JP2002161999A - Hydrogen storage tank - Google Patents
Hydrogen storage tankInfo
- Publication number
- JP2002161999A JP2002161999A JP2000359182A JP2000359182A JP2002161999A JP 2002161999 A JP2002161999 A JP 2002161999A JP 2000359182 A JP2000359182 A JP 2000359182A JP 2000359182 A JP2000359182 A JP 2000359182A JP 2002161999 A JP2002161999 A JP 2002161999A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- pressure vessel
- hydrogen
- hydrogen storage
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水素貯蔵タンク,特
に水素吸蔵材を有するタンクの改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a hydrogen storage tank, particularly a tank having a hydrogen storage material.
【0002】[0002]
【従来の技術】従来,この種の水素貯蔵タンクとして
は,水素吸蔵材を収容した圧力容器と,その圧力容器を
覆う外装容器とを有し,それら容器間に熱媒体通路を設
けたものが知られている。また圧力容器に,それを貫通
する管体を設け,その管体内部を熱媒体通路としたもの
も知られている。2. Description of the Related Art Conventionally, a hydrogen storage tank of this type has a pressure vessel containing a hydrogen storage material and an outer vessel covering the pressure vessel, and a heat medium passage is provided between the vessels. Are known. It is also known that a pressure vessel is provided with a tube penetrating therethrough, and the inside of the tube is used as a heat medium passage.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,従来の
水素貯蔵タンクは,水素吸蔵材の加熱冷却効率が悪く,
そのため水素の急速充填および急速放出を行うことが難
しい,という問題があった。However, the conventional hydrogen storage tank has poor heating and cooling efficiency of the hydrogen storage material,
Therefore, there is a problem that it is difficult to rapidly fill and release hydrogen.
【0004】[0004]
【課題を解決するための手段】本発明は,水素吸蔵材の
加熱冷却効率を高めることにより水素の急速充填および
急速放出を可能にした前記水素貯蔵タンクを提供するこ
とを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen storage tank capable of rapidly filling and releasing hydrogen by increasing the heating and cooling efficiency of a hydrogen storage material.
【0005】前記目的を達成するため本発明によれば,
水素吸蔵材を収容した圧力容器と,その圧力容器の周囲
および内部の少なくとも一方に設けられた熱媒体通路
と,前記圧力容器内に在って前記熱媒体通路を流れる熱
媒体と熱の授受を行い,且つ前記水素吸蔵材に接触する
複数の熱伝導体と,それら熱伝導体に内蔵された複数の
蓄熱体とを有する水素貯蔵タンクが提供される。[0005] To achieve the above object, according to the present invention,
A pressure vessel containing the hydrogen storage material, a heat medium passage provided in at least one of the periphery and the inside of the pressure vessel, and exchange of heat with a heat medium flowing in the heat medium passage in the pressure vessel. There is provided a hydrogen storage tank which has a plurality of heat conductors which are in contact with the hydrogen storage material and have a plurality of heat storage bodies built in the heat conductors.
【0006】圧力容器への水素充填過程では,水素吸蔵
材が水素の吸蔵によって発熱するので,その吸蔵効率を
高めるためには水素吸蔵材を冷却しなければならない。
そこで,熱媒体通路に,例えば熱媒体である冷却用空気
を流すと,水素吸蔵材は,その周囲および/または内部
から冷却用空気によって冷却され,また降温下の各熱伝
導体による内部複数箇所からの冷却作用を受け,その
上,各蓄熱体による発生熱の速やかなる吸収が現出す
る。これにより水素の急速充填が行われる。 一方,水
素放出時には,熱媒体通路に,例えば熱媒体である高温
蒸気を流すと,水素吸蔵材は,その周囲および/または
内部から高温蒸気によって加熱され,また昇温下の各熱
伝導体による内部複数箇所からの加熱作用を受け,その
上,各蓄熱体による蓄積熱の速やかなる放散が現出す
る。これにより水素の急速放出が行われる。水素放出を
一時中断した場合には,各蓄熱体による熱放散によって
水素吸蔵材の温度維持がなされる。In the process of filling the pressure vessel with hydrogen, the hydrogen storage material generates heat due to the storage of hydrogen, so that the hydrogen storage material must be cooled in order to increase the storage efficiency.
When, for example, cooling air, which is a heat medium, flows through the heat medium passage, the hydrogen storage material is cooled by the cooling air from around and / or the inside thereof. In addition to this, the heat generated by each heat storage element is quickly absorbed. Thereby, rapid filling of hydrogen is performed. On the other hand, when releasing hydrogen, for example, when a high-temperature steam as a heat medium flows through the heat medium passage, the hydrogen storage material is heated by the high-temperature steam from around and / or the inside thereof, and the hydrogen storage material is heated by the heat conductors at elevated temperatures. In addition to the heating action from a plurality of locations inside, rapid dissipation of accumulated heat by each heat storage body appears. This results in a rapid release of hydrogen. When the hydrogen release is temporarily stopped, the temperature of the hydrogen storage material is maintained by the heat dissipation by each heat storage unit.
【0007】[0007]
【発明の実施の形態】図1〜4は水素貯蔵タンク1の第
1実施例を示す。図1,2において,金属製圧力容器2
はステンレス鋼より構成されて角筒形をなし,その内部
には水素吸蔵材としての水素吸蔵合金粉末(以下,本欄
においてMH粉末という)3が収容される。水素吸蔵材
としてはナノ構造カーボン等の使用が可能である。圧力
容器2の一方の端壁4に貫通孔5が形成され,その孔5
に水素の出入を行う出入口管6の一端部が嵌着される。
その出入口管6の内側開口部は,圧力容器2内に取付け
られた焼結金属フィルタ7によって覆われており,この
フィルタ7によって出入口管6を通じたMH粉末3の漏
出が防止される。フィルタはステンレス鋼より構成され
ている。1 to 4 show a first embodiment of a hydrogen storage tank 1. FIG. 1 and 2, a metal pressure vessel 2
Is made of stainless steel and has a rectangular cylindrical shape, in which a hydrogen storage alloy powder (hereinafter, referred to as MH powder in this section) 3 as a hydrogen storage material is accommodated. Nanostructured carbon or the like can be used as the hydrogen storage material. A through hole 5 is formed in one end wall 4 of the pressure vessel 2, and the hole 5
One end of an entrance / exit tube 6 for introducing / exiting hydrogen into / from is fitted.
The inside opening of the entrance / exit tube 6 is covered by a sintered metal filter 7 mounted in the pressure vessel 2, and the filter 7 prevents the leakage of the MH powder 3 through the entrance / exit tube 6. The filter is made of stainless steel.
【0008】圧力容器2の全周囲は金属製角筒形外装容
器8によって覆われており,その一方の端壁9に形成さ
れた貫通孔10から出入口管6が突出する。外装容器8
および圧力容器2間の隙間は熱媒体通路11であり,し
たがって圧力容器2の外面全体が熱伝導面12として機
能する。熱媒体通路11に連通する入口管13と出口管
14とが,外装容器8における下壁15の一端側と上壁
16の他端側とにそれぞれ設けられている。The entire periphery of the pressure vessel 2 is covered with a metal rectangular cylindrical outer vessel 8, and the inlet / outlet pipe 6 protrudes from a through hole 10 formed in one end wall 9. Outer container 8
The gap between the pressure vessel 2 and the pressure vessel 2 is a heat medium passage 11, so that the entire outer surface of the pressure vessel 2 functions as a heat conducting surface 12. An inlet pipe 13 and an outlet pipe 14 communicating with the heat medium passage 11 are provided at one end of the lower wall 15 and the other end of the upper wall 16 in the outer container 8, respectively.
【0009】複数の長方形のフィン状熱伝導体17が,
圧力容器2の上壁18内面および下壁19内面からそれ
ぞれ容器2内方に延びてMH粉末3と接触する。図3に
も示すように,上,下壁18,19側の複数の熱伝導体
17は,それぞれ基板20に等間隔に並べて溶接され,
両基板20が上,下壁18,19内面に,上壁18側の
各熱伝導体17と下壁19側の各熱伝導体17とを対向
させてそれぞれ溶接されている。各熱伝導体17および
各基板20はステンレス鋼より構成されている。それら
17,20の構成材料としては銅,アルミニウム,それ
らの合金等が使用可能である。これにより,各熱伝導体
17は,基板20および圧力容器2を介して熱媒体通路
11を流れる熱媒体と熱の授受を行うことができる。A plurality of rectangular fin-shaped heat conductors 17
The pressure vessel 2 extends into the vessel 2 from the inner surface of the upper wall 18 and the inner surface of the lower wall 19, and comes into contact with the MH powder 3. As shown in FIG. 3, the plurality of heat conductors 17 on the upper and lower walls 18 and 19 are respectively welded to the substrate 20 at equal intervals.
The two substrates 20 are welded to the inner surfaces of the upper and lower walls 18 and 19 with the respective heat conductors 17 on the upper wall 18 side and the respective heat conductors 17 on the lower wall 19 facing each other. Each heat conductor 17 and each substrate 20 are made of stainless steel. Copper, aluminum, alloys thereof, and the like can be used as the constituent materials of these 17, 20. Thus, each heat conductor 17 can exchange heat with the heat medium flowing through the heat medium passage 11 via the substrate 20 and the pressure vessel 2.
【0010】また各熱伝導体17は蓄熱体21を内蔵し
ている。この実施例では,図4に明示するように熱伝導
体17は,一端面に開口22を有するケース状本体23
と,その開口22を閉じる蓋体24とよりなる。蓄熱体
21は,この実施例では粉末の状態でケース状本体23
に注入される。蓋体24は開口22を閉じた後ケース状
本体23に溶接される。Each heat conductor 17 has a built-in heat storage 21. In this embodiment, as clearly shown in FIG. 4, the heat conductor 17 has a case-shaped main body 23 having an opening 22 at one end surface.
And a lid 24 for closing the opening 22. In this embodiment, the heat storage body 21 is in the form of a powder in a case-like main body 23.
Is injected into. After closing the opening 22, the lid 24 is welded to the case-shaped main body 23.
【0011】MH粉末3としては,例えば解離温度が2
90℃であるMg90Ni10合金粉末(数値の単位は原子
%)が用いられ,一方,蓄熱体21としては,前記解離
温度に近い融点を持つもの,例えば融点が321℃であ
るカドミウムが用いられる。その他の蓄熱体21として
は,融点が270℃であるビスマス,融点が280℃で
ある塩化タングステン(WCl6 ),融点が304℃で
あるタリウム等を挙げることができる。The MH powder 3 has, for example, a dissociation temperature of 2
Mg 90 Ni 10 alloy powder having a temperature of 90 ° C. is used (the unit of the numerical value is atomic%). On the other hand, as the heat storage body 21, one having a melting point close to the dissociation temperature, for example, cadmium having a melting point of 321 ° C. is used. Can be Other examples of the heat storage body 21 include bismuth having a melting point of 270 ° C., tungsten chloride (WCl 6 ) having a melting point of 280 ° C., and thallium having a melting point of 304 ° C.
【0012】前記構成において,圧力容器2への水素充
填過程では,MH粉末3が水素の吸蔵によって発熱する
ので,その吸蔵効率を高めるためにはMH粉末3を冷却
しなければならない。そこで,熱媒体通路11に熱媒体
としての冷却用空気を流すと,MH粉末3は,その周囲
から冷却用空気によって冷却される。また圧力容器2を
介して各熱伝導体17が冷却されるので,MH粉末3は
降温下の各熱伝導体17による内部複数箇所からの冷却
作用を受ける。その上,各蓄熱体21が,その溶融に伴
う潜熱(相変化に伴う熱)としてMH粉末3の発生熱を
速やかに吸収する,といった現象が発生する。これによ
り水素の急速充填が行われる。In the above-described configuration, in the process of filling the pressure vessel 2 with hydrogen, the MH powder 3 generates heat due to occlusion of hydrogen, so that the MH powder 3 must be cooled in order to increase the occlusion efficiency. Then, when cooling air as a heat medium flows through the heat medium passage 11, the MH powder 3 is cooled by the cooling air from the surroundings. Also, since each heat conductor 17 is cooled via the pressure vessel 2, the MH powder 3 is cooled by the heat conductors 17 at a plurality of locations under temperature. In addition, a phenomenon occurs in which each heat storage body 21 quickly absorbs the generated heat of the MH powder 3 as latent heat (heat due to phase change) due to its melting. Thereby, rapid filling of hydrogen is performed.
【0013】一方,水素放出時には,熱媒体通路11に
熱媒体としての高温蒸気(または燃焼ガス等)を流す
と,MH粉末3は,その周囲から高温蒸気によって加熱
される。また圧力容器2を介して各熱伝導体17が加熱
されるので,MH粉末3は昇温下の各熱伝導体17によ
る内部複数箇所からの加熱作用を受ける。さらに各蓄熱
体21の凝固に伴う潜熱(相変化に伴う熱)がMH粉末
3に供給される,といった現象が発生する。これにより
水素の急速放出が行われる。この水素放出を一時中断し
た場合には,各蓄熱体21による熱放散によってMH粉
末3の温度維持がなされる。On the other hand, at the time of releasing hydrogen, when a high-temperature steam (or a combustion gas or the like) as a heat medium flows through the heat medium passage 11, the MH powder 3 is heated by the high-temperature steam from the surroundings. Further, since each heat conductor 17 is heated via the pressure vessel 2, the MH powder 3 is subjected to a heating action from a plurality of internal locations by each heat conductor 17 at an elevated temperature. Further, a phenomenon that latent heat (heat due to phase change) accompanying solidification of each heat storage body 21 is supplied to the MH powder 3 occurs. This results in a rapid release of hydrogen. When the hydrogen release is temporarily stopped, the temperature of the MH powder 3 is maintained by the heat dissipation by the heat storage bodies 21.
【0014】このような蓄熱体21の作用効果を得るた
めには,MH粉末3と蓄熱体21との体積比を,例え
ば,MH粉末:蓄熱体=4:1とする。In order to obtain the function and effect of the heat accumulator 21, the volume ratio between the MH powder 3 and the heat accumulator 21 is, for example, MH powder: heat accumulator = 4: 1.
【0015】図5に示す水素貯蔵タンク1の第2実施例
においては,ステンレス鋼よりなる管体Pが,圧力容器
2および外装容器8に,それらの両端壁に存する貫通孔
31,32を通して設けられており,その管体Pの軸線
は両容器2,8の中心線と合致している。この管体Pの
内部は熱媒体通路11として機能する。各熱伝導体17
の先端は管体P外周面に接触若しくは近接し,これによ
り熱媒体と各熱伝導体17との間に管体Pを介した熱の
授受が行われる。In the second embodiment of the hydrogen storage tank 1 shown in FIG. 5, a pipe P made of stainless steel is provided in the pressure vessel 2 and the outer casing 8 through through holes 31 and 32 existing on both end walls thereof. The axis of the tube P coincides with the center line of the two containers 2, 8. The inside of the tube P functions as a heat medium passage 11. Each heat conductor 17
Is in contact with or close to the outer peripheral surface of the tube P, whereby heat is transferred between the heat medium and each heat conductor 17 via the tube P.
【0016】第2実施例においては圧力容器2の周囲お
よび内部に熱媒体通路11を設けているが,熱媒体通路
11を圧力容器2の内部にのみ設けることもある。第2
実施例のその他の構成は第1実施例と略同じである。図
5において,図1と同様の構成部分には図1と同様の符
号を付して詳しい説明は省略する。Although the heat medium passage 11 is provided around and inside the pressure vessel 2 in the second embodiment, the heat medium passage 11 may be provided only inside the pressure vessel 2. Second
Other configurations of the embodiment are substantially the same as those of the first embodiment. 5, the same components as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and the detailed description is omitted.
【0017】図6,7に示す水素貯蔵タンク1の第3実
施例において,その金属製圧力容器2はステンレス鋼よ
り構成されて円筒形をなし,その内部にはMH粉末3が
収容される。In the third embodiment of the hydrogen storage tank 1 shown in FIGS. 6 and 7, the metal pressure vessel 2 is made of stainless steel, has a cylindrical shape, and contains an MH powder 3 therein.
【0018】圧力容器2内に横断面十字形のステンレス
鋼製熱伝導部材25が配置され,その熱伝導部材25は
4つの長方形板状熱伝導体17の一方の長辺部を集合し
たものであって,各熱伝導体17の他方の長辺部側面は
圧力容器2内周面に固着されている。これにより,複
数,実施例では4つの板状熱伝導体17は,圧力容器2
を介して熱媒体通路11を流れる熱媒体と熱の授受を行
うことができると共に圧力容器2の周壁26内面から容
器2内方に延びてMH粉末3と接触する。熱伝導部材2
5の構成材料としては銅,アルミニウム,それらの合金
等も使用可能である。A heat conductive member 25 made of stainless steel having a cross-shaped cross section is disposed in the pressure vessel 2, and the heat conductive member 25 is formed by assembling one long side of four rectangular plate-shaped heat conductors 17. The other long side surface of each heat conductor 17 is fixed to the inner peripheral surface of the pressure vessel 2. Thereby, a plurality of, in the present embodiment, four plate-shaped heat conductors 17 are connected to the pressure vessel 2.
And heat can be exchanged with the heat medium flowing through the heat medium passage 11 through the heat medium passage 11, and extend from the inner surface of the peripheral wall 26 of the pressure vessel 2 to the inside of the vessel 2 and come into contact with the MH powder 3. Heat conduction member 2
Copper, aluminum, their alloys, and the like can be used as the constituent material of No. 5.
【0019】また前記同様に各熱伝導体17は蓄熱体2
1を内蔵している。この実施例では,図7に明示するよ
うに熱伝導部材25が,横断面十字形の本体27を有
し,その本体27の一端面,つまり各熱伝導体対応部2
8の端面に丸形孔29が開口する。各丸形孔29に,前
記同様に粉末状蓄熱体21が注入され,各丸形孔29の
開口は本体27と同じ十字形の蓋体30によって閉じら
れ,その蓋体30は本体27に溶接される。これにより
十字形熱伝導部材25が形成される。In the same manner as described above, each of the heat conductors 17 is
1 is built in. In this embodiment, as shown in FIG. 7, the heat conducting member 25 has a main body 27 having a cross-shaped cross section, and one end face of the main body 27, that is, each heat conductor corresponding portion 2
A round hole 29 is opened at the end face of the hole 8. The powdered heat storage body 21 is injected into each round hole 29 in the same manner as described above, and the opening of each round hole 29 is closed by the same cross-shaped lid 30 as the main body 27, and the lid 30 is welded to the main body 27. Is done. Thus, a cross-shaped heat conducting member 25 is formed.
【0020】第3実施例のその他の構成は第1実施例と
略同じである。図6において,図2と同様の構成部分に
は図2と同様の符号を付して詳しい説明は省略する。Other configurations of the third embodiment are substantially the same as those of the first embodiment. 6, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and the detailed description is omitted.
【0021】[0021]
【発明の効果】本発明によれば,前記のように構成する
ことによって,蓄熱を利用した水素の急速充填および熱
放散を利用した水素の急速放出を可能にした水素貯蔵タ
ンクを提供することができる。According to the present invention, it is possible to provide a hydrogen storage tank which is configured as described above and enables rapid filling of hydrogen utilizing heat storage and rapid release of hydrogen utilizing heat dissipation. it can.
【図1】水素貯蔵タンクの第1実施例の縦断正面図であ
る。FIG. 1 is a vertical sectional front view of a first embodiment of a hydrogen storage tank.
【図2】水素貯蔵タンクの横断側面図で,図1の2−2
線断面図に相当する。FIG. 2 is a cross-sectional side view of the hydrogen storage tank.
It corresponds to a line sectional view.
【図3】一群の熱伝導体の斜視図である。FIG. 3 is a perspective view of a group of heat conductors.
【図4】熱伝導体の分解斜視図である。FIG. 4 is an exploded perspective view of a heat conductor.
【図5】水素貯蔵タンクの第2実施例の縦断正面図であ
る。FIG. 5 is a vertical sectional front view of a second embodiment of the hydrogen storage tank.
【図6】水素貯蔵タンクの第3実施例の横断側面図で,
図2に対応する。FIG. 6 is a cross-sectional side view of a third embodiment of the hydrogen storage tank,
FIG.
【図7】熱伝導部材の分解斜視図である。FIG. 7 is an exploded perspective view of a heat conducting member.
1………水素貯蔵タンク 2………圧力容器 3………水素吸蔵材(MH粉末) 11……熱媒体通路 17……熱伝導体 21……蓄熱体 DESCRIPTION OF SYMBOLS 1 ... Hydrogen storage tank 2 ... Pressure vessel 3 ... Hydrogen storage material (MH powder) 11 ... Heat medium passage 17 ... Heat conductor 21 ... Heat accumulator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 細江 光矢 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3E072 AA03 EA10 4G040 AA12 AA16 4G140 AA12 AA16 5H027 BA14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koya Hosoe 1-4-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (Reference) 3E072 AA03 EA10 4G040 AA12 AA16 4G140 AA12 AA16 5H027 BA14
Claims (1)
(2)と,その圧力容器(2)の周囲および内部の少な
くとも一方に設けられた熱媒体通路(11)と,前記圧
力容器(2)内に在って前記熱媒体通路(11)を流れ
る熱媒体と熱の授受を行い,且つ前記水素吸蔵材(3)
に接触する複数の熱伝導体(17)と,それら熱伝導体
(17)に内蔵された複数の蓄熱体(21)とを有する
ことを特徴とする水素貯蔵タンク。1. A pressure vessel (2) containing a hydrogen storage material (3), a heat medium passage (11) provided in at least one of the periphery and the inside of the pressure vessel (2); 2) exchanges heat with the heat medium flowing in the heat medium passage (11) inside the heat medium passage (11);
A hydrogen storage tank, comprising: a plurality of heat conductors (17) in contact with the heat conductor; and a plurality of heat storage bodies (21) built in the heat conductors (17).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000359182A JP2002161999A (en) | 2000-11-27 | 2000-11-27 | Hydrogen storage tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000359182A JP2002161999A (en) | 2000-11-27 | 2000-11-27 | Hydrogen storage tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002161999A true JP2002161999A (en) | 2002-06-07 |
Family
ID=18830980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000359182A Withdrawn JP2002161999A (en) | 2000-11-27 | 2000-11-27 | Hydrogen storage tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002161999A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7112239B2 (en) | 2003-05-20 | 2006-09-26 | Toyota Jidosha Kabushiki Kaisha | Gas storage apparatus |
WO2012043271A1 (en) * | 2010-09-29 | 2012-04-05 | コニカミノルタホールディングス株式会社 | Secondary battery type fuel cell system |
JP2013505405A (en) * | 2009-09-17 | 2013-02-14 | マクフィー エナジー | Tanks for storing and removing hydrogen and / or heat |
CN107202245A (en) * | 2016-09-08 | 2017-09-26 | 江苏科技大学 | A kind of hydrogen storing apparatus of metal hydrides and method of work |
-
2000
- 2000-11-27 JP JP2000359182A patent/JP2002161999A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7112239B2 (en) | 2003-05-20 | 2006-09-26 | Toyota Jidosha Kabushiki Kaisha | Gas storage apparatus |
JP2013505405A (en) * | 2009-09-17 | 2013-02-14 | マクフィー エナジー | Tanks for storing and removing hydrogen and / or heat |
WO2012043271A1 (en) * | 2010-09-29 | 2012-04-05 | コニカミノルタホールディングス株式会社 | Secondary battery type fuel cell system |
JPWO2012043271A1 (en) * | 2010-09-29 | 2014-02-06 | コニカミノルタ株式会社 | Secondary battery type fuel cell system |
JP5617928B2 (en) * | 2010-09-29 | 2014-11-05 | コニカミノルタ株式会社 | Secondary battery type fuel cell system |
CN107202245A (en) * | 2016-09-08 | 2017-09-26 | 江苏科技大学 | A kind of hydrogen storing apparatus of metal hydrides and method of work |
CN107202245B (en) * | 2016-09-08 | 2019-02-01 | 江苏科技大学 | A kind of hydrogen storing apparatus of metal hydrides and working method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030007578A (en) | Tank for the reversible storage of hydrogen | |
JP2009092148A (en) | Hydrogen storage device and method for filling hydrogen storage material | |
JP2002161999A (en) | Hydrogen storage tank | |
JPS61171998A (en) | Metal hydride container | |
KR20090102964A (en) | Gas storage tank and it's manufacturing method | |
CA1187073A (en) | Thermally reversible heat exchange unit | |
JP2004132503A (en) | Sealing vessel of hydrogen storage alloy and hydrogen storage device using this vessel | |
JPS6176887A (en) | Vessel for accommodating metallic hydrides | |
JP2006177434A (en) | Hydrogen storing/supplying device | |
JP2020133696A (en) | Hydrogen storage container | |
JPS62246697A (en) | Metal hydride container | |
JPH0288404A (en) | Heat exchanger using metallic hydrogen compound | |
JP2015096745A (en) | Hydrogen storage device | |
JPH0159202B2 (en) | ||
JPS62204099A (en) | Container for metal hydride | |
CN216482439U (en) | Sleeve type heat pipe and heat pipe reactor | |
JPS63225799A (en) | Manufacture of reactor for hydrogen absorption alloy | |
JPS59146901A (en) | Metallic hydride reaction vessel and its manufacture | |
JP2002295798A (en) | Hydrogen transport vessel | |
RU2005122079A (en) | FIRE PROTECTION | |
JPH02200522A (en) | Hydrogen fueled engine type load working car | |
JPH08145581A (en) | Heat accumulator | |
JPH0565037B2 (en) | ||
JPS6246799B2 (en) | ||
JPS6256081B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061201 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090210 |