とともにガラス基板に貫通孔を形成するように
したものであるが、外側金型111、112と内側金型
113、114には必ず隙間があるので、成形時にガラ
ス115がその隙間に入り込み、バリが発生し、離型さ
せるときにガラスにクラックが発生するおそれがある。
In the manufacturing method by molding a magnetic disk glass substrate described in Japanese Patent Laid-Open No. 2000-319026, as shown in FIG. 11, the press molding surfaces are flat from the center of a pair of upper and lower molds 111 and 112. The inner molds 113 and 114 are arranged in the through holes formed in a concentric shape so that the through holes are formed in the glass substrate during molding, but the outer molds 111 and 112 and the inner mold 113 are formed. , 114 always have a gap, so that the glass 115 may enter the gap at the time of molding to cause burrs, and cracks may occur in the glass at the time of releasing.

【0011】また、特開平10−186176号公報記
載のフェルールの製造方法においても、図12に示した
金型に非晶質合金融液123を注入して成形するので、
コアピン122とベース金型121の隙間にバリが発生
する。
Further, in the method of manufacturing a ferrule described in Japanese Patent Laid-Open No. 10-186176, the amorphous synthetic financial fluid 123 is injected into the mold shown in FIG.
Burrs are generated in the gap between the core pin 122 and the base mold 121.

【0012】いずれも、これらのバリを除去するための
特殊な仕上げ加工が必要となり、高精度に成形された表
面を傷つける可能性があると言う課題がある。
In both cases, a special finishing process is required to remove these burrs, and there is a problem that the surface formed with high precision may be damaged.

【0013】[0013]

【課題を解決するための手段】そこで、本発明では、第
1に、ガラスからなる成形用素材を、必要な孔深さ以上
の高さの高精度な突起形状を有する成形用金型と平面金
型との間に挟み、該成形用素材が変形可能な温度まで加
熱し、プレス成形して、突起形状の反転形状を精密に転
写させた窪みを形成し、冷却して型より離型し、所定の
孔深さとなる厚さまで、平面側から研磨することによ
り、成形と平面研磨工程のみで非常に安価なガラスの精
密孔あけ加工法を提供するものである。
In view of the above, according to the present invention, firstly, a molding material made of glass is formed on a molding die having a highly precise projection shape having a height not less than a required hole depth and a flat surface. It is sandwiched between a mold and heated to a temperature at which the molding material can be deformed, and press-molded to form a recess in which the inverted shape of the protrusion is precisely transferred, and then cooled and released from the mold. The present invention provides a very inexpensive precision drilling method for glass by polishing from a flat surface side to a thickness that achieves a predetermined hole depth by only molding and flat surface polishing steps.

【0014】そして、ガラスからなる成形用素材を、必
要な孔深さ以上の高さの高精度な光ファイバーコネクタ
ー用フェルールの貫通孔形状の反転形状である突起形状
を有する成形用金型と平面金型との間に挟み、外形規制
用のリング状胴型を介し、該成形用素材が変形可能な温
度まで加熱し、プレス成形して、突起形状の反転形状を
精密に転写させた窪みを形成し、冷却して型より離型
し、所定の孔深さとなる厚さまで、平面側から研磨する
ことにより、外形と貫通孔を高精度に加工した光ファイ
バーコネクタ用フェルールの製造方法を提供するもので
ある。
Then, a molding material made of glass, a molding die having a projection shape which is an inverted shape of the through hole shape of the ferrule for a high-precision optical fiber connector having a height higher than a required hole depth, and a plane metal mold. It is sandwiched between a mold and a ring-shaped body mold for regulating the outer shape, which is heated to a temperature at which the molding material can be deformed and press-molded to form a recess in which the inverted shape of the protrusion shape is precisely transferred. Provided is a method for manufacturing a ferrule for an optical fiber connector in which the outer shape and the through hole are processed with high precision by cooling, releasing from the mold, and polishing from the flat surface side to a thickness that provides a predetermined hole depth. is there.

【0015】第2に、前記ガラスからなる成形用素材よ
りも耐熱性の良いガラス材料を、必要な孔深さ以上の深
さの高精度な貫通孔あるいは溝形状を有するマスター金
型と平面基材との間に挟み、該ガラス材料が変形可能な
温度まで加熱し、プレス成形して、貫通孔あるいは溝形
状の反転形状を精密に転写させた突起を形成するととも
に、平面基材と接合し、冷却して型より離型した後、表
面に貴金属合金薄膜を形成することで必要な孔深さ以上
の高さの高精度な突起形状を有するレプリカ金型を作製
する工程と、前記ガラスからなる成形用素材を、該レプ
リカ金型と平面金型との間に挟み、該成形用素材が変形
可能な温度まで加熱し、プレス成形して、突起形状の反
転形状を精密に転写させた窪みを形成し、冷却して型よ
り離型する工程と、所定の孔深さとなる厚さまで、平面
側から研磨する工程からなるガラスの精密孔あけ方法に
より、より低コストで、表面平滑性と高精度な貫通孔を
有するガラス基板の製造を可能としたものである。
Secondly, a glass material having a heat resistance higher than that of the glass forming material is used as a master die having a highly accurate through hole or groove shape having a depth not less than a required hole depth and a plane substrate. It is sandwiched with a material, heated to a temperature at which the glass material can be deformed, and press-molded to form a projection in which the reverse shape of the through hole or groove shape is precisely transferred, and is joined to a flat base material. After cooling and releasing from the mold, a step of forming a replica metal mold having a highly precise projection shape having a height equal to or higher than a required hole depth by forming a precious metal alloy thin film on the surface, and from the glass A molding material consisting of the following is sandwiched between the replica mold and the flat mold, heated to a temperature at which the molding material can be deformed, and press-molded to form a recess in which the inverted shape of the protrusion shape is precisely transferred. Forming, cooling and releasing from the mold A precision glass drilling method that consists of polishing from the flat side to a thickness that achieves a predetermined hole depth, enabling the production of a glass substrate with surface smoothness and highly accurate through holes at a lower cost. Is.

【0016】そして、ガラスからなる成形用素材よりも
耐熱性の良いガラス材料を、必要な孔深さ以上の深さの
高精度な貫通孔あるいは溝形状を有し、表面を超平滑面
に研磨加工を施したマスター金型と平面基材との間に挟
み、外形規制用のリング状胴型を介し、該ガラス材料が
変形可能な温度まで加熱し、プレス成形して、貫通孔あ
るいは溝形状の反転形状を精密に転写させた突起を形成
するとともに、平面基材と接合し、冷却して型より離型
した後、表面に貴金属合金薄膜を形成することで、必要
な孔深さ以上の高さの高精度な突起形状を有し、表面平
滑性の優れたレプリカ金型を作製する工程と、ガラスか
らなる成形用素材を、外形規制用のリング状胴型を介し
て、必要な内孔深さ以上の高さの高精度な突起形状を有
し、表面平滑性の優れたレプリカ金型と平面金型との間
に挟み、該成形用素材が変形可能な温度まで加熱し、プ
レス成形して、突起形状の反転形状を精密に転写させた
窪みを形成し、冷却して型より離型する工程と、所定の
ディスク厚みとなる厚さまで、平面側から研磨する工程
からなる磁気ディスクガラス基板の製造方法を提供し、
非常に低コストで、表面平滑性と高精度な外形並びに内
孔を有する磁気ディスクガラス基板の製造を可能とした
ものである。
Then, a glass material having better heat resistance than a molding material made of glass is formed into a super-smooth surface with a highly accurate through hole or groove shape having a depth not less than the required hole depth. It is sandwiched between a processed master die and a flat base material, and is heated to a temperature at which the glass material can be deformed through a ring-shaped body die for regulating the outer shape, and press-formed to form a through hole or groove. By forming a protrusion that is a precise transfer of the inverted shape of, joining with a flat base material, cooling and releasing from the mold, a precious metal alloy thin film is formed on the surface, so that The process of making a replica mold with high-precision projection shape and excellent surface smoothness, and the molding material made of glass, through the ring-shaped body mold for outer shape regulation, It has a highly precise projection shape with a height greater than the hole depth, and has a smooth surface. Sandwiched between a replica mold and a flat mold, heated to a temperature at which the molding material can be deformed, and press-molded to form a recess in which the inverted shape of the protrusion shape is precisely transferred, and then cooled. And a method of manufacturing a magnetic disk glass substrate, which comprises a step of releasing from a mold and a step of polishing from a flat surface side up to a thickness of a predetermined disk thickness,
It is possible to manufacture a magnetic disk glass substrate having a surface smoothness, a highly accurate outer shape and an inner hole at an extremely low cost.

【0017】第3に、ガラスからなる成形用素材を、必
要な孔深さ以上の高さの高精度な突起形状を複数個有す
る成形用金型と平面金型との間に挟み、該成形用素材が
変形可能な温度まで加熱し、プレス成形し、複数の突起
形状の反転形状を精密に転写させた窪みを形成し、その
ままの温度で離型させた後、冷却し、所定の孔深さとな
る厚さまで、平面側から研磨することにより、成形と平
面研磨工程のみで非常に安価な複数個の精密孔あけ加工
法を提供するものである。
Thirdly, a molding material made of glass is sandwiched between a molding mold having a plurality of highly accurate projection shapes having a height equal to or larger than a required hole depth and a flat mold, and the molding is carried out. The material is heated to a temperature that allows it to be deformed, press-molded to form dents that precisely transfer the inverted shapes of multiple protrusions, release at that temperature, and then cooled to a predetermined hole depth. By polishing from a flat surface side up to a certain thickness, it is possible to provide a plurality of very precise precision drilling methods only by molding and flat polishing steps.

【0018】そして、ガラスからなる成形用素材を、必
要な孔深さ以上の高さの高精度な光ファイバーコネクタ
ー用フェルールの貫通孔形状の反転形状である突起形状
を複数個有する成形用金型と平面金型との間に挟み、外
形規制用の胴型を介して、該成形用素材が変形可能な温
度まで加熱し、プレス成形し、複数の突起形状の反転形
状を精密に転写させた窪みを形成し、そのままの温度で
離型させた後、冷却し、所定の孔深さとなる厚さまで、
平面側から研磨することにより、成形と平面研磨工程の
みで非常に安価な複数個の精密孔を有するアレイ状光フ
ァイバーコネクタ用フェルールの製造方法を提供するも
のである。
Then, the molding material made of glass is used as a molding die having a plurality of protrusions which are the inverted shapes of the through-holes of the high-precision ferrule for an optical fiber connector having a height not less than the required hole depth. A dent that is sandwiched between a flat mold and heated to a temperature at which the molding material can be deformed through a body shape regulating die, and press-molded to precisely transfer the inverted shapes of multiple protrusions. And mold release at the same temperature, followed by cooling, until the thickness reaches a predetermined hole depth,
It is intended to provide a method for manufacturing a ferrule for an array-shaped optical fiber connector having a plurality of precision holes which is very inexpensive only by molding and polishing by polishing from the flat surface side.

【0019】第4に、前記ガラスからなる成形用素材よ
りも耐熱性の良いガラス材料を、複数の必要な孔深さ以
上の深さの高精度な貫通孔あるいは溝形状を有するマス
ター金型と平面基材との間に挟み、該ガラス材料が変形
可能な温度まで加熱し、プレス成形して、複数の貫通孔
あるいは溝形状の反転形状を精密に転写させた突起を形
成するとともに、平面基材と接合し、冷却せずにマスタ
ー型より離型し、冷却後、表面に貴金属合金薄膜を形成
することで、複数の必要な孔深さ以上の高さの高精度な
突起形状を有するレプリカ金型を作製する工程と、前記
ガラスからなる成形用素材を、該レプリカ金型と平面金
型との間に挟み、該成形用素材が変形可能な温度まで加
熱し、プレス成形して、複数の突起形状の反転形状を精
密に転写させた窪みを形成し、そのままの温度でレプリ
カ金型より離型させた後、冷却する工程と、所定の孔深
さとなる厚さまで、平面側から研磨する工程からなるガ
ラスの精密孔あけ方法により、さらに、低コストな複数
個の精密孔あけ加工を可能としたものである。
Fourthly, a glass material having a heat resistance higher than that of the glass forming material is used as a master mold having a highly precise through hole or groove shape having a depth not less than a plurality of required hole depths. It is sandwiched between a flat base material, heated to a temperature at which the glass material can be deformed, and press-formed to form a projection in which a plurality of through-holes or groove-shaped inverted shapes are precisely transferred. Replica with a highly precise projection shape with a height higher than the required hole depth by joining the material and releasing from the master mold without cooling and forming a precious metal alloy thin film on the surface after cooling. A step of producing a mold, a molding material made of the glass is sandwiched between the replica mold and a flat mold, heated to a temperature at which the molding material can be deformed, press-molded, A recess that is an accurate transfer of the inverted shape of the Formed, after releasing from the replica mold at the temperature as it is, by a precision drilling method of glass, which comprises a step of cooling and a step of polishing from a flat surface side up to a thickness of a predetermined hole depth, It enables multiple low-cost precision drilling.

【0020】[0020]

【発明の実施の形態】以下、本発明の各実施例について
図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施の形態1)本発明の実施の形態1の
ガラスの精密孔あけ方法を図1を用いて説明する。
(Embodiment 1) A method for precisely punching glass according to Embodiment 1 of the present invention will be described with reference to FIG.

【0022】まず、超硬合金などの高強度な素材を研削
加工や放電加工法により、中心に円柱状の突起形状を加
工し、表面保護のために貴金属合金薄膜を形成した突起
金型11と、同様に、超硬合金などの高強度な素材を研
磨加工により平面に加工し、表面保護のために貴金属合
金薄膜を形成した平面金型13を準備し、突起金型11
と平面金型13の間にガラスからなる成形用素材12を
挟み、成形用素材がプレスにより変形可能な温度まで加
熱し、図1に示したように平面金型側まで貫通させず、
少しだけガラスの厚みが残るように、突起金型の形状を
完全に転写するまで、圧力を加え、プレス成形する。
First, a high-strength material such as cemented carbide is machined by a grinding process or an electric discharge machining method to form a cylindrical projection shape at the center, and a projection mold 11 is formed with a precious metal alloy thin film for surface protection. Similarly, a high-strength material such as cemented carbide is processed into a flat surface by polishing, and a flat metal mold 13 on which a precious metal alloy thin film is formed for surface protection is prepared.
The molding material 12 made of glass is sandwiched between the flat mold 13 and the flat mold 13, and the molding material is heated to a temperature at which it can be deformed by a press and does not penetrate to the flat mold side as shown in FIG.
Pressing is performed by applying pressure until the shape of the protruding mold is completely transferred so that a little glass thickness remains.

【0023】これらの金型に保持したまま冷却した後、
突起金型11と平面金型13をガラスから離型させる。
できたガラス基板の突起金型11の形状を精密に転写し
ている表面側を樹脂などで保護、及び固定し、平面側1
4から所定のガラス厚みとなるまで、平面研磨する事に
よって、ガラス基板に所定の貫通孔15を形成すること
ができる。
After cooling while holding these molds,
The protrusion die 11 and the flat die 13 are released from the glass.
The surface side on which the shape of the projection mold 11 of the glass substrate is precisely transferred is protected and fixed with resin or the like, and the flat surface side 1
A predetermined through hole 15 can be formed in the glass substrate by performing surface polishing from 4 to a predetermined glass thickness.

【0024】本発明によれば、成形工程と平面研磨工程
のみで、ガラス基板に精密孔あけ加工が可能となり、非
常に安価にガラス基板に孔あけ加工ができるようにな
る。
According to the present invention, it is possible to perform a precision drilling process on a glass substrate only by a molding process and a flat polishing process, and it becomes possible to perform a drilling process on the glass substrate at a very low cost.

【0025】この方法によれば、これまで製造が困難で
あった、光ファイバーコネクタ用フェルールの製造も容
易になる。以下、具体的に光ファイバーコネクタ用フェ
ルールの製造方法の一実施例を図2を用いて説明する。
According to this method, the ferrule for an optical fiber connector, which has been difficult to manufacture up to now, can be easily manufactured. An embodiment of a method of manufacturing a ferrule for an optical fiber connector will be specifically described below with reference to FIG.

【0026】まず、直径5mm、厚さ10mmのWCを
主成分とする超硬合金(熱膨張係数;50×10-7
K)素材を放電加工法により、中心部分に図2に示した
ような先端の直径が125μmで、長さが2mmのピン
形状とテーパ部を有する突起形状に加工し、表面にスパ
ッタリング法により、Pt−Ir合金薄膜を1μm形成
することで突起金型21を作製した。
First, a cemented carbide containing WC having a diameter of 5 mm and a thickness of 10 mm as a main component (coefficient of thermal expansion: 50 × 10 -7 /
K) The material is processed into a protrusion shape having a pin shape and a taper portion with a diameter of the tip of 125 μm and a length of 2 mm in the central portion as shown in FIG. 2 by the electric discharge machining method, and by the sputtering method on the surface, The protrusion die 21 was produced by forming a Pt-Ir alloy thin film to 1 μm.

【0027】続いて、直径5mm、厚さ2mmのWCを
主成分とする超硬合金素材を平面研磨した後、表面にス
パッタリング法により、Pt−Ir合金薄膜を1μm形
成することで平面金型23を作製した。平面金型23を
外形規制用のリング状胴型24(超硬合金製)に挿入
し、その上に、成形用素材として、直径4mm、厚さ5
mmの円柱状パイレックス(登録商標)ガラス22(熱
膨張係数;32×10-7/K)をのせ、その上から突起
金型21をリング状胴型に挿入した。
Subsequently, a cemented carbide material mainly composed of WC having a diameter of 5 mm and a thickness of 2 mm is flat-polished, and then a Pt-Ir alloy thin film is formed to a thickness of 1 μm on the surface by a sputtering method. Was produced. The flat mold 23 is inserted into a ring-shaped body mold 24 (made of cemented carbide) for controlling the outer shape, and a diameter of 4 mm and a thickness of 5 are formed on it as a molding material.
A cylindrical Pyrex (registered trademark) glass 22 (coefficient of thermal expansion: 32 × 10 −7 / K) of mm was placed thereon, and the protruding mold 21 was inserted into the ring-shaped barrel mold from above.

【0028】その状態で、窒素雰囲気となっている成形
機(図示せず)中に投入し、金型全体を外部より加熱
し、730℃とし、突起金型21の上方より、100N
の圧力を加えた。そのまま、圧力を加えて、突起金型2
1の形状が完全にパイレックスガラス22に転写するま
でプレス成形を行い、完全に転写したところで、圧力を
加えながら、常温まで冷却した。
In that state, it is put into a molding machine (not shown) in a nitrogen atmosphere, the whole die is heated from the outside to 730 ° C., and 100 N from above the protruding die 21.
Was applied. As it is, pressure is applied and the projection mold 2
Press molding was performed until the shape of 1 was completely transferred to the Pyrex glass 22, and when completely transferred, it was cooled to room temperature while applying pressure.

【0029】このとき、平面側まで突起金型21の先端
が貫通せずに、平面金型23より0.2mmガラスが残
るように、胴型24で高さ規制を行った。冷却後、パイ
レックスガラス22を金型より離型させて、成形機より
取り出した。このとき、突起金型21の方がパイレック
スガラス22より、熱膨張係数が大きいので、冷却時に
金型がガラスよりも先に収縮するので、容易に離型でき
た。取り出した成形物の裏面25より、酸化セリウム及
びダイヤモンド砥粒を用いて、平面研磨して、貫通孔2
6を得た。貫通孔の長さ(先端部分)は1.5mmとし
た。
At this time, the height was regulated by the barrel mold 24 so that the tip of the protruding mold 21 did not penetrate to the flat surface side and 0.2 mm glass remained from the flat mold 23. After cooling, the Pyrex glass 22 was released from the mold and taken out from the molding machine. At this time, since the protruding mold 21 has a larger thermal expansion coefficient than the Pyrex glass 22, the mold shrinks earlier than the glass during cooling, so that the mold can be easily released. From the back surface 25 of the molded product taken out, cerium oxide and diamond abrasive grains are used to planarly polish the through hole 2
Got 6. The length (tip portion) of the through hole was 1.5 mm.

【0030】このようにして製造したフェルールのコス
トは従来の機械加工による孔あけ加工を施したフェルー
ルに比べて、約1/5程度であった。できあがったフェ
ルールの外径、貫通孔径、同心度、真円度、及び円筒度
は0.5μm以下の寸法精度でできあがっており、実用
上十分の公差に入っていることが解った。
The cost of the ferrule manufactured in this manner was about ⅕ of that of the conventional ferrule which was machined to make a hole. It was found that the outer diameter, through hole diameter, concentricity, roundness, and cylindricity of the finished ferrule were completed with a dimensional accuracy of 0.5 μm or less, which is within a sufficient tolerance for practical use.

【0031】以上の方法により、非常に低コストで、高
精度な貫通孔を有するフェルールを製造できるようにな
った。
By the above method, a ferrule having a highly accurate through hole can be manufactured at a very low cost.

【0032】(実施の形態2)実施の形態1で示した方
法では、突起金型を直接機械加工によって作製したが、
磁気ディスク基板のような表面平滑性の非常に良いガラ
ス基板に貫通孔をあける場合、突起以外の平面部分を超
平滑に研磨することが難しいため、機械加工による突起
金型の作製は困難である。
(Second Embodiment) In the method shown in the first embodiment, the projection mold is directly machined,
When making a through hole in a glass substrate with a very good surface smoothness such as a magnetic disk substrate, it is difficult to polish the flat surface other than the protrusions to be super smooth, so it is difficult to fabricate a protrusion die by machining. .

【0033】そこで、超平滑面と貫通孔を有するガラス
基板に精密孔あけする方法を図3及び図4を用いて説明
する。
Therefore, a method of precisely punching a glass substrate having a super smooth surface and a through hole will be described with reference to FIGS. 3 and 4.

【0034】図3は、突起金型を製造する方法で、図3
の方法で製造した突起金型を用いて貫通孔を形成する方
法が図4である。
FIG. 3 shows a method for manufacturing a protrusion die.
FIG. 4 shows a method of forming a through hole by using the protrusion die manufactured by the method described above.

【0035】まず、超硬合金などの高強度な素材を平面
研磨加工により、超平滑に表面を研磨し、中心に円柱状
の窪みを放電加工により形成し、表面保護のために貴金
属合金薄膜を形成したマスター金型31と、同様に、超
硬合金などの高強度な素材を研磨加工により平面に加工
し、ガラスと接合させるために表面に接合層を形成した
平面基材33を準備し、マスター金型31と平面基材3
3の間に成形用素材よりも耐熱性の良い、ガラス材料3
2を挟み、ガラス材料がプレスにより変形可能な温度ま
で加熱し、マスター金型の形状を完全に転写するまで、
圧力を加え、プレス成形する。
First, a high-strength material such as cemented carbide is surface-polished to form a super-smooth surface, and a cylindrical recess is formed at the center by electric discharge machining. A precious metal alloy thin film is formed to protect the surface. Similarly to the formed master die 31, a high-strength material such as cemented carbide is processed into a flat surface by polishing, and a flat base material 33 having a bonding layer formed on the surface for bonding with glass is prepared, Master mold 31 and flat substrate 3
Glass material 3 with better heat resistance than molding material between 3
2 is sandwiched, the glass material is heated to a temperature at which it can be deformed by pressing, until the shape of the master mold is completely transferred,
Press and apply pressure.

【0036】これらの金型に保持したまま冷却した後、
マスター金型31を離型させる。平面基材33と成形さ
れたガラス32は接合層34で、成形とともに完全に接
合される。その後、表面に貴金属合金薄膜35を形成
し、突起金型が完成する(図3)。
After cooling while being held in these molds,
The master mold 31 is released. The flat base material 33 and the molded glass 32 are a bonding layer 34 and are completely bonded together with molding. After that, a noble metal alloy thin film 35 is formed on the surface to complete the protrusion die (FIG. 3).

【0037】このようにして作製した突起金型は、非常
に平滑な表面と突起形状を有するものである。
The projection mold thus produced has a very smooth surface and projection shape.

【0038】続いて、超硬合金などの高強度な素材を研
磨加工により平面に加工し、表面保護のために貴金属合
金薄膜を形成した平面金型43と完成した突起金型41
の間にガラスからなる成形用素材42を挟み、成形用素
材がプレスにより変形可能な温度まで加熱し、図4に示
したように平面金型側まで貫通させず、少しだけガラス
の厚みが残るように、突起金型の形状を完全に転写する
まで、圧力を加え、プレス成形する。
Subsequently, a high-strength material such as cemented carbide is processed into a flat surface by polishing, and a flat mold 43 having a precious metal alloy thin film formed thereon for surface protection and a completed projection mold 41.
A molding material 42 made of glass is sandwiched between the two, and the molding material is heated to a temperature at which it can be deformed by a press and does not penetrate to the flat mold side as shown in FIG. As described above, pressure is applied and press molding is performed until the shape of the protrusion die is completely transferred.

【0039】これらの金型に保持したまま冷却した後、
突起金型41と平面金型43をガラスから離型させる。
After cooling while being held in these molds,
The protrusion die 41 and the flat die 43 are released from the glass.

【0040】できたガラス基板の突起金型41の形状を
精密に転写している表面側を樹脂などで保護、及び固定
し、平面側44から所定のガラス厚みとなるまで、平面
研磨する事によって、ガラス基板に所定の貫通孔45を
形成することができる。
By precisely protecting the surface of the glass substrate on which the shape of the protrusion die 41 is precisely transferred and fixing it with a resin or the like, and polishing the surface from the flat surface 44 to a predetermined glass thickness by flat polishing. A predetermined through hole 45 can be formed in the glass substrate.

【0041】本発明によれば、成形工程と平面研磨工程
のみで、ガラス基板に精密孔あけ加工が可能となり、非
常に安価に表面平滑性の優れたガラス基板に孔あけ加工
ができるようになる。
According to the present invention, it becomes possible to perform precision drilling on a glass substrate only by a molding process and a flat polishing process, and it becomes possible to perform drilling on a glass substrate having excellent surface smoothness at a very low cost. .

【0042】この方法によれば、これまで製造が困難で
あった、中心に貫通孔を有し、表面平滑性に優れた磁気
ディスクガラス基板の製造も容易になる。以下、具体的
に磁気ディスクガラス基板の製造方法の一実施例を図5
及び図6を用いて説明する。
According to this method, it is easy to manufacture a magnetic disk glass substrate having a through hole in the center and excellent surface smoothness, which has been difficult to manufacture. Hereinafter, one embodiment of a method for manufacturing a magnetic disk glass substrate will be specifically described with reference to FIG.
And FIG. 6 will be described.

【0043】まず、直径65mm、厚さ2mmのWCを
主成分とする超硬合金円柱素材の表面を、研磨加工によ
り表面粗さ(Ra)が0.5nmになるまで研磨した
後、中心部分に放電加工法、機械加工法により、直径2
0mmの貫通孔を形成し、表面にスパッタリング法によ
り、Ir−W合金薄膜を1μm形成することで、表面平
滑性の優れた中心に貫通孔のあるマスター金型51を作
製した。
First, the surface of a cemented carbide columnar material having a diameter of 65 mm and a thickness of 2 mm and containing WC as a main component is ground by polishing to a surface roughness (Ra) of 0.5 nm, and then the center part is polished. Diameter 2 by electric discharge machining and machining
By forming a 0 mm through hole and forming a 1 μm-thick Ir—W alloy thin film on the surface by a sputtering method, a master mold 51 having a through hole at the center with excellent surface smoothness was produced.

【0044】続いて、直径65mm、厚さ2mmのSK
H鋼素材を平面研磨した後、表面にスパッタリング法に
より、接合層としてCr薄膜を0.2μm形成すること
で平面基材53を作製した。
Subsequently, an SK having a diameter of 65 mm and a thickness of 2 mm
After flat-polishing the H steel material, a Cr thin film was formed as a bonding layer to a thickness of 0.2 μm on the surface by a sputtering method to prepare a flat base material 53.

【0045】平面基材53を外径規制用のリング状胴型
54(超硬合金製)に挿入し、その上に、直径50m
m、厚さ3mmの円柱状結晶化ガラス(結晶化前のマザ
ーガラス)52をのせ、その上からマスター金型51を
リング状胴型に挿入した。
The flat base material 53 is inserted into a ring-shaped body 54 (made of cemented carbide) for controlling the outer diameter, and a diameter of 50 m is placed on the ring-shaped body 54.
A columnar crystallized glass (mother glass before crystallization) 52 having a thickness of m and a thickness of 3 mm was placed, and the master mold 51 was inserted into the ring-shaped barrel mold from above.

【0046】その状態で、窒素雰囲気となっている成形
機(図示せず)中に投入し、金型全体を外部より加熱
し、金型全体を700℃とし、マスター金型51の上方
より、50000Nの圧力を加えた。そのまま、圧力を
加えて、マスター金型51の表面形状が完全に結晶化ガ
ラス52に転写するまでプレス成形を行うと、図5のよ
うに貫通孔部分に結晶化ガラスが盛り上がった状態で、
貫通孔に沿って突起形状が成形された。このままの状態
で、850℃まで昇温し、結晶化ガラス52を結晶化さ
せた。
In that state, the mold is put into a molding machine (not shown) in a nitrogen atmosphere, the whole mold is heated from the outside, the whole mold is heated to 700 ° C., and the master mold 51 is heated from above. A pressure of 50,000 N was applied. When pressure is applied as it is, press molding is performed until the surface shape of the master die 51 is completely transferred to the crystallized glass 52, and as shown in FIG. 5, the crystallized glass rises in the through-hole portion,
A protrusion shape was formed along the through hole. In this state, the temperature was raised to 850 ° C. to crystallize the crystallized glass 52.

【0047】そして、圧力を加えたまま常温まで冷却
し、マスター金型51を離型し、成形機より取り出し
た。成形品は結晶化した結晶化ガラス52と平面基材5
3とが接合層55で接合され、先端が丸まった形状の突
起(高さが1.5mmであった)を有し、平面部分の表
面粗さ(Ra)が0.6nmになっていた。この成形品
に、スパッタリング法により、SiO2とWの混合薄膜
を0.1μmの厚みで形成した後、表面保護膜56とし
て、スパッタリング法により、Ir−W合金薄膜を1μ
m形成することで、耐熱性の良い、突起レプリカ金型が
完成した。
Then, it was cooled to room temperature while applying pressure, the master mold 51 was released, and it was taken out from the molding machine. The molded product is a crystallized crystallized glass 52 and a flat substrate 5.
No. 3 and No. 3 were joined by the joining layer 55, and there was a protrusion with a rounded tip (height was 1.5 mm), and the surface roughness (Ra) of the plane portion was 0.6 nm. After forming a mixed thin film of SiO 2 and W to a thickness of 0.1 μm on this molded product by a sputtering method, an Ir—W alloy thin film of 1 μm was formed as a surface protective film 56 by a sputtering method.
By forming m, a protrusion replica mold having good heat resistance was completed.

【0048】次に、直径65mm、厚さ2mmのWCを
主成分とする超硬合金素材を平面研磨した後、表面にス
パッタリング法により、Ir−W合金薄膜を1μm形成
することで平面金型63を作製した。
Next, a cemented carbide material having a diameter of 65 mm and a thickness of 2 mm and containing WC as a main component is flat-polished, and then an Ir—W alloy thin film is formed to a thickness of 1 μm on the surface by a sputtering method to form a flat mold 63. Was produced.

【0049】平面金型63をリング状胴型64(超硬合
金製)に挿入し、その上に、成形用素材として、直径5
0mm、厚さ3mmの円柱状アルミノシリケートガラス
62をのせ、その上から前述の方法で作製した突起レプ
リカ金型61をリング状胴型64に挿入した。
The flat mold 63 is inserted into a ring-shaped barrel mold 64 (made of cemented carbide), and a diameter of 5 is formed on it as a molding material.
A cylindrical aluminosilicate glass 62 having a thickness of 0 mm and a thickness of 3 mm was placed thereon, and the projection replica mold 61 produced by the above-described method was inserted into the ring-shaped barrel mold 64 from above.

【0050】その状態で、窒素雰囲気となっている成形
機(図示せず)中に投入し、金型全体を外部より加熱
し、金型全体を680℃とし、突起レプリカ金型61の
上方より、50000Nの圧力を加えた。
In this state, the mold is put into a molding machine (not shown) in a nitrogen atmosphere, the whole mold is heated from the outside, the whole mold is heated to 680 ° C. A pressure of 50,000 N was applied.

【0051】そのまま圧力を加えて、突起レプリカ金型
61の形状が完全にアルミノシリケートガラス62に転
写するまでプレス成形を行い、完全に転写したところ
で、圧力を加えながら、常温まで冷却した。
Pressure was applied as it was, press molding was performed until the shape of the projection replica mold 61 was completely transferred to the aluminosilicate glass 62, and when completely transferred, it was cooled to room temperature while applying pressure.

【0052】このとき、平面側まで突起レプリカ金型6
1の先端が貫通せずに、平面金型63より0.2mmガ
ラスが残るように、胴型64で高さ規制を行った。冷却
後、アルミノシリケートガラス62を金型より離型させ
て成形機より取り出した。
At this time, the projection replica mold 6 extends to the plane side.
The height was regulated by the barrel mold 64 so that 0.2 mm glass remained from the flat mold 63 without the tip of No. 1 penetrating. After cooling, the aluminosilicate glass 62 was released from the mold and taken out from the molding machine.

【0053】取り出した成形物の表面を樹脂接着剤で覆
い、平面基板に張り付けた後、裏面65より、酸化セリ
ウム及びダイヤモンド砥粒を用いて、平面研磨して、貫
通孔66を得た。貫通孔の長さ、すなわち、ディスク厚
さは0.635mmとした。このようにして製造した磁
気ディスクガラス基板の製造コストは従来の機械加工に
よる孔あけ加工を施した磁気ディスクガラス基板に比べ
て、約1/3程度であった。できあがった磁気ディスク
ガラス基板の外径、貫通孔径は、実用上十分の公差に入
っていることが解った。
The surface of the molded product taken out was covered with a resin adhesive and attached to a flat substrate, and then the back surface 65 was flat-polished using cerium oxide and diamond abrasive grains to obtain a through hole 66. The length of the through hole, that is, the disc thickness was 0.635 mm. The manufacturing cost of the magnetic disk glass substrate manufactured in this way was about 1/3 of that of the conventional magnetic disk glass substrate that was perforated by mechanical processing. It was found that the outer diameter and the through-hole diameter of the magnetic disk glass substrate thus produced were within the tolerances practically sufficient.

【0054】以上の方法により、非常に低コストで、高
精度な貫通孔を有し、表面粗さの優れた磁気ディスクガ
ラス基板を製造できるようになった。
By the above method, it becomes possible to manufacture a magnetic disk glass substrate which has a very low cost, a highly accurate through hole, and an excellent surface roughness.

【0055】(実施の形態3)次に、本発明のガラス基
板に複数個の貫通孔を形成する方法について、図7をを
参照にしながら説明する。
(Third Embodiment) Next, a method of forming a plurality of through holes in the glass substrate of the present invention will be described with reference to FIG.

【0056】ガラス基板に複数個の貫通孔を形成する場
合、実施の形態1で示した成形後、冷却して離型させる
成形方法では、金型とガラスとの熱膨張係数の差により
発生する応力により、成形したガラスが金型から離型で
きない、あるいは、ガラスが発生した応力によって破壊
してしまう問題点がある。
In the case of forming a plurality of through holes in the glass substrate, in the molding method in which cooling is carried out after molding, which is described in the first embodiment, this occurs due to the difference in thermal expansion coefficient between the mold and the glass. There is a problem that the molded glass cannot be released from the mold due to the stress, or the glass breaks due to the stress generated.

【0057】そこで、まず、超硬合金などの高強度な素
材を研削加工や放電加工法により、中心に円柱状の突起
形状を複数個加工し、表面保護のために貴金属合金薄膜
を形成した突起金型71と、同様に、超硬合金などの高
強度な素材を研磨加工により平面に加工し、表面保護の
ために貴金属合金薄膜を形成した平面金型73を準備
し、突起金型71と平面金型73の間にガラスからなる
成形用素材72を挟み、成形用素材がプレスにより変形
可能な温度まで加熱し、図7に示したように平面金型側
まで貫通させず、少しだけガラスの厚みが残るように、
突起金型の形状を完全に転写するまで、圧力を加え、プ
レス成形する。
Therefore, first, a protrusion having a noble metal alloy thin film formed for protecting the surface by machining a plurality of cylindrical protrusion shapes at the center by grinding or electric discharge machining of a high-strength material such as cemented carbide. Similarly to the die 71, a high-strength material such as cemented carbide is processed into a flat surface by polishing, and a flat die 73 having a precious metal alloy thin film formed thereon for surface protection is prepared. A molding material 72 made of glass is sandwiched between flat molds 73, and the molding material is heated to a temperature at which it can be deformed by a press. As shown in FIG. So that the thickness of
Pressure is applied and press molding is performed until the shape of the protrusion die is completely transferred.

【0058】ここまでは、実施の形態1で示した成形方
法と同じであるが、このまま冷却せずに、突起金型71
をガラスから離型させる。冷却後、平面金型73より、
成形されたガラス基板を取り出し、突起金型71の形状
を精密に転写している表面側を樹脂などで保護、及び固
定し、平面側74から所定のガラス厚みとなるまで、平
面研磨する事によって、ガラス基板に所定の複数個の貫
通孔75を形成することができる。
Up to this point, the molding method is the same as the molding method described in the first embodiment, but the projection mold 71 is not cooled as it is.
Is released from the glass. After cooling, from the flat mold 73,
By taking out the molded glass substrate, protecting and fixing the surface side on which the shape of the protrusion die 71 is accurately transferred with resin or the like, and polishing the surface from the flat surface 74 to a predetermined glass thickness by flat polishing. A predetermined plurality of through holes 75 can be formed in the glass substrate.

【0059】本発明によれば、成形工程において、冷却
せずに複数の突起形状を有する型より離型するので、型
とガラスの熱膨張係数の差による応力は発生せず、成形
工程と平面研磨工程のみで、ガラス基板に複数個の精密
孔あけ加工が可能となり、非常に安価にガラス基板に孔
あけ加工ができるようになる。
According to the present invention, since the mold having a plurality of protrusions is released from the mold without cooling in the molding process, stress due to the difference in the coefficient of thermal expansion between the mold and the glass does not occur, and the molding process and the flat surface can be prevented. A plurality of precision holes can be formed in the glass substrate only by the polishing step, and the holes can be formed in the glass substrate at a very low cost.

【0060】この方法によれば、これまで製造が困難で
あった、波長多重光通信に用いられる複数本の光ファイ
バーをアレイ状に整列させるためのアレイ状光ファイバ
ーコネクタ用フェルールの製造も容易になる。以下、具
体的にアレイ状光ファイバーコネクタ用フェルールの製
造方法の一実施例を図8を用いて説明する。
According to this method, it is easy to manufacture a ferrule for an array-shaped optical fiber connector for aligning a plurality of optical fibers used for wavelength division multiplexing optical communication in an array, which has been difficult to manufacture. Hereinafter, one embodiment of a method for manufacturing a ferrule for an array-shaped optical fiber connector will be specifically described with reference to FIG.

【0061】まず、5mm角、厚さ10mmのWCを主
成分とする超硬合金素材を放電加工法により、250μ
mピッチで等間隔に8本の、図8に示したような先端の
直径が125μmで、長さが2mmのピン形状とテーパ
部を有する突起形状に加工し、表面にスパッタリング法
により、Pd−Re合金薄膜を1μm形成することで突
起金型81を作製した。
First, a cemented carbide material containing WC having a size of 5 mm square and a thickness of 10 mm as a main component was processed to 250 μm by an electric discharge machining method.
As shown in FIG. 8, eight m-pitch and equally spaced tips were processed into a pin shape having a tip diameter of 125 μm and a length of 2 mm and a protrusion shape having a tapered portion, and Pd- A protrusion metal mold 81 was produced by forming a Re alloy thin film with a thickness of 1 μm.

【0062】続いて、5mm角、厚さ2mmのWCを主
成分とする超硬合金素材を平面研磨した後、表面にスパ
ッタリング法により、Pd−Re合金薄膜を1μm形成
することで平面金型83を作製した。
Then, a 5 mm square and 2 mm thick cemented carbide material containing WC as a main component is flat-polished, and then a Pd-Re alloy thin film is formed to a thickness of 1 μm on the surface by a sputtering method. Was produced.

【0063】平面金型83を角状胴型84(超硬合金
製)に挿入し、その上に、成形用素材として、4mm
角、厚さ5mmの円柱状パイレックスガラス82をの
せ、その上から突起金型81を角状胴型84に挿入し
た。
The flat mold 83 is inserted into the rectangular barrel mold 84 (made of cemented carbide), and 4 mm is used as a molding material on it.
A column-shaped Pyrex glass 82 having a square shape and a thickness of 5 mm was placed thereon, and the projection mold 81 was inserted into the rectangular barrel mold 84 from above.

【0064】その状態で、窒素ガスに5%のCF4ガス
を混入させた雰囲気となっている成形機(図示せず)中
に投入し、金型全体を外部より加熱し、金型全体を73
0℃とし、突起金型81の上方より、1000Nの圧力
を加えた。
In this state, the mold is put into a molding machine (not shown) in which nitrogen gas is mixed with 5% CF 4 gas, and the whole mold is heated from the outside to make the whole mold. 73
The temperature was set to 0 ° C., and a pressure of 1000 N was applied from above the protrusion die 81.

【0065】そのまま圧力を加えて、突起金型81の形
状が完全にパイレックスガラス82に転写するまでプレ
ス成形を行い、完全に転写したところで、冷却せず、そ
のままの温度を保持しながら、突起金型81を離型させ
た。このとき、平面側まで突起金型81の先端が貫通せ
ずに、平面金型83より0.2mmガラスが残るよう
に、胴型84で高さ規制を行った。
The pressure is applied as it is, press-molding is performed until the shape of the protrusion die 81 is completely transferred to the Pyrex glass 82, and when completely transferred, the protrusion metal 81 is not cooled and the temperature is kept as it is. The mold 81 was released. At this time, the height was regulated by the barrel mold 84 so that the tip of the protruding mold 81 did not penetrate to the flat surface side and 0.2 mm glass remained from the flat mold 83.

【0066】その後、冷却して、パイレックスガラス8
2を平面金型83より離型させて取り出した。
Then, it is cooled and the Pyrex glass 8
2 was released from the flat mold 83 and taken out.

【0067】取り出した成形物の表面を樹脂接着剤で覆
い、平面基板に張り付けた後、成形物の裏面85より、
酸化セリウム及びダイヤモンド砥粒を用いて、平面研磨
して、8個の貫通孔86を得た。貫通孔の長さ(先端部
分)は全て1.5mmとした。
The surface of the molded product taken out was covered with a resin adhesive and attached to a flat substrate.
Planar polishing was performed using cerium oxide and diamond abrasive grains to obtain eight through holes 86. The lengths of the through holes (tip portions) were all 1.5 mm.

【0068】このようにして製造したアレイ状フェルー
ルのコストは従来の機械加工による孔あけ加工を施した
フェルールに比べて、約1/10程度であった。できあ
がった各フェルールの外径、貫通孔径、同心度、真円
度、及び円筒度は0.5μm以下の寸法精度でできあが
っており、実用上十分の公差に入っていることが解っ
た。
The cost of the arrayed ferrule manufactured in this way was about 1/10 of that of the conventional ferrule that was machined to have a hole. It was found that the outer diameter, through hole diameter, concentricity, circularity, and cylindricity of each ferrule were completed with a dimensional accuracy of 0.5 μm or less, which is within a sufficient tolerance for practical use.

【0069】以上の方法により、非常に低コストで、高
精度な複数個の貫通孔を有するアレイ状フェルールを製
造できるようになった。
By the method described above, it has become possible to manufacture an array-shaped ferrule having a plurality of through holes with a high accuracy and at a very low cost.

【0070】(実施の形態4)実施の形態3で示したガ
ラスの精密孔あけ方法では、複数個の突起形状を有する
突起金型を直接機械加工法、あるいは放電加工法によっ
て作製したが、金型の製作に非常に時間がかかってしま
う。
(Fourth Embodiment) In the glass precision drilling method shown in the third embodiment, a protrusion die having a plurality of protrusion shapes is manufactured by a direct machining method or an electric discharge machining method. It takes a lot of time to make the mold.

【0071】そこで、さらなる孔あけコストを低減する
ために、ガラス基板に複数個の貫通孔を形成する方法を
図9及び図10を用いて説明する。
Therefore, a method of forming a plurality of through holes in the glass substrate in order to further reduce the cost of forming holes will be described with reference to FIGS. 9 and 10.

【0072】図9は、複数の突起形状を有する突起金型
を製造する方法で、図9の方法で製造した突起金型を用
いて、複数の貫通孔を形成する方法が図10である。
FIG. 9 shows a method of manufacturing a projection mold having a plurality of projection shapes, and FIG. 10 shows a method of forming a plurality of through holes using the projection mold manufactured by the method of FIG.

【0073】まず、超硬合金などの高強度な素材を研磨
加工により、表面を研磨し、円柱状の複数の窪みを放電
加工により形成し、表面保護のために貴金属合金薄膜を
形成したマスター金型91と、同様に、超硬合金などの
高強度な素材を研磨加工により平面に加工し、ガラスと
接合させるために表面に接合層を形成した平面基材93
を準備し、マスター金型91と平面基材93の間に成形
用素材よりも耐熱性の良い、ガラス材料92を挟み、ガ
ラス材料がプレスにより変形可能な温度まで加熱し、マ
スター金型の形状を完全に転写するまで、圧力を加え、
プレス成形する。
First, a master metal in which a high-strength material such as cemented carbide is ground by polishing to form a plurality of cylindrical recesses by electric discharge machining and a precious metal alloy thin film is formed for surface protection. Similarly to the mold 91, a flat base material 93 in which a high-strength material such as cemented carbide is processed into a flat surface by polishing and a bonding layer is formed on the surface for bonding with glass
, A glass material 92 having better heat resistance than the molding material is sandwiched between the master mold 91 and the flat base material 93, and the glass material is heated to a temperature at which the glass material can be deformed by a press to obtain the shape of the master mold. Until pressure is completely transferred,
Press molding.

【0074】ここまでは、実施の形態2で示した突起金
型の成形方法と同じであるが、このまま冷却せずに、マ
スター金型91をガラスから離型させる。
The process up to this point is the same as the method for forming the projection mold shown in the second embodiment, but the master mold 91 is released from the glass without cooling as it is.

【0075】平面基材93と成形されたガラス92は接
合層94で、成形とともに完全に接合される。冷却した
後、表面に貴金属合金薄膜95を形成し、突起レプリカ
金型が完成する(図9)。
The flat base material 93 and the molded glass 92 are a bonding layer 94 and are completely bonded together with molding. After cooling, a noble metal alloy thin film 95 is formed on the surface, and the projection replica mold is completed (FIG. 9).

【0076】このようにして、複数の突起形状を有する
レプリカ金型を非常に容易に作製できるようになった。
In this way, a replica mold having a plurality of protrusion shapes can be manufactured very easily.

【0077】続いて、超硬合金などの高強度な素材を研
磨加工により平面に加工し、表面保護のために貴金属合
金薄膜を形成した平面金型103を準備し、上記の方法
で作製した複数の突起形状を有する突起レプリカ金型1
01と平面金型103の間にガラスからなる成形用素材
102を挟み、成形用素材102がプレスにより変形可
能な温度まで加熱し、図10に示したように平面金型側
まで貫通させず、少しだけガラスの厚みが残るように、
突起レプリカ金型101の形状を完全に転写するまで、
圧力を加え、プレス成形する。
Subsequently, a high-strength material such as cemented carbide is processed into a flat surface by polishing, and a flat mold 103 having a precious metal alloy thin film formed thereon for surface protection is prepared. Replica mold 1 having the shape of a protrusion
The molding material 102 made of glass is sandwiched between 01 and the flat mold 103, and the molding material 102 is heated to a temperature at which it can be deformed by a press, and does not penetrate to the flat mold side as shown in FIG. As the thickness of the glass remains a little,
Until the shape of the protrusion replica mold 101 is completely transferred,
Press and apply pressure.

【0078】このまま冷却せずに、突起レプリカ金型1
01をガラスから離型させる。冷却後、平面金型103
より、成形されたガラス基板を取り出し、突起レプリカ
金型101の形状を精密に転写している表面側を樹脂な
どで保護、及び固定し、平面側104から所定のガラス
厚みとなるまで、平面研磨する事によって、ガラス基板
に所定の複数個の貫通孔105を形成することができ
る。
Without cooling as it is, the protrusion replica mold 1
01 is released from the glass. After cooling, flat mold 103
Then, the molded glass substrate is taken out, the surface side on which the shape of the projection replica mold 101 is precisely transferred is protected and fixed by a resin or the like, and flat surface polishing is performed from the flat surface side 104 to a predetermined glass thickness. By doing so, a predetermined plurality of through holes 105 can be formed in the glass substrate.

【0079】本発明によれば、複数個の突起形状を有す
る金型の作製が非常に容易になり、成形工程において、
冷却せずに複数の突起形状を有する型より離型するの
で、型とガラスの熱膨張係数の差による応力は発生せ
ず、成形工程と平面研磨工程のみで、ガラス基板に複数
個の精密孔あけ加工が可能となり、非常に安価にガラス
基板に複数個の孔あけ加工ができるようになる。
According to the present invention, it becomes very easy to manufacture a mold having a plurality of protrusion shapes, and in the molding process,
Since it is released from the mold with multiple protrusions without cooling, stress due to the difference in thermal expansion coefficient between the mold and glass does not occur, and multiple precision holes are formed in the glass substrate only by the molding process and the flat polishing process. Drilling is possible, and a plurality of holes can be drilled in the glass substrate at a very low cost.

【0080】[0080]

【発明の効果】以上のように本発明のガラスの精密孔あ
け方法によれば、成形により高精度に孔形状となる窪み
をガラス基板に形成し、裏面より平面研磨する事で、バ
リの発生が無く、高精度な貫通孔を、非常に低コストで
形成できるようになる。この方法により光ファイバーコ
ネクタ用フェルールの製造も非常に容易にできるように
なった。
As described above, according to the method for precision drilling of glass of the present invention, burrs are formed by forming a recess in a glass substrate with high precision by molding and polishing the surface from the back surface. Therefore, a highly accurate through hole can be formed at a very low cost. This method has also made it very easy to manufacture ferrules for optical fiber connectors.

【0081】また、突起形状を有する金型をガラスのプ
レス成形により作製することにより、表面平滑性の優れ
た貫通孔を有するガラス基板の製造が可能となり、非常
に低コストで磁気ディスクガラス基板の製造が可能とな
った。
Further, by manufacturing the mold having the projection shape by press molding of glass, it becomes possible to manufacture a glass substrate having a through hole having excellent surface smoothness, and it is possible to manufacture a magnetic disk glass substrate at a very low cost. It has become possible to manufacture.

【0082】更に、複数個の突起形状を有する金型を用
いて、冷却せずに金型を離型させる方法で、ガラスを成
形することで、高精度に複数個の孔形状となる窪みをガ
ラス基板に形成し、裏面より平面研磨する事で、バリの
発生が無く、複数の高精度な貫通孔を、非常に低コスト
で形成できるようになる。この方法によりアレイ状光フ
ァイバーコネクタ用フェルールの製造も非常に容易にで
きるようになった。
Further, by using a mold having a plurality of protrusion shapes and releasing the mold without cooling, the glass is molded to form a plurality of dents with a high accuracy. By forming it on the glass substrate and polishing the surface from the back surface, it is possible to form a plurality of highly accurate through holes at a very low cost without the occurrence of burrs. By this method, the ferrule for an array-shaped optical fiber connector can be manufactured very easily.

【0083】また、複数個の突起形状を有する金型を、
冷却せずに金型を離型させる方法で、ガラスのプレス成
形により作製することにより、複数個の貫通孔を有する
ガラス基板の製造が、更に、低コストで可能となる。
Further, a mold having a plurality of protrusion shapes is
The glass substrate having a plurality of through-holes can be manufactured at a lower cost by manufacturing the glass by press molding with a method of releasing the mold without cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1におけるガラスの精密孔
あけ方法を示す概略工程図
FIG. 1 is a schematic process diagram showing a method for precision drilling of glass according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における光ファイバーコ
ネクタ用フェルールの製造方法を示す概略工程図
FIG. 2 is a schematic process diagram showing a method for manufacturing a ferrule for an optical fiber connector according to the first embodiment of the present invention.

【図3】本発明の実施の形態2におけるガラスの精密孔
あけ方法に用いる突起レプリカ金型の製造方法を示す概
略工程図
FIG. 3 is a schematic process diagram showing a method for manufacturing a projection replica mold used in the method for precision drilling of glass according to the second embodiment of the present invention.

【図4】本発明の実施の形態2におけるガラスの精密孔
あけ方法を示す概略工程図
FIG. 4 is a schematic process diagram showing a glass precision drilling method according to a second embodiment of the present invention.

【図5】本発明の実施の形態2における磁気ディスクガ
ラス基板の製造方法に用いる突起レプリカ金型の製造方
法を示す概略工程図
FIG. 5 is a schematic process diagram showing a method for manufacturing a protrusion replica mold used in the method for manufacturing a magnetic disk glass substrate according to the second embodiment of the present invention.

【図6】本発明の実施の形態2における磁気ディスクガ
ラス基板の製造方法を示す概略工程図
FIG. 6 is a schematic process diagram showing a method of manufacturing a magnetic disk glass substrate according to a second embodiment of the present invention.

【図7】本発明の実施の形態3における複数個のガラス
の精密孔あけ方法を示す概略工程図
FIG. 7 is a schematic process diagram showing a method for precision drilling of a plurality of glasses according to a third embodiment of the present invention.

【図8】本発明の実施の形態3におけるアレイ状光ファ
イバーコネクタ用フェルールの製造方法を示す概略工程
FIG. 8 is a schematic process diagram showing a method of manufacturing a ferrule for an array-shaped optical fiber connector according to a third embodiment of the present invention.

【図9】本発明の実施の形態4における複数個のガラス
の精密孔あけ方法に用いる突起レプリカ金型の製造方法
を示す概略工程図
FIG. 9 is a schematic process diagram showing a method for manufacturing a projection replica mold used in the method for precisely punching a plurality of glasses according to the fourth embodiment of the present invention.

【図10】本発明の実施の形態4における複数個のガラ
スの精密孔あけ方法を示す概略工程図
FIG. 10 is a schematic process diagram showing a method for precisely punching a plurality of glasses according to Embodiment 4 of the present invention.

【図11】従来の磁気ディスクガラス基板の製造方法を
示す概略図
FIG. 11 is a schematic view showing a method for manufacturing a conventional magnetic disk glass substrate.

【図12】従来の光ファイバーコネクタ用フェルールの
製造方法を示す概略図
FIG. 12 is a schematic view showing a conventional method for manufacturing a ferrule for an optical fiber connector.

【符号の説明】[Explanation of symbols]

11、71 突起金型 12、22、42、62、72、82、102 成形用
素材 13、23、43、63、73、83、103 平面金
型 14、25、44、65、74、85、104 研磨す
る面 15、26、45、66、75、86、105 形成さ
れた貫通孔 21、81 フェルール成形用突起金型 24、54、64、84 外形規制用胴型 31、51、91 マスター金型 32、52、92 レプリカ金型用ガラス材料 33、53、93 平面基材 34、55、94 接合面 35、56、95 貴金属合金保護膜 41、101 突起レプリカ金型 61 磁気ディスクガラス基板成形用突起レプリカ金型 111 外側上金型 112 外側下金型 113 内側上金型 114 内側下金型 115 成形用素材 121 ベース金型 122 コアピン 123 非晶質合金融液
11, 71 Protrusion mold 12, 22, 42, 62, 72, 82, 102 Molding material 13, 23, 43, 63, 73, 83, 103 Flat mold 14, 25, 44, 65, 74, 85, 104 Surfaces to be polished 15, 26, 45, 66, 75, 86, 105 Formed through holes 21, 81 Ferrule molding protrusion dies 24, 54, 64, 84 Outer shape regulating body dies 31, 51, 91 Master dies Molds 32, 52, 92 Glass materials for replica molds 33, 53, 93 Flat base materials 34, 55, 94 Bonding surfaces 35, 56, 95 Precious metal alloy protective films 41, 101 Protrusion replica molds 61 Magnetic disk glass substrate molding Projection replica mold 111 Outer upper mold 112 Outer lower mold 113 Inner upper mold 114 Inner lower mold 115 Molding material 121 Base mold 122 Core pin 123 Amorphous financial solution

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 5/84 G11B 5/84 Z (72)発明者 中村 正二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H036 QA12 QA17 QA20 4G059 AA09 AB11 AC30 DA03 5D112 AA02 AA24 BA03 BA10 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G11B 5/84 G11B 5/84 Z (72) Inventor Shoji Nakamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 2H036 QA12 QA17 QA20 4G059 AA09 AB11 AC30 DA03 5D112 AA02 AA24 BA03 BA10

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 ガラスからなる成形用素材を、必要な孔
深さ以上の高さの高精度な突起形状を有する成形用金型
と平面金型との間に挟み、該成形用素材が変形可能な温
度まで加熱し、プレス成形して、突起形状の反転形状を
精密に転写させた窪みを形成し、冷却して型より離型す
る工程と、所定の孔深さとなる厚さまで、平面側から研
磨する工程からなることを特徴とするガラスの精密孔あ
け方法。
1. A molding material made of glass is sandwiched between a molding die having a highly accurate projection shape having a required hole depth or more and a flat mold, and the molding material is deformed. Heat up to a temperature that is possible, press-mold it, form a dent that precisely replicates the inverted shape of the protrusion, cool it, and release it from the mold. Until the thickness reaches the specified hole depth, the flat surface side A method for precision drilling of glass, which comprises a step of polishing from.
【請求項2】 ガラスからなる成形用素材の熱膨張係数
が、必要な孔深さ以上の高さの高精度な突起形状を有す
る成形用金型の熱膨張係数より小さいことを特徴とする
請求項1記載のガラスの精密孔あけ方法。
2. The thermal expansion coefficient of the molding material made of glass is smaller than the thermal expansion coefficient of a molding die having a highly accurate projection shape having a required hole depth or higher. Item 2. A method for precision drilling of glass according to Item 1.
【請求項3】 ガラスからなる成形用素材を、必要な孔
深さ以上の高さの高精度な光ファイバーコネクター用フ
ェルールの貫通孔形状の反転形状である突起形状を有す
る成形用金型と平面金型との間に挟み、外形規制用のリ
ング状胴型を介し、該成形用素材が変形可能な温度まで
加熱し、プレス成形して、突起形状の反転形状を精密に
転写させた窪みを形成し、冷却して型より離型する工程
と、所定の孔深さとなる厚さまで、平面側から研磨する
工程からなることを特徴とする光ファイバーコネクタ用
フェルールの製造方法。
3. A molding die and a flat metal having a molding material made of glass, having a projection shape that is an inverted shape of the through hole shape of a high-precision ferrule for an optical fiber connector having a height not less than a required hole depth. It is sandwiched between a mold and a ring-shaped body mold for regulating the outer shape, which is heated to a temperature at which the molding material can be deformed and press-molded to form a recess in which the inverted shape of the protrusion shape is precisely transferred. Then, the method for producing a ferrule for an optical fiber connector, which comprises the steps of cooling and releasing from the mold, and polishing from a flat surface side to a thickness that provides a predetermined hole depth.
【請求項4】 前記ガラスからなる成形用素材よりも耐
熱性の良いガラス材料を、必要な孔深さ以上の深さの高
精度な貫通孔あるいは溝形状を有するマスター金型と平
面基材との間に挟み、該ガラス材料が変形可能な温度ま
で加熱し、プレス成形して、貫通孔あるいは溝形状の反
転形状を精密に転写させた突起を形成するとともに、平
面基材と接合し、冷却して型より離型した後、表面に貴
金属合金薄膜を形成することで必要な孔深さ以上の高さ
の高精度な突起形状を有するレプリカ金型を作製する工
程と、前記ガラスからなる成形用素材を、該レプリカ金
型と平面金型との間に挟み、該成形用素材が変形可能な
温度まで加熱し、プレス成形して、突起形状の反転形状
を精密に転写させた窪みを形成し、冷却して型より離型
する工程と、所定の孔深さとなる厚さまで、平面側から
研磨する工程からなることを特徴とするガラスの精密孔
あけ方法。
4. A master die having a highly accurate through hole or groove shape having a depth equal to or greater than a required hole depth and a flat base material made of a glass material having heat resistance higher than that of the glass forming material. Sandwiched between the glass material and heated to a temperature at which the glass material can be deformed, and press-formed to form protrusions that accurately transfer the inverted shape of the through-hole or groove, and also to join the flat base material and cool it. And mold release from the mold, and then forming a replica metal mold having a highly precise projection shape with a height higher than the required hole depth by forming a precious metal alloy thin film on the surface, and molding from the glass Sandwiching the molding material between the replica mold and the flat mold, heating to a temperature at which the molding material can be deformed, and press-molding to form a recess in which the inverted shape of the protrusion shape is precisely transferred. Cooling, releasing from the mold, A method for precision drilling of glass, comprising a step of polishing from a flat surface side up to a thickness that is a hole depth.
【請求項5】 前記ガラスからなる成形用素材よりも耐
熱性の良いガラス材料として、前記ガラスからなる成形
用素材の成形温度以上のガラス転移温度を有するガラス
材料を用いることを特徴とする請求項4記載のガラスの
精密孔あけ方法。
5. A glass material having a glass transition temperature equal to or higher than the molding temperature of the molding material made of the glass is used as the glass material having higher heat resistance than the molding material made of the glass. 4. The method for precision drilling of glass according to 4.
【請求項6】 前記ガラスからなる成形用素材よりも耐
熱性の良いガラス材料として、結晶化後の耐熱温度が前
記ガラスからなる成形用素材の成形温度以上である結晶
化ガラスを用いることを特徴とする請求項4記載のガラ
スの精密孔あけ方法。
6. A crystallized glass having a heat-resistant temperature after crystallization that is equal to or higher than the molding temperature of the molding material made of glass is used as the glass material having better heat resistance than the molding material made of glass. The method for precision drilling of glass according to claim 4.
【請求項7】 前記ガラスからなる成形用素材よりも耐
熱性の良いガラス材料を、必要な孔深さ以上の深さの高
精度な貫通孔あるいは溝形状を有するマスター金型と平
面基材との間に挟み、該ガラス材料が変形可能な温度ま
で加熱し、プレス成形して、貫通孔あるいは溝形状の反
転形状を精密に転写させた突起を形成するとともに、平
面基材と接合し、冷却して型より離型した後、表面に形
成する貴金属合金薄膜として、Pt、Pd、Ir、R
h、Os、Ru、Re、W、Taのうち、少なくとも1
種類以上の金属を含む合金を用いることを特徴とする請
求項4記載のガラスの精密孔あけ方法。
7. A master die having a highly accurate through hole or groove shape having a depth equal to or greater than a required hole depth and a flat base material are made of a glass material having heat resistance higher than that of the glass forming material. Sandwiched between the glass material and heated to a temperature at which the glass material can be deformed, and press-formed to form protrusions that accurately transfer the inverted shape of the through-hole or groove, and also to join the flat base material and cool it. After releasing from the mold, Pt, Pd, Ir, R are used as noble metal alloy thin films formed on the surface.
At least one of h, Os, Ru, Re, W, and Ta
The method for precision drilling of glass according to claim 4, wherein an alloy containing more than one kind of metal is used.
【請求項8】 前記ガラスからなる成形用素材よりも耐
熱性の良いガラス材料を、必要な孔深さ以上の深さの高
精度な貫通孔あるいは溝形状を有するマスター金型と平
面基材との間に挟み、該ガラス材料が変形可能な温度ま
で加熱し、プレス成形して、貫通孔あるいは溝形状の反
転形状を精密に転写させた突起を形成するとともに、平
面基材と接合し、冷却して型より離型した後、表面に貴
金属合金薄膜の成分とガラス材料の成分を含む中間膜を
形成した後、貴金属合金薄膜を形成することを特徴とす
る請求項4記載のガラスの精密孔あけ方法。
8. A master die having a highly accurate through hole or groove shape having a depth equal to or larger than a necessary hole depth and a flat base material are made of a glass material having heat resistance higher than that of the glass forming material. Sandwiched between the glass material and heated to a temperature at which the glass material can be deformed, and press-formed to form protrusions that accurately transfer the inverted shape of the through-hole or groove, and also to join the flat base material and cool it. 5. The precision hole of glass according to claim 4, wherein after releasing from the mold, an intermediate film containing a component of the precious metal alloy thin film and a component of the glass material is formed on the surface, and then the precious metal alloy thin film is formed. How to open.
【請求項9】 ガラスからなる成形用素材よりも耐熱性
の良いガラス材料を、必要な孔深さ以上の深さの高精度
な貫通孔あるいは溝形状を有し、表面を超平滑面に研磨
加工を施したマスター金型と平面基材との間に挟み、外
形規制用のリング状胴型を介し、該ガラス材料が変形可
能な温度まで加熱し、プレス成形して、貫通孔あるいは
溝形状の反転形状を精密に転写させた突起を形成し、冷
却して型より離型した後、表面に貴金属合金薄膜を形成
することで、必要な孔深さ以上の高さの高精度な突起形
状を有し、表面平滑性の優れたレプリカ金型を作製する
工程と、ガラスからなる成形用素材を、外形規制用のリ
ング状胴型を介して、必要な内孔深さ以上の高さの高精
度な突起形状を有し、表面平滑性の優れたレプリカ金型
と平面金型との間に挟み、該成形用素材が変形可能な温
度まで加熱し、プレス成形して、突起形状の反転形状を
精密に転写させた窪みを形成し、冷却して型より離型す
る工程と、所定のディスク厚みとなる厚さまで、平面側
から研磨する工程からなることを特徴とする磁気ディス
クガラス基板の製造方法。
9. A glass material having higher heat resistance than a molding material made of glass, having a highly precise through hole or groove shape having a depth equal to or larger than a necessary hole depth, and polishing the surface to a super smooth surface. It is sandwiched between a processed master die and a flat base material, and is heated to a temperature at which the glass material can be deformed through a ring-shaped body die for regulating the outer shape, and press-formed to form a through hole or groove. Highly accurate projection shape with a height higher than the required hole depth by forming a projection in which the inverted shape of is accurately transferred, cooling and releasing from the mold, and then forming a precious metal alloy thin film on the surface. And a step of producing a replica mold having excellent surface smoothness, and a molding material made of glass, through a ring-shaped body mold for outer shape regulation, with a height of a required inner hole depth or more. Between highly precise replica shape and excellent surface smoothness between replica mold and flat mold A step of sandwiching, heating to a temperature at which the molding material can be deformed, press-molding to form a recess in which the inverted shape of the projection shape is precisely transferred, cooling and releasing from the mold, and a predetermined disk A method of manufacturing a magnetic disk glass substrate, comprising a step of polishing from a flat surface side up to a thickness.
【請求項10】 ガラスからなる成形用素材を、必要な
孔深さ以上の高さの高精度な突起形状を複数個有する成
形用金型と平面金型との間に挟み、該成形用素材が変形
可能な温度まで加熱し、プレス成形し、複数の突起形状
の反転形状を精密に転写させた窪みを形成し、そのまま
の温度で離型させた後、冷却する工程と、所定の孔深さ
となる厚さまで、平面側から研磨する工程からなること
を特徴とするガラスの精密孔あけ方法。
10. A molding material made of glass is sandwiched between a molding die having a plurality of highly accurate projection shapes having a height equal to or larger than a required hole depth and a flat mold, and the molding material is formed. Is heated to a temperature at which it can be deformed, press-molded to form dents in which the inverted shapes of multiple protrusions are precisely transferred, and then mold-released at the same temperature and cooling, and a predetermined hole depth. A method for precision drilling of glass, comprising the step of polishing from a flat surface side up to a thickness of
【請求項11】 ガラスからなる成形用素材を、必要な
孔深さ以上の高さの高精度な光ファイバーコネクター用
フェルールの貫通孔形状の反転形状である突起形状を複
数個有する成形用金型と平面金型との間に挟み、外形規
制用の胴型を介して、該成形用素材が変形可能な温度ま
で加熱し、プレス成形し、複数の突起形状の反転形状を
精密に転写させた窪みを形成し、そのままの温度で離型
させた後、冷却する工程と、所定の孔深さとなる厚さま
で、平面側から研磨する工程からなることを特徴とする
アレイ状光ファイバーコネクタ用フェルールの製造方
法。
11. A molding die comprising a molding material made of glass and having a plurality of protrusion shapes which are the inverted shapes of the through-hole shapes of a high-precision ferrule for an optical fiber connector having a height not less than a required hole depth. A dent that is sandwiched between a flat mold and heated to a temperature at which the molding material can be deformed through a body shape regulating die, and press-molded to precisely transfer the inverted shapes of multiple protrusions. The method for producing a ferrule for an array-shaped optical fiber connector, which comprises the steps of forming a mold, releasing the mold at the same temperature, and then cooling, and polishing from a flat surface side to a thickness that provides a predetermined hole depth. .
【請求項12】 前記ガラスからなる成形用素材よりも
耐熱性の良いガラス材料を、複数の必要な孔深さ以上の
深さの高精度な貫通孔あるいは溝形状を有するマスター
金型と平面基材との間に挟み、該ガラス材料が変形可能
な温度まで加熱し、プレス成形して、複数の貫通孔ある
いは溝形状の反転形状を精密に転写させた突起を形成す
るとともに、平面基材と接合し、冷却せずにマスター型
より離型し、冷却後、表面に貴金属合金薄膜を形成する
ことで、複数の必要な孔深さ以上の高さの高精度な突起
形状を有するレプリカ金型を作製する工程と、前記ガラ
スからなる成形用素材を、該レプリカ金型と平面金型と
の間に挟み、該成形用素材が変形可能な温度まで加熱
し、プレス成形して、複数の突起形状の反転形状を精密
に転写させた窪みを形成し、そのままの温度でレプリカ
金型より離型させた後、冷却する工程と、所定の孔深さ
となる厚さまで、平面側から研磨する工程からなること
を特徴とするガラスの精密孔あけ方法。
12. A master die having a highly accurate through hole or groove shape having a depth of a plurality of required hole depths or more and a flat substrate made of a glass material having heat resistance higher than that of the glass forming material. It is sandwiched with a material, heated to a temperature at which the glass material can be deformed, and press-formed to form projections in which a plurality of through-holes or inverted shapes of grooves are precisely transferred, and a flat base material is formed. A replica mold that has a highly precise projection shape with a height higher than the required multiple hole depths by joining, releasing from the master mold without cooling, and forming a precious metal alloy thin film on the surface after cooling. And a molding material made of the glass is sandwiched between the replica mold and a flat mold, heated to a temperature at which the molding material can be deformed, press-molded to form a plurality of protrusions. Form a recess that is a precise transfer of the inverted shape of the shape. Precision drilling method for glass, characterized by comprising the steps of cooling, and releasing from the replica mold at the same temperature, followed by cooling, and polishing from the flat surface side to a thickness of a predetermined hole depth. .
【請求項13】 N2やArなどの不活性ガス中に、構
成分子中にCまたはFを含む気体あるいは霧状の液体を
混合した雰囲気中でプレス成形することを特徴とする請
求項10あるいは12記載のガラスの精密孔あけ方法。
13. The press molding in an atmosphere in which an inert gas such as N 2 or Ar is mixed with a gas containing C or F in its constituent molecule or a mist-like liquid. 12. The method for precision drilling of glass according to item 12.
JP2001400134A 2001-12-28 2001-12-28 Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate Expired - Fee Related JP3991682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400134A JP3991682B2 (en) 2001-12-28 2001-12-28 Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400134A JP3991682B2 (en) 2001-12-28 2001-12-28 Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate

Publications (2)

Publication Number Publication Date
JP2003201147A true JP2003201147A (en) 2003-07-15
JP3991682B2 JP3991682B2 (en) 2007-10-17

Family

ID=27639811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400134A Expired - Fee Related JP3991682B2 (en) 2001-12-28 2001-12-28 Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate

Country Status (1)

Country Link
JP (1) JP3991682B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007783A1 (en) * 2005-07-13 2007-01-18 Tokyo Electron Limited Method and device for forming hole in glass substrate
WO2007123150A1 (en) * 2006-04-18 2007-11-01 Tokyo Electron Limited Probe card and glass substrate drilling method
WO2008062643A1 (en) * 2006-11-22 2008-05-29 Tokyo Electron Limited Method and apparatus for perforating glass substrate
JP2009234858A (en) * 2008-03-27 2009-10-15 Tosoh Quartz Corp Mold material and method for molding glass material using mold material
CN102148608A (en) * 2010-02-05 2011-08-10 精工电子有限公司 Method of manufacturing package and method of manufacturing piezoelectric vibrator
WO2012074952A1 (en) * 2010-11-30 2012-06-07 Corning Incorporated Methods of forming a glass wiring board substrate
US8884165B2 (en) 2008-07-09 2014-11-11 Nec Schott Components Corporation Packaging device and base member for packaging
WO2016111076A1 (en) * 2015-01-06 2016-07-14 日本電気硝子株式会社 Micro-hole array and method for manufacturing same
JP2018174189A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Through-electrode substrate and manufacturing method therefor
CN111943486A (en) * 2019-05-16 2020-11-17 德萨尔实践股份公司 Method for manufacturing a watch case glass and tool for such a method
JP2020193133A (en) * 2019-05-30 2020-12-03 矢崎エナジーシステム株式会社 Method for manufacturing plate glass

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007783A1 (en) * 2005-07-13 2007-01-18 Tokyo Electron Limited Method and device for forming hole in glass substrate
JPWO2007007783A1 (en) * 2005-07-13 2009-01-29 東京エレクトロン株式会社 Method and apparatus for drilling glass substrate
WO2007123150A1 (en) * 2006-04-18 2007-11-01 Tokyo Electron Limited Probe card and glass substrate drilling method
WO2008062643A1 (en) * 2006-11-22 2008-05-29 Tokyo Electron Limited Method and apparatus for perforating glass substrate
JP2008127251A (en) * 2006-11-22 2008-06-05 Tokyo Electron Ltd Method and apparatus for perforating glass substrate
JP2009234858A (en) * 2008-03-27 2009-10-15 Tosoh Quartz Corp Mold material and method for molding glass material using mold material
US8884165B2 (en) 2008-07-09 2014-11-11 Nec Schott Components Corporation Packaging device and base member for packaging
EP2355343A3 (en) * 2010-02-05 2013-09-25 Seiko Instruments Inc. Method of manufacturing package and method of manufacturing piezoelectric vibrator
JP2011166307A (en) * 2010-02-05 2011-08-25 Seiko Instruments Inc Method of manufacturing package, and method of manufacturing piezoelectric vibrator
CN102148608A (en) * 2010-02-05 2011-08-10 精工电子有限公司 Method of manufacturing package and method of manufacturing piezoelectric vibrator
WO2012074952A1 (en) * 2010-11-30 2012-06-07 Corning Incorporated Methods of forming a glass wiring board substrate
CN103237768A (en) * 2010-11-30 2013-08-07 康宁股份有限公司 Methods of forming a glass wiring board substrate
WO2016111076A1 (en) * 2015-01-06 2016-07-14 日本電気硝子株式会社 Micro-hole array and method for manufacturing same
JP2018174189A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Through-electrode substrate and manufacturing method therefor
CN111943486A (en) * 2019-05-16 2020-11-17 德萨尔实践股份公司 Method for manufacturing a watch case glass and tool for such a method
CN111943486B (en) * 2019-05-16 2024-04-26 德萨尔实践股份公司 Method for manufacturing a watch case glass and tool for such a method
JP2020193133A (en) * 2019-05-30 2020-12-03 矢崎エナジーシステム株式会社 Method for manufacturing plate glass
WO2020241451A1 (en) * 2019-05-30 2020-12-03 矢崎エナジーシステム株式会社 Manufacturing method for sheet glass
GB2597180A (en) * 2019-05-30 2022-01-19 Yazaki Energy System Corp Manufacturing method for sheet glass
AU2020283650B2 (en) * 2019-05-30 2022-12-01 Yazaki Energy System Corporation Method for manufacturing plate glass
JP7294887B2 (en) 2019-05-30 2023-06-20 矢崎エナジーシステム株式会社 Flat glass manufacturing method
GB2597180B (en) * 2019-05-30 2023-11-08 Yazaki Energy System Corp Method for manufacturing plate glass

Also Published As

Publication number Publication date
JP3991682B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US20030115907A1 (en) Multiple lens molding system and method
JP2003201147A (en) Precision drilling method for glass, method of manufacturing ferrule for optical fiber connector and method of manufacturing magnetic disk glass substrate
JPH01106003A (en) Lens element and manufacture thereof
US6442975B1 (en) Method of manufacturing thin-plate glass article, method of manufacturing glass substrate for information recording medium, and method of manufacturing magnetic recording medium
JP2002100025A (en) Molded glass substrate for magnetic disk and method for producing the same
JP4052627B2 (en) Manufacturing method of glass base material, manufacturing method of disk-shaped glass and manufacturing method of information recording medium
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP3995190B2 (en) Disc glass manufacturing method, glass substrate manufacturing method, and information recording medium
JPH0451495B2 (en)
WO2019017125A1 (en) Glass shaping method and glass-shaped article formed by said method
JP2949956B2 (en) Mold for forming optical element and optical element
JP2002050024A (en) Molded glass substrate for magnetic disk, molding method and molding die
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JP2004203698A (en) Glass blank, its manufacturing method, method of manufacturing substrate for information recording medium, and method of manufacturing information recording medium
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JP2004210550A (en) Molding mold
JP6274802B2 (en) Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, and glass blank mold
JP3219460B2 (en) Optical element mold and method of manufacturing the same
JP4567893B2 (en) Optical element manufacturing method and optical element molding mold manufacturing method
JP4134925B2 (en) Manufacturing method of glass substrate for information recording medium
JP4133091B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JPH04170331A (en) Mold for molding optical element and production thereof and production of optical glass element
JP2002080227A (en) Method of manufacturing optical element
JPH05339015A (en) Glass base stock for forming and manufacture therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20050704

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20061221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070716

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110803

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120803

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130803

LAPS Cancellation because of no payment of annual fees