JP2002295798A - Hydrogen transport vessel - Google Patents
Hydrogen transport vesselInfo
- Publication number
- JP2002295798A JP2002295798A JP2001096864A JP2001096864A JP2002295798A JP 2002295798 A JP2002295798 A JP 2002295798A JP 2001096864 A JP2001096864 A JP 2001096864A JP 2001096864 A JP2001096864 A JP 2001096864A JP 2002295798 A JP2002295798 A JP 2002295798A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- spiral
- buckle
- storage alloy
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/12—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
- F28F1/36—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0047—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水素吸蔵合金を貯蔵
する容器に関するものであり、特に、貯蔵された水素吸
蔵合金への水素充填と水素吸蔵合金からの水素放出とを
効率的に行なう機能を備えた水素輸送容器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for storing a hydrogen storage alloy, and more particularly to a container for efficiently filling a stored hydrogen storage alloy with hydrogen and releasing hydrogen from the hydrogen storage alloy. The present invention relates to a hydrogen transport container provided.
【0002】[0002]
【従来の技術】近年、小型燃料電池電源の燃料としての
水素を貯蔵・供給する手段として、水素吸蔵合金ボンベ
(容器とも言う)が安全性,小型コンパクト構造等の点
で注目されており、燃料電池自動車等に利用されてい
る。この水素吸蔵合金ボンベ内への水素の充填をある一
定の圧力において常温よりも低い温度で行えば、発熱反
応である水素の吸蔵速度が速くなる。また、前述の圧力
を高くすることによっても水素の吸蔵速度が速くなる。
一方、水素吸蔵合金ボンベより水素の取り出し(放出)
をある一定の圧力において常温よりも高い温度で行え
ば、吸熱反応である水素の放出速度が速くなることは一
般的に知られている。2. Description of the Related Art In recent years, hydrogen storage alloy cylinders (also referred to as containers) have attracted attention as means for storing and supplying hydrogen as a fuel for a small fuel cell power supply in terms of safety, small and compact structure, and the like. It is used in battery cars and the like. If the hydrogen storage alloy cylinder is filled with hydrogen at a certain pressure and lower than room temperature, the rate of hydrogen storage, which is an exothermic reaction, increases. In addition, increasing the pressure also increases the hydrogen storage speed.
On the other hand, extraction (release) of hydrogen from the hydrogen storage alloy cylinder
It is generally known that if is carried out at a certain pressure and at a temperature higher than room temperature, the rate of hydrogen release as an endothermic reaction becomes faster.
【0003】更に、水素吸蔵合金ボンベに貯蔵できる水
素量は有限であるので、電源の運転中にボンベ内の水素
が減少し,若しくは空になった場合はボンベを新たなも
のに交換しなければならない。この場合、使用済のボン
ベは水素を補給(充填)することにより繰り返し使用さ
れている。この水素吸蔵合金ボンベへの水素の補給(充
填)は水素を吸蔵した水素吸蔵合金を有する水素供給タ
ンクを備えた水素ステーションにて行なわれる。また、
水素の製造工場又は中継基地から各水素ステーションへ
の水素の輸送・供給は大型の水素吸蔵合金容器(大型の
ボンベ)を搭載した車両を使って行なわれる。Further, since the amount of hydrogen that can be stored in the hydrogen storage alloy cylinder is limited, if the hydrogen in the cylinder decreases or becomes empty during operation of the power supply, the cylinder must be replaced with a new one. No. In this case, the used cylinder is repeatedly used by replenishing (filling) hydrogen. The replenishment (filling) of hydrogen into the hydrogen storage alloy cylinder is performed at a hydrogen station provided with a hydrogen supply tank having a hydrogen storage alloy storing hydrogen. Also,
The transportation and supply of hydrogen from a hydrogen production plant or a relay station to each hydrogen station is performed using a vehicle equipped with a large hydrogen storage alloy container (large cylinder).
【0004】このように、水素吸蔵合金を貯蔵する容器
(ボンベ)は、吸熱・発熱反応を行なう反応容器である
とともに熱交換効率の高い熱交換器であることも求めら
れている。このような状況下においては、水素の製造工
場内のタンクより水素輸送用車両への水素の補給(充
填)や水素輸送用車両から水素ステーションへの水素の
供給(放出)に要する時間の短縮、即ち、熱交換効率の
高い水素吸蔵合金輸送容器の開発が強く望まれていた。As described above, a container (cylinder) for storing a hydrogen storage alloy is required to be not only a reaction container for performing an endothermic / exothermic reaction but also a heat exchanger having high heat exchange efficiency. Under such circumstances, shortening the time required for replenishing (filling) hydrogen from the tank in the hydrogen production plant to the hydrogen transport vehicle and supplying (discharging) hydrogen from the hydrogen transport vehicle to the hydrogen station; That is, the development of a hydrogen storage alloy transport container having high heat exchange efficiency has been strongly desired.
【0005】水素吸蔵合金ボンベを熱交換器としてとら
れた先行技術としては、特開平7−280492号公報
や特開2000−111193号公報がある。特開平7
−280492号公報においては、熱媒は保持容器の外
部から熱媒導入口に導入されて反対側の熱媒導出口より
外部に排出される。従って、容器内の熱媒は流速を速く
できないので層流となり、水素吸蔵合金との熱交換の効
率は余り良くなかった。更に、微粉末状の水素吸蔵合金
と水素を分離するフィルター(燒結フィルター)は細管
の中心に配設されており、濾過面積を大きくすることが
できない構造となっている。[0005] As prior art in which a hydrogen storage alloy cylinder is used as a heat exchanger, there are JP-A-7-280492 and JP-A-2000-111193. JP 7
In JP-A-280492, the heat medium is introduced into the heat medium inlet from the outside of the holding container, and discharged outside from the heat medium outlet on the opposite side. Therefore, the flow rate of the heat medium in the container cannot be increased, so that the heat medium has a laminar flow, and the efficiency of heat exchange with the hydrogen storage alloy is not very good. Further, a filter (sintered filter) for separating hydrogen from the fine powdery hydrogen storage alloy is disposed at the center of the thin tube, and has a structure in which the filtration area cannot be increased.
【0006】また、特開2000−111193号公報
においては、波形板と平板とからなるユニットを組みあ
わせて水素吸蔵合金との熱媒との熱交換効率の向上を図
ったものである。しかしながら、水素吸蔵合金は微細な
粉末であり、フィルター板(側板)と波形板間のシール
性を確保するのは、製作精度や熱変形の問題から困難で
あった。また、水素吸蔵合金量に対する濾過面積の値を
大きくすることができない構造となっていた。In Japanese Patent Application Laid-Open No. 2000-111193, a unit composed of a corrugated plate and a flat plate is combined to improve the heat exchange efficiency between the hydrogen storage alloy and a heat medium. However, the hydrogen storage alloy is a fine powder, and it is difficult to ensure the sealing property between the filter plate (side plate) and the corrugated plate due to problems of manufacturing accuracy and thermal deformation. In addition, the structure is such that the value of the filtration area with respect to the amount of the hydrogen storage alloy cannot be increased.
【0007】これに対して、水素エンジンまたは燃料電
池を搭載した自動車への水素充填方法の改良を図った先
行技術としては、特開2000−128502号公報が
ある。この公報には、水素を吸蔵した水素吸蔵合金を有
する水素供給タンクを備えた水素ステーションにて、自
動車の水素吸蔵合金を有する水素貯蔵タンクに水素を充
填するに当り、水素貯蔵タンク において水素吸蔵合金
が発生した熱量を、水素ステーションにおいて、水素放
出のために必要な水素吸蔵合金の加熱に有効利用省エネ
ルギ化を達成する技術が開示されている。また、本公報
の図2には、水素供給(貯蔵)タンクが図示されてい
る。On the other hand, Japanese Patent Application Laid-Open No. 2000-128502 discloses a prior art for improving a method of filling a vehicle equipped with a hydrogen engine or a fuel cell with hydrogen. According to this publication, when filling a hydrogen storage tank with a hydrogen storage alloy of a vehicle with hydrogen at a hydrogen station having a hydrogen supply tank having a hydrogen storage alloy storing hydrogen, the hydrogen storage alloy is used in the hydrogen storage tank. A technique is disclosed in which the amount of heat generated is effectively used in a hydrogen station to heat a hydrogen storage alloy necessary for releasing hydrogen, thereby achieving energy saving. FIG. 2 of this publication shows a hydrogen supply (storage) tank.
【0008】本公報の図2において、水素供給タンク
(および水素貯蔵タンク)は、外筒体と、その内部に在
る内筒体とを有し、その外筒体内周面および内筒体外周
面間は熱媒体としての純水の通路を形成している。外筒
体は、その一方の端壁に突設された入口管と他方の端壁
に突設された出口管を有し、両管の内部はそれぞれ通路
に連通している。内、外筒体における入口管側の両端壁
に、それらを貫通する水素出入口管が気密に取付けられ
る。その水素出入口管の内端部に、金属フィルタとして
の多孔質水素出入管の開放一端部が嵌着され、その閉鎖
他端部は内筒体の他方の端壁近傍に位置している。水素
出入管に、複数の円盤状合金ユニットが、その中心孔を
嵌合させると共に相隣るもの相互を密着させて支持さ
れ、それら合金ユニットの外周面は内筒体の内周面に嵌
着される。各合金ユニットは、肉薄で、且つ円盤状をな
すアルミニウム製容器内に粉末状水素吸蔵合金を充填し
て密閉したものである。In FIG. 2 of this publication, a hydrogen supply tank (and a hydrogen storage tank) has an outer cylinder and an inner cylinder inside thereof, and has an outer peripheral surface of the outer cylinder and an outer peripheral surface of the inner cylinder. A path of pure water as a heat medium is formed between the surfaces. The outer cylinder has an inlet pipe protruding from one end wall and an outlet pipe protruding from the other end wall, and the insides of both pipes communicate with passages. Hydrogen inlet / outlet pipes penetrating the inner and outer cylinders are attached to both end walls on the inlet pipe side in an airtight manner. An open end of a porous hydrogen inlet / outlet pipe as a metal filter is fitted to the inner end of the hydrogen inlet / outlet pipe, and the closed other end is located near the other end wall of the inner cylinder. A plurality of disc-shaped alloy units are supported on the hydrogen inlet / outlet pipe by fitting their center holes and adjoining one another, and the outer peripheral surfaces of these alloy units are fitted to the inner peripheral surface of the inner cylinder. Is done. Each alloy unit is a thin and disk-shaped aluminum container filled with a powdered hydrogen storage alloy and hermetically sealed.
【0009】ところが、上記先行技術の充填方法による
と、水素吸蔵合金の温度調整(加熱または冷却)は外周
側のみであり、また、内筒体の外周面には純水の流れを
乱流にする工夫もなされていないので、粉末状の水素吸
蔵合金の温度調節が充分ではなく、充填時間の短縮効果
は不充分なものであった。また、合金ユニットに水素吸
蔵合金を最密充填して密封するのは困難な作業であると
共に、水素吸蔵合金量に対する濾過面積の値を大きくす
ることができない構造となっていた。However, according to the above-mentioned prior art filling method, the temperature adjustment (heating or cooling) of the hydrogen storage alloy is performed only on the outer peripheral side, and the pure water flow is turbulent on the outer peripheral surface of the inner cylinder. Since no attempt has been made to adjust the temperature, the temperature of the powdered hydrogen storage alloy has not been sufficiently adjusted, and the effect of shortening the filling time has been insufficient. In addition, it is difficult to seal the alloy unit with the hydrogen-absorbing alloy in a close-packed manner, and it has a structure in which the value of the filtration area with respect to the amount of the hydrogen-absorbing alloy cannot be increased.
【0010】また、水素吸蔵合金の熱伝導の改良とし
て、合金粉末に熱伝導性の良い銅被膜の湿式無電解メッ
キを施して、マイクロカプセル化したユニークな合金が
開発されている。ところが、上記の熱伝導改良の為にマ
イクロカプセル化した合金は高価であり、これを採用す
るのは経済的に困難であった。[0010] In order to improve the heat conduction of the hydrogen storage alloy, a unique alloy has been developed in which a microencapsulated alloy is obtained by subjecting an alloy powder to a wet electroless plating of a copper film having good heat conductivity. However, alloys microencapsulated for the purpose of improving the heat conduction are expensive, and it is economically difficult to employ them.
【0011】[0011]
【発明が解決しようとする課題】本発明は、高い圧力を
必要とせずに液体水素と同等あるいはそれ以上の水素密
度が得られるように上記の問題を解決するものである。
その目的は水素充填・放出を効率的に行なうとともに、
製作が容易で水素吸蔵合金粉末の充填作業を容易にした
水素吸蔵合金を貯蔵した水素輸送容器を提供することに
ある。SUMMARY OF THE INVENTION The present invention solves the above problem so that a hydrogen density equal to or higher than that of liquid hydrogen can be obtained without requiring a high pressure.
Its purpose is to efficiently fill and release hydrogen,
An object of the present invention is to provide a hydrogen transport container storing a hydrogen storage alloy which is easy to manufacture and facilitates a filling operation of the hydrogen storage alloy powder.
【0012】[0012]
【課題を解決するための手段】以上のような課題を解決
するため、本発明の第1の発明においては、水素吸蔵合
金を用いた水素輸送容器であって、該容器内に配設され
て複数本の外面多孔金属薄板・内面超最密濾布構造体よ
りなる円筒型のバックルと、該バックル内に同芯状に配
設されて外面にスパイラル状のフィンと内面に熱交換用
の温冷水を通す二重管を備えたスパイラルエレメント
と、該バックルと該スパイラルエレメントとで形成され
る空間に充填される微粉末状の水素吸蔵合金と、該容器
内の水素温度を検出する温度センサと、該容器内の水素
圧力を検出する圧力センサーと、を備えてなる構成とし
た。また、第1の発明を主体にした第2の発明において
は、第1の発明における前記スパイラルエレメントとし
て、内面にスパイラル状の凹凸を備えた銅管を使用する
こととした。更に、第1の発明を主体にした第3の発明
においては、第1の発明における前記スパイラルエレメ
ントとして、内面にスパイラル邪魔板を備えた銅管を使
用することとした。According to a first aspect of the present invention, there is provided a hydrogen transporting container using a hydrogen storage alloy, which is disposed in the container. A cylindrical buckle composed of a plurality of outer-surface porous metal thin plates and an inner-surface ultra-close-packed filter cloth structure; A spiral element having a double pipe through which cold water passes, a fine powdered hydrogen storage alloy filled in a space formed by the buckle and the spiral element, and a temperature sensor for detecting a hydrogen temperature in the container; And a pressure sensor for detecting the hydrogen pressure in the container. Further, in the second invention mainly based on the first invention, a copper tube having a spiral unevenness on an inner surface is used as the spiral element in the first invention. Further, in a third invention mainly based on the first invention, a copper tube having a spiral baffle plate on an inner surface is used as the spiral element in the first invention.
【0013】[0013]
【発明の実施の形態】本発明の水素輸送容器内のバック
ルに内蔵された水素吸蔵合金への水素の吸蔵は熱交換用
のスパイラル状のフィンを備えたスパイラルエレメント
の内面に冷水を流した状態で、水素供給・排出用の水素
配管に取り付けられた圧力センサをモニタして圧力容器
内を一定の圧力に制御しながら水素を水素配管より供給
して行なう。また、水素の放出は熱交換用のスパイラル
状のフィンを備えたスパイラルエレメントの内面に温水
を流した状態で、水素供給・排出用の水素配管に取り付
けられた圧力センサをモニタして圧力容器内を一定の圧
力に制御しながら水素配管より水素を排出する。尚、水
素の吸蔵、放出時の温冷水温度及び圧力容器内の圧力は
吸蔵合金成分に応じて設定する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The storage of hydrogen in a hydrogen storage alloy contained in a buckle in a hydrogen transport container according to the present invention is performed by flowing cold water through the inner surface of a spiral element having spiral fins for heat exchange. Then, hydrogen is supplied from the hydrogen pipe while monitoring the pressure sensor attached to the hydrogen pipe for hydrogen supply / discharge and controlling the inside of the pressure vessel to a constant pressure. The release of hydrogen was monitored by monitoring the pressure sensor attached to the hydrogen supply / discharge hydrogen pipe while the hot water was flowing through the inside of the spiral element with spiral fins for heat exchange. While controlling to a constant pressure, hydrogen is discharged from the hydrogen pipe. The temperature of hot and cold water at the time of storing and releasing hydrogen and the pressure in the pressure vessel are set in accordance with the storage alloy component.
【0014】熱媒体との熱交換効率を向上させるために
は、熱媒体に乱流を創生させることが重要である。熱媒
体を層流で流す場合に比べて、熱媒体を乱流で流す場合
の熱交換効率は大幅に向上することを実験により、確認
して本発明に至ったものである。これを実現させたもの
が、本発明における第2の発明と第3の発明である。即
ち、熱交換用のスパイラル状のフィンを備えたスパイラ
ルエレメントにある程度高圧の温冷水を通して、内面に
スパイラル状の突起を設けることにより温冷水の乱流の
創生が容易となるので熱伝導が良好となる。更に、スパ
イラルエレメント内面にスパイラル邪魔板を設けること
により温冷水の流れが著しく乱流となり、熱伝導がより
良好となる。また、スパイラルエレメントの外面に取付
けた銅製スパイラルフィンにより粉末状の水素吸蔵合金
に均一に熱が伝えられる。In order to improve the efficiency of heat exchange with the heat medium, it is important to create turbulence in the heat medium. It has been confirmed by experiments that the heat exchange efficiency when the heat medium flows in a turbulent flow is significantly improved as compared with the case where the heat medium flows in a laminar flow. This is achieved by the second and third inventions of the present invention. That is, by passing hot and cold water at a high pressure to some extent through a spiral element having spiral fins for heat exchange and providing spiral-shaped projections on the inner surface, it becomes easy to create a turbulent flow of hot and cold water, so heat conduction is good. Becomes Further, by providing the spiral baffle on the inner surface of the spiral element, the flow of the hot and cold water becomes remarkably turbulent, and the heat conduction is further improved. Further, heat is uniformly transmitted to the powdery hydrogen storage alloy by the copper spiral fin attached to the outer surface of the spiral element.
【0015】[0015]
【実施例】本発明の実施例を図1〜図5に基づいて説明
する。図1は本発明の実施例に係る水素輸送容器の全体
構成図、図2は図1におけるA−A位置での断面図、図
3はスパイラルエレメントの構成の説明図、図4はスパ
イラルエレメントの内面にスパイラル状の突起を設けた
実施例、図5はスパイラルエレメントの内面に挿入する
スパイラル邪魔板の説明図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 is an overall configuration diagram of a hydrogen transport container according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along a line AA in FIG. 1, FIG. 3 is an explanatory diagram of a configuration of a spiral element, and FIG. Embodiment in which a spiral projection is provided on the inner surface, FIG. 5 is an explanatory view of a spiral baffle inserted into the inner surface of the spiral element.
【0016】最初に本発明による水素輸送容器の構成を
図1に基づいて説明する。本発明による水素輸送容器1
は鋼板製の耐圧1MPaの板厚3mm、外径300mm
長さ1000mmの容器(タンク)11と、圧力センサ
ー20を持つ水素供給・排出用の水素配管13と、熱交
換用の温冷水入口配管16及び出口配管17と、前記圧
力容器11内部には円筒型の外面厚さ0.6mmの多孔
アルミ薄板で内面超最密濾布構造となった3本の水素吸
蔵合金封入用バックル12が複数個の水素通過穴24を
有するバックル設置板18と保持エレメント25により
固定されている。前記バックルの中心には、内面(管
内)に銅製の二重管と外面(管外)に10mmピッチ
(間隔)の銅製スパイラルフィン23が取り付けられて
いる熱交換用の温冷水を通すスパイラルエレメント14
が配設されている。温冷水は内管より流入し内管28の
外側より流出する構造となっており、各々の入口と出口
は前記圧力容器の温冷水入口配管16と温冷水出口配管
17に繋がっている。水素吸蔵合金バックルには0.1
μm以下に微粉砕されたTi−V−Cr系の水素吸蔵合
金15が各1kg程度充填されており、水素吸蔵合金バ
ックル内には温度センサー19が取り付けられている。First, the structure of the hydrogen transport container according to the present invention will be described with reference to FIG. Hydrogen transport container 1 according to the present invention
Is a steel plate made of steel plate with a pressure resistance of 1 MPa, a thickness of 3 mm, and an outer diameter of 300 mm.
A vessel (tank) 11 having a length of 1000 mm, a hydrogen pipe 13 for supplying and discharging hydrogen having a pressure sensor 20, a hot / cold water inlet pipe 16 and an outlet pipe 17 for heat exchange, and a cylinder inside the pressure vessel 11 Three buckles 12 for enclosing a hydrogen-absorbing alloy, each having a plurality of hydrogen-passing holes 24, and a holding element having three ultra-close-packed filter cloth structures formed of a porous aluminum thin plate having an outer surface thickness of 0.6 mm. 25. At the center of the buckle, a spiral element 14 for passing hot and cold water for heat exchange, having a copper double pipe on the inner surface (inside the tube) and copper spiral fins 23 with a 10 mm pitch (interval) on the outer surface (outside the tube).
Are arranged. The hot and cold water flows in from the inner pipe and flows out from the outer side of the inner pipe 28. Each inlet and outlet is connected to the hot and cold water inlet pipe 16 and the hot and cold water outlet pipe 17 of the pressure vessel. 0.1 for hydrogen storage alloy buckle
Each 1 kg of a Ti-V-Cr-based hydrogen storage alloy 15 finely pulverized to not more than μm is filled, and a temperature sensor 19 is mounted in the hydrogen storage alloy buckle.
【0017】ここで、上述した水素吸蔵合金封入用バッ
クル12の構造について説明する。バックル12の母体
26を多孔アルミ薄板で片側を開口させ、図3のように
円筒型に形成する。このバックルの母体26の内面に超
最密濾布構造(目開き量が0.005〜0.01μm)
のチラノ繊維等からなるフィルタ27をコーティングす
る。このフィルタは0.1μm程度の水素吸蔵合金粉末
の通過を阻止して、水素ガスのみを通過させるものであ
る。このフィルタとしては耐熱温度100〜200℃の
ものを使用する。上述のように、バックル12が外面多
孔アルミ薄板・内面超細密濾布構造のため、水素吸蔵合
金の水素吸蔵・放出による体積の膨張・収縮に充分追従
できる。Here, the structure of the above-described buckle 12 for enclosing a hydrogen storage alloy will be described. The base body 26 of the buckle 12 is formed in a cylindrical shape as shown in FIG. An ultra-close-packed filter cloth structure on the inner surface of the base 26 of the buckle (opening amount 0.005 to 0.01 μm)
Is coated with a filter 27 made of Tyranno fiber or the like. This filter blocks passage of the hydrogen storage alloy powder of about 0.1 μm and allows only hydrogen gas to pass. As this filter, a filter having a heat resistant temperature of 100 to 200 ° C. is used. As described above, since the buckle 12 has the outer surface porous aluminum thin plate and the inner surface ultra-fine filter cloth structure, the buckle 12 can sufficiently follow the expansion and contraction of the volume due to hydrogen storage and release of the hydrogen storage alloy.
【0018】次に、熱交換器における熱媒体の流れにつ
いて説明する。本発明における第2の発明と第3の発明
は熱交換器における熱媒体の流れ(乱流を創生するこ
と)が熱交換効率に大きな影響を持っていることに着目
してなされたものである。即ち、熱媒体が伝熱面を流れ
るとき、この熱媒体の流れを乱流にすることにより、熱
交換効率を飛躍的に向上させることができる。以下に、
熱媒体を乱流にさせる具体的な方法を実施例に基づいて
説明する。第2の実施例を図4に基づいて説明する。ス
パイラルエレメントを構成する熱媒体の円管22を銅製
とし、円管内に砂を詰めて、円管外周面にローラを荷重
を加えながら転動させる。円管を一定の速度で送りなが
ら回転させることにより、図4に示したようなスパイラ
ル状の溝が形成される。円管の内面にはスパイラル状の
突起が形成されており、この面を熱媒体が流れるとき
に、この突起により流れが乱されて乱流となる。Next, the flow of the heat medium in the heat exchanger will be described. The second invention and the third invention in the present invention have been made by paying attention to the fact that the flow of the heat medium (creating turbulence) in the heat exchanger has a great influence on the heat exchange efficiency. is there. That is, when the heat medium flows through the heat transfer surface, the flow of the heat medium is made turbulent, whereby the heat exchange efficiency can be significantly improved. less than,
A specific method for causing the heat medium to be turbulent will be described based on examples. A second embodiment will be described with reference to FIG. The circular pipe 22 of the heat medium constituting the spiral element is made of copper, sand is filled in the circular pipe, and the roller is rolled while applying a load to the outer peripheral surface of the circular pipe. By rotating the circular tube while feeding it at a constant speed, a spiral groove as shown in FIG. 4 is formed. Spiral projections are formed on the inner surface of the circular tube. When the heat medium flows through this surface, the flow is disturbed by the projections, resulting in turbulent flow.
【0019】更に、第3の実施例を図5に基づいて説明
する。スパイラルエレメントを構成する熱媒体用円管2
2を二重管としないで、内管28の代わりに図5に示す
ようなスパイラル状の邪魔板を熱媒体用円管22の内面
に挿入する。このスパイラル状の邪魔板の片側が熱媒体
の入口側になり、反対側が熱媒体の出口側(戻り側)に
なる。このように構成したスパイラルエレメントの内部
に熱媒体を流すと、熱媒体の流線が乱れて伝熱面の境膜
が剥離し、乱流状態になる。Further, a third embodiment will be described with reference to FIG. Heat medium circular tube 2 constituting spiral element
Instead of using the double tube 2, a spiral baffle plate as shown in FIG. 5 is inserted into the inner surface of the heat medium circular tube 22 instead of the inner tube 28. One side of the spiral baffle plate is the inlet side of the heat medium, and the other side is the outlet side (return side) of the heat medium. When a heat medium flows inside the spiral element configured as described above, the streamline of the heat medium is disturbed, and the film on the heat transfer surface is peeled off, resulting in a turbulent state.
【0020】次に、水素輸送容器での輸送効率について
説明する。水素輸送容器1の内容積からバックル12の
容積を除いた空間をできるだけ狭くすることにより、水
素輸送容器全体をコンパクト化することができる。本実
施例においては、輸送容器内には3本のバックルが挿入
されているが、バックルの数を増やすことにより、水素
輸送容器全体の体積に占めるバックル12の体積の比率
を大きくすることができる。このようにして、水素の輸
送効率を向上させることができる。Next, the transport efficiency in the hydrogen transport container will be described. By making the space excluding the volume of the buckle 12 from the internal volume of the hydrogen transport container 1 as small as possible, the entire hydrogen transport container can be made compact. In this embodiment, three buckles are inserted in the transport container. However, by increasing the number of buckles, the ratio of the volume of the buckle 12 to the entire volume of the hydrogen transport container can be increased. . Thus, the efficiency of transporting hydrogen can be improved.
【0021】次に、本発明の特徴の一つであるスパイラ
ルフィンの効果について説明する。このスパイラルフィ
ンは熱伝導率の高い金属(例えば銅合金)製の板を螺旋
状にスパイラルエレメント14を構成する円管22の外
周面に固着させる。このフィンは水素吸蔵合金の粉末中
にあり、水素吸蔵合金との接触面積も広く取れる。ま
た、図示していないが、熱媒用の円管を回転させる(攪
拌機能の付加)ことにより、一層の熱交換効率の向上が
期待できる。一方、バックル内に微粉末の水素吸蔵合金
を密封する場合に、スパイラルフィンのスクリュー効果
(スクリューの押込み機能による脱揮効果)により微粉
末を最密充填することが容易にできるという優れた効果
を持っている。Next, the effect of the spiral fin, which is one of the features of the present invention, will be described. The spiral fin is formed by fixing a metal (for example, copper alloy) plate having a high thermal conductivity spirally to the outer peripheral surface of the circular tube 22 constituting the spiral element 14. These fins are in the powder of the hydrogen storage alloy, and can have a large contact area with the hydrogen storage alloy. Although not shown, by further rotating the heat medium circular tube (adding a stirring function), a further improvement in heat exchange efficiency can be expected. On the other hand, when the fine powder hydrogen storage alloy is sealed in the buckle, the excellent effect that the fine powder can be easily filled in the closest packing by the screw effect of the spiral fin (the devolatilization effect by the screw indenting function) can be obtained. have.
【0022】次に水素供給タンクへの水素の補充、即
ち、水素生産基地や大量に水素を貯蔵している施設より
水素輸送容器に水素を充填する方法について説明する。
熱交換用のスパイラルエレメント14に約10℃の冷水
を流し水素吸蔵合金15を冷却した状態で、水素入出し
用の水素配管13より1MPaに調圧した水素ガスを供
給すると、供給された水素は水素通過穴を有するバック
ル設置板18及び円筒型バックル12を通過し水素吸蔵
合金15に随時吸蔵される。この際水素吸蔵合金15の
水素吸蔵による発熱に伴い、水素吸蔵合金13は加熱さ
れるが、スパイラルメント14による冷却作用により温
度は40℃以下に押さえられる。Next, a method of replenishing the hydrogen supply tank with hydrogen, that is, a method of filling the hydrogen transport container with hydrogen from a hydrogen production base or a facility storing a large amount of hydrogen will be described.
When the hydrogen gas adjusted to 1 MPa is supplied from the hydrogen inlet / outlet hydrogen pipe 13 in a state where cold water of about 10 ° C. is flowed through the heat exchange spiral element 14 to cool the hydrogen storage alloy 15, the supplied hydrogen is It passes through the buckle setting plate 18 having the hydrogen passage hole and the cylindrical buckle 12 and is stored in the hydrogen storage alloy 15 as needed. At this time, the hydrogen storage alloy 13 is heated by the heat generated by the hydrogen storage alloy 15 storing the hydrogen, but the temperature is suppressed to 40 ° C. or lower by the cooling action of the spiral 14.
【0023】一方、水素供給タンクより水素ステーショ
ン等の小規模施設への水素供給、即ち、水素輸送容器の
水素を水素ステーション等の小規模施設へ放出させる方
法について説明する。熱交換用のスパイラルエレメント
14に約80℃の温水を流し水素吸蔵合金15を加熱す
ることで水素吸蔵合金15より水素を放出させて、水素
配管13より水素ステーションへ供給する。この際水素
放出圧力が一定の値(0.2MPa)となる様に、水素
入出し用の水素配管13の圧力センサ20により外部制
御盤を介し温水出口配管17のリモートコントロール流
量調整弁で温水の流量を調整する。On the other hand, a method of supplying hydrogen from a hydrogen supply tank to a small-scale facility such as a hydrogen station, that is, a method of discharging hydrogen from a hydrogen transport container to a small-scale facility such as a hydrogen station will be described. Hot water of about 80 ° C. is passed through the spiral element 14 for heat exchange to heat the hydrogen storage alloy 15, thereby releasing hydrogen from the hydrogen storage alloy 15 and supplying the hydrogen from the hydrogen pipe 13 to the hydrogen station. At this time, hot water is supplied by a remote control flow control valve of a hot water outlet pipe 17 by a pressure sensor 20 of a hydrogen pipe 13 for inputting / outputting hydrogen via an external control panel so that the hydrogen release pressure becomes a constant value (0.2 MPa). Adjust the flow rate.
【0024】[0024]
【発明の効果】以上説明した通り、本発明によれば、本
発明の水素輸送容器は熱交換器として、高い伝熱性能を
示すとともに軽量小型化が可能である。また、バックル
と円管とで形成される閉空間内に微粉末状の水素吸蔵合
金を充填する場合に、円管を回転させることにより水素
吸蔵合金を容易に最密充填することができる。更に、一
つのバックルでの水素吸蔵合金量に対する濾過面積の値
を大きくしているのでフィルターの目詰りに対しても安
全であり、水素の通過面積が大きいので発熱・吸熱反応
も効率的に進行する。また、熱媒体の流れを乱流となる
ように種々の工夫を施したので、水素吸蔵合金と熱媒体
との熱交換効率が飛躍的に向上した。従って、水素吸蔵
合金への水素充填と水素吸蔵合金からの水素放出に要す
る時間を大幅に短縮することが可能となった。As described above, according to the present invention, the hydrogen transport container of the present invention exhibits high heat transfer performance as a heat exchanger and can be reduced in weight and size. Further, when filling the closed space formed by the buckle and the circular tube with the hydrogen-absorbing alloy in the form of fine powder, the hydrogen-absorbing alloy can be easily and closely packed by rotating the circular tube. In addition, the value of the filtration area with respect to the amount of hydrogen storage alloy in one buckle is increased, so that it is safe against clogging of the filter, and the large hydrogen passage area allows the exothermic and endothermic reactions to proceed efficiently. I do. In addition, since various measures were taken to make the flow of the heat medium turbulent, the heat exchange efficiency between the hydrogen storage alloy and the heat medium was dramatically improved. Therefore, the time required for filling hydrogen into the hydrogen storage alloy and releasing hydrogen from the hydrogen storage alloy can be greatly reduced.
【図1】本発明の実施例に係る水素輸送容器の全体構成
図である。FIG. 1 is an overall configuration diagram of a hydrogen transport container according to an embodiment of the present invention.
【図2】図1におけるA−A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG.
【図3】スパイラルエレメントの構成の説明図である。FIG. 3 is an explanatory diagram of a configuration of a spiral element.
【図4】スパイラルエレメントの内面にスパイラル状の
突起を設けた実施例である。FIG. 4 is an embodiment in which a spiral projection is provided on the inner surface of the spiral element.
【図5】スパイラルエレメントの内面に挿入するスパイ
ラル邪魔板の説明図である。FIG. 5 is an explanatory view of a spiral baffle inserted into the inner surface of the spiral element.
1 水素輸送容器 11 容器(タンク) 12 バックル 13 水素配管 14 スパイラルエレメント 15 水素吸蔵合金 16 温冷水入口配管 17 温冷水出口配管 18 バックル設置板 19 温度センサー 20 圧力センサー 21 スパイラル状の邪魔板 22 熱媒体用円管 23 スパイラルフィン 24 水素通過穴 25 保持エレメント 26 バックルの母体 27 フィルタ(超最密濾布構造) 28 内管 DESCRIPTION OF SYMBOLS 1 Hydrogen transport container 11 Container (tank) 12 Buckle 13 Hydrogen pipe 14 Spiral element 15 Hydrogen storage alloy 16 Hot / cold water inlet pipe 17 Hot / cold water outlet pipe 18 Buckle installation plate 19 Temperature sensor 20 Pressure sensor 21 Spiral baffle plate 22 Heat medium Circular tube 23 Spiral fin 24 Hydrogen passage hole 25 Retention element 26 Base of buckle 27 Filter (ultra-tight filter cloth structure) 28 Inner tube
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 13/12 F28F 13/12 C Fターム(参考) 3E072 EA10 GA30 3L103 AA05 AA37 AA39 BB50 CC02 CC35 DD08 DD10 DD19 DD36 DD38 DD44 DD63 4G040 AA14 AA24 AA32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F28F 13/12 F28F 13/12 CF term (Reference) 3E072 EA10 GA30 3L103 AA05 AA37 AA39 BB50 CC02 CC35 DD08 DD10 DD19 DD36 DD38 DD44 DD63 4G040 AA14 AA24 AA32
Claims (3)
あって、該容器内に配設されて複数本の外面多孔金属薄
板・内面超最密濾布構造体よりなる円筒型のバックル
と、該バックル内に同芯状に配設されて外面にスパイラ
ル状のフィンと内面に熱交換用の温冷水を通す二重管を
備えたスパイラルエレメントと、該バックルと該スパイ
ラルエレメントとで形成される空間に充填される微粉末
状の水素吸蔵合金と、該容器内の水素温度を検出する温
度センサと、該容器内の水素圧力を検出する圧力センサ
ーと、を備えたことを特徴とした水素輸送容器。1. A hydrogen-transporting container using a hydrogen-absorbing alloy, comprising: a cylindrical buckle disposed in the container and comprising a plurality of outer-surface porous metal thin plates / inner-surface ultra-close-packed filter cloth structures; A spiral element provided concentrically in the buckle and having a spiral fin on the outer surface and a double pipe for passing hot and cold water for heat exchange on the inner surface; and the buckle and the spiral element. A hydrogen storage alloy in the form of a fine powder filled in a space, a temperature sensor for detecting a hydrogen temperature in the container, and a pressure sensor for detecting a hydrogen pressure in the container; container.
面にスパイラル状の突起を備えた銅管を使用することを
特徴とした請求項1に記載の水素輸送容器。2. The hydrogen transport container according to claim 1, wherein a copper tube having a spiral projection on an inner surface is used as the spiral element.
面にスパイラル邪魔板を備えた銅管を使用することを特
徴とした請求項1に記載の水素輸送容器。3. The hydrogen transport container according to claim 1, wherein a copper tube having a spiral baffle on an inner surface is used as the spiral element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001096864A JP2002295798A (en) | 2001-03-29 | 2001-03-29 | Hydrogen transport vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001096864A JP2002295798A (en) | 2001-03-29 | 2001-03-29 | Hydrogen transport vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002295798A true JP2002295798A (en) | 2002-10-09 |
Family
ID=18950732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001096864A Pending JP2002295798A (en) | 2001-03-29 | 2001-03-29 | Hydrogen transport vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002295798A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187174A (en) * | 2006-01-11 | 2007-07-26 | Kurimoto Ltd | Fuel hydrogen supply device |
JP2014080329A (en) * | 2012-10-16 | 2014-05-08 | Kobe Steel Ltd | Hydrogen storage/release apparatus |
CN106151869A (en) * | 2015-04-15 | 2016-11-23 | 石家庄安瑞科气体机械有限公司 | Solid high-voltage mixing hydrogen-storing device |
CN110131566A (en) * | 2018-02-08 | 2019-08-16 | 株式会社神户制钢所 | Fill method of the resin compounded hydrogen bearing alloy to container |
JP2020132451A (en) * | 2019-02-14 | 2020-08-31 | 株式会社神戸製鋼所 | Hydrogen storage module, hydrogen storage apparatus, and pipe with fins |
-
2001
- 2001-03-29 JP JP2001096864A patent/JP2002295798A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187174A (en) * | 2006-01-11 | 2007-07-26 | Kurimoto Ltd | Fuel hydrogen supply device |
JP2014080329A (en) * | 2012-10-16 | 2014-05-08 | Kobe Steel Ltd | Hydrogen storage/release apparatus |
CN106151869A (en) * | 2015-04-15 | 2016-11-23 | 石家庄安瑞科气体机械有限公司 | Solid high-voltage mixing hydrogen-storing device |
CN106151869B (en) * | 2015-04-15 | 2024-03-12 | 石家庄安瑞科气体机械有限公司 | Solid-state high-pressure mixed hydrogen storage device |
CN110131566A (en) * | 2018-02-08 | 2019-08-16 | 株式会社神户制钢所 | Fill method of the resin compounded hydrogen bearing alloy to container |
CN110131566B (en) * | 2018-02-08 | 2021-12-31 | 株式会社神户制钢所 | Method for filling container with resin-compounded hydrogen storage alloy |
JP2020132451A (en) * | 2019-02-14 | 2020-08-31 | 株式会社神戸製鋼所 | Hydrogen storage module, hydrogen storage apparatus, and pipe with fins |
JP7120940B2 (en) | 2019-02-14 | 2022-08-17 | 株式会社神戸製鋼所 | Hydrogen storage module, hydrogen storage device and finned tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112996591B (en) | Hydrogen reactor with catalyst in flow conduit | |
US4446111A (en) | Vessel for use in hydrogen/hydride technology | |
KR20120104182A (en) | Tank for storing and withdrawing hydrogen and/or heat | |
CN105289440B (en) | The hydrogen storage reactor and system that a kind of fin couples with coil heat exchanger | |
JP2009144901A (en) | Hydrogen storage system for fuel cell powered vehicle | |
CN101245895B (en) | Solid hydrogen storing device | |
JP5840591B2 (en) | Hydrogen storage / release device | |
CN101881369A (en) | Array solid hydrogen storage and discharge device | |
CN107202245B (en) | A kind of hydrogen storing apparatus of metal hydrides and working method | |
JP2009092148A (en) | Hydrogen storage device and method for filling hydrogen storage material | |
JP2002295798A (en) | Hydrogen transport vessel | |
US20040074144A1 (en) | Hydrogen storage tank having a hydrogen absorbing alloy | |
RU81568U1 (en) | HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE | |
JPH0436081B2 (en) | ||
JP2007327534A (en) | Hydrogen storage container and hydrogen occlusion/release device | |
JP2001248795A (en) | Hydrogen absorbing alloy tank | |
JPH1172200A (en) | Hydrogen storage alloy housing vessel | |
JPS62288495A (en) | Heat exchanger | |
JP2007315546A (en) | Hydrogen storage vessel and hydrogen absorption and desorption device | |
JPS5992902A (en) | Hydrogen from ammonia | |
JP4663839B2 (en) | Hydrogen recovery / storage container | |
JPS62131101A (en) | Steam generator | |
JPH0253362B2 (en) | ||
JP3104779B2 (en) | Hydrogen storage device using hydrogen storage alloy | |
JPS6321492A (en) | Heat exchanger |