EP3506894B1 - Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives - Google Patents

Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives Download PDF

Info

Publication number
EP3506894B1
EP3506894B1 EP17847576.0A EP17847576A EP3506894B1 EP 3506894 B1 EP3506894 B1 EP 3506894B1 EP 17847576 A EP17847576 A EP 17847576A EP 3506894 B1 EP3506894 B1 EP 3506894B1
Authority
EP
European Patent Office
Prior art keywords
day
compound
cromolyn
als
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17847576.0A
Other languages
German (de)
English (en)
Other versions
EP3506894C0 (fr
EP3506894A4 (fr
EP3506894A1 (fr
Inventor
David R. Elmaleh
Rudolph E. Tanzi
Timothy M. Shoup
Ana GRICLUC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Publication of EP3506894A1 publication Critical patent/EP3506894A1/fr
Publication of EP3506894A4 publication Critical patent/EP3506894A4/fr
Application granted granted Critical
Publication of EP3506894C0 publication Critical patent/EP3506894C0/fr
Publication of EP3506894B1 publication Critical patent/EP3506894B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/24Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2

Definitions

  • a ⁇ amyloid- ⁇
  • M1 classical activation
  • M2a alternative activation
  • M2b type II alternative activation
  • M2c acquired deactivation
  • microglia While resident microglial cells surrounding A ⁇ plaques are not as efficacious in degrading A ⁇ as newly infiltrated macrophages or monocytes (See, Thériault, et al., 2015; Varnum, et al., "The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain,” Arch. Immunol. Ther. Exp. (Warsz), 2012, 60(4):251-66 ), it has been shown that microglia are indeed capable of internalizing fibrillar and soluble A ⁇ , but are unable to process these peptides. (See Chung, et al., "Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells," J. Biol. Chem., 1999, 274:32301-8 ).
  • microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging.
  • M2- a switch from an M2- to an M1-skewed activation phenotype during aging.
  • Varnum, et al., 2012 Gratchev, et al., "Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals”
  • Immunobiology, 2006, 211(6-8):473-486 Colton, et al., "Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD," J. Neuroinflammation, 2006, 3:27 ).
  • microglia are activated by extracellularly deposited A ⁇ peptide ( Lotz, et al., "Amyloid beta peptide 1-40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures," J. Neurochem., 2005, 94:289-298 ; Reed-Geaghan, et al., "CD14 and toll-like receptors 2 and 4 are required for fibrillar A ⁇ -stimulated microglial activation," J. Neurosci., 2009, 29: 11982- 11992 ).
  • M1 activated microglia can produce reactive oxygen species and result in increased production of pro-inflammatory cytokines such as TNF ⁇ and interleukin (IL)-1 ⁇ .
  • the M1-type response of microglial cells has been shown to lower amyloid load but exacerbate neurofibrillary tangle pathology.
  • Shaftel et al. Shaftel, et al., "Sustained hippocampal IL- 1 ⁇ overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology," J. Clin. Invest., 2007, 117(6):1595-604 ) have shown that IL-1 ⁇ expression may underlie a beneficial neuroinflammatory response in AD, and that IL-1 ⁇ overexpression in the hippocampus of APP/PS 1 transgenic mice results in decreased amyloid burden.
  • the authors suggest that IL-1 ⁇ -mediated activation of microglia is the mechanism for the reductions in amyloid deposition.
  • Macrophage M2 activation is associated with mediators that are known to contribute to the anti-inflammatory actions and reorganization of extracellular matrix ( Zhu, et al., "Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation", Science, 2004, 304(5677):1678-82 ; Walker, et al., 2015; Wilcock, et al., 2012).
  • Microglia with M2a phenotypes have increased phagocytosis and produce growth factors such as insulin-like growth factor-1 and anti-inflammatory cytokines such as IL-10.
  • M2a Stimulation of macrophages by IL-4 and/or IL-13 results in an M2a state, sometimes called a wound-healing macrophage ( Edwards, et al., "Biochemical and functional characterization of three activated macrophage populations," J. Leukoc Biol., 2006, 80(6):1298-307 ) and it is generally characterized by low production of pro-inflammatory cytokines (IL-1, TNF and IL-6).
  • IL-1, TNF and IL-6 pro-inflammatory cytokines
  • the M2a responses are primarily observed in allergic responses, extracellular matrix deposition, and remodeling.
  • M2b macrophages are unique in that they express high levels of pro-inflammatory cytokines, characteristic of M1 activation, but also express high levels of the anti-inflammatory cytokine IL-10. (See, Moser DM., "The many faces of macrophage activation,” J. Leukoc Biol., 2003, 73(2):209-12 ).
  • M2c macrophage state is stimulated by IL-10 and is sometimes referred to as a regulatory macrophage.
  • M2c macrophages have anti-inflammatory activity that plays a role in the phagocytosis of cellular debris without the classical pro-inflammatory response (See, Moser DM., 2003). These cells express TGF ⁇ and high IL-10 as well as matrix proteins. (See, Mantovani, et al., "The chemokine system in diverse forms of macrophage activation and polarization," Trends Immunol., 2004, 25:677-686 ; Wilcock, et al., 2012). Plunkett et al.
  • microglia activated by extracellularly deposited A ⁇ protect neurons by triggering anti-inflammatory/neurotrophic M2 activation and by clearing A ⁇ via phagocytosis. This is a potential avenue for new therapeutic targets.
  • Yamamoto, et al. "Interferon- gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta- secretase expression in Swedish mutant APP transgenic mice," Am. J.
  • Pathol. 2007, 170:680-692 ; Yamamoto, et al., "Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes," J. Immunol., 2008, 181:3877-3886 ).
  • Mantovani et al. (Mantovani, et al., 2004) studied the effect of IL-4 as an important modulator of M2a microglial activation. It has been shown that gene delivery of IL-4 into APP+PS1 mice partially suppressed glial accumulation in the hippocampus, directly enhanced neurogenesis, restored impaired spatial learning, and also reduced A ⁇ deposition (Kiyota, et al., 2010).
  • Yamamoto et al. (Yamamoto, et al., 2007, 2008) examined macrophage-mediated A ⁇ degradation using pro- and anti-inflammatory cytokines in primary cultured human monocyte-derived macrophages (MDM) and microglia. These studies showed that anti-inflammatory and regulatory cytokines lead to an increase in M2a or M2c activation and enhanced A ⁇ clearance. Kiyota et al. (Kiyota et al., 2011) have shown sustained expression of IL-4 reduced astro/microgliosis, amyloid- ⁇ peptide (A ⁇ ) oligomerization and deposition, and enhanced neurogenesis.
  • MDM monocyte-derived macrophages
  • the invention encompasses methods of treating a neuron inflammation condition comprising administering a therapeutically effective amount to a patient in need thereof of a compound having the following formula: (F-ET-Cromolyn) wherein the neuron inflammation condition is selection from amyotrophic lateral sclerosis (ALS), Huntington's Disease, Parkinson's Disease (PD), ischemic stroke, and a condition associated with prion disease.
  • ALS amyotrophic lateral sclerosis
  • PD Parkinson's Disease
  • ischemic stroke ischemic stroke
  • a condition associated with prion disease a condition associated with prion disease.
  • the method uses the following compounds: Cromolyn Disodium; F-Cromolyn Diacid; ET-Cromolyn; Triol-Cromolyn; F-Triol-Cromolyn; Ac-Triol-Cromolyn; POM-Cromolyn; or
  • the compounds may be administered intraperitoneally (IP) and/or intravenously (IV).
  • IP intraperitoneally
  • IV intravenously
  • the compounds may be administered at a dose between about 1 mg and about 1000 mg per day.
  • the method of administration may be transdermally or by inhalation.
  • the method is a method of treating ALS further comprising co-administering CD4+; siRNA; miRNA that ameliorate ALS; glial morphology modifier; SOD1 control; Riluzole; or another M1; M2 conversion active drug that controls neuroinflammation.
  • the invention encompasses anti-inflammatory compounds to reduce the toxic effect of pro-inflammatory cytokines by converting microglia from a pro-inflammatory M1 state to an M2 state in which the toxic effects are reduced and their phagocytic activity toward amyloidosis, tauopathies and other cytotoxic events is enhanced.
  • the invention also encompasses the use of the compounds to affect therapy early in the disease process.
  • the compounds described herein are the only effective, non-cytokine (e.g. IL-10) compounds exhibiting M1-to-M2 activity.
  • the invention encompasses a compound having the following formula: for use in the treatment of a neuron inflammation condition in a patient in need thereof, wherein the neuron inflammation condition is selected from amyotrophic lateral sclerosis (ALS), Huntington's Disease, Parkinson's disease (PD), ischemic stroke, and a condition associated with prion disease.
  • Certain comparative examples also include 5-[3-(2-carboxy-4-oxochromen-5-yl)oxy-2-hydroxypropoxy]-4-oxochromene-2-carboxylic acid derivatives and isomeric forms.
  • the compounds may be used to treat ALS including, but not limited to, slowing down or halting the progression of the disease.
  • the compounds may be administered in combination with other anti-inflammatory agents to control the spread of the progressive and fatal effect of ALS.
  • the invention encompasses a combination treatment for ALS of M1, M2 conversion active drugs that control neuroinflammation, such as the drugs in the above formulas, with other immune targeting therapies such as CD4+, siRNA, miRNA that ameliorates ALS, glial morphology modifiers, SOD 1 controls, or Riluzole, the only approved drug for ALS.
  • M1, M2 conversion active drugs that control neuroinflammation such as the drugs in the above formulas
  • other immune targeting therapies such as CD4+, siRNA, miRNA that ameliorates ALS, glial morphology modifiers, SOD 1 controls, or Riluzole, the only approved drug for ALS.
  • the compounds will slow down or halt neuron damage for neurons located in the brain stem and/or the spinal cord, neurons, or motor neurons that affect voluntary body muscles.
  • the compounds may be administered using known methods for the administration of drugs, for example, IP, IV, transdermally, by inhalation.
  • the invention relates to methods of treating or slowing down the aggressive progression of a neurological disease, such as AD, Ischemic Stroke, ALS, or Prion, and the compound is administered by infusion or intraperitoneal administration.
  • the invention also provides pharmaceutical compositions comprising one or more compounds described herein in association with a pharmaceutically acceptable carrier.
  • these compositions are in unit dosage forms such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, auto-injector devices or suppositories; for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation.
  • the compounds may be incorporated into transdermal patches designed to deliver the appropriate amount of the drug in a continuous fashion.
  • the principal active ingredient is mixed with a pharmaceutically acceptable carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture.
  • a pharmaceutically acceptable carrier e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water
  • a pharmaceutically acceptable carrier e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical dilu
  • a dry powder composition is micronized for inhalation to the lungs. See for example, U.S. Patent Application publication 2016/0263257 , and in particular regarding the dry powder cromolyn formulations described therein.
  • the dry powder composition further comprises at least one excipient.
  • the at least one excipient comprises Lactose monohydrate and/or Magnesium stearate.
  • the compounds may be administered in doses that treat the particular indication.
  • the dose is specifically tailored to lead to blood, brain, and CSF concentrations that allow the drugs to act as M1-to-M2 modifiers.
  • Such doses may include from about 1 mg to about 1000 mg per day.
  • the dosage of the active agents will generally be dependent upon a number of factors, including the pharmacodynamic characteristics of the compound, mode and route of administration of the compound, the health of the patient being treated, the extent of treatment desired, the nature and kind of concurrent therapy, if any, and the frequency of treatment and the nature of the effect desired.
  • dosage ranges of the compound often range from about 0.001 to about 250 mg/kg body weight per day.
  • a dosage may range from about 0.1 to about 25 mg/kg body weight.
  • some variability in this general dosage range may be required depending on the age and weight of the subject being treated, the intended route of administration, the particular agent being administered, and the like.
  • the determination of dosage ranges and optimal dosages for a particular mammal is also well within the ability of one of ordinary skill in the art having the benefit of the instant disclosure.
  • Dosages for compounds may be as low as 5 ng/d.
  • Dosage ranges for active agents may be from 5 ng/d to 100mg/day. In certain embodiments, dosage ranges for active agents may be from about 5 ng/day to about 10 ng/day, about 15 ng/day, about 20 ng/day, about 25 ng/day, about 30 ng/day, about 35 ng/day, about 40 ng/day, about 45 ng/day, about 50 ng/day, about 60 ng/day, about 70 ng/day, about 80 ng/day, about 90 ng/day, about 100 ng/day, about 200 ng/day, about 300 ng/day, about 400 ng/day, about 500 ng/day, about 600 ng/day, about 700 ng/day, about 800 ng/day, or about 900 ng/day.
  • dosage ranges for compounds may be from about 1 ⁇ g/day to about 2 ⁇ g/day, about 3 ⁇ g/day, about 4 ⁇ g/day, about 5 ⁇ g/day, about 10 ⁇ g/day, about 15 ⁇ g/day, about 20 ⁇ g/day, about 30 ⁇ g/day, about 40 ⁇ g/day, about 50 ⁇ g/day, about 60 ⁇ g/day, about 70 ⁇ g/day, about 80 ⁇ g/day, about 90 ⁇ g/day, about 100 ⁇ g/day, about 200 ⁇ g/day, about 300 ⁇ g/day, about 400 ⁇ g/day about 500 ⁇ g/day, about 600 ⁇ g/day, about 700 ⁇ g/day, about 800 ⁇ g/day, or about 900 ⁇ g/day.
  • dosage ranges for active agents may be from about 1mg/day to about 2 mg/day, about 3 mg/day, about 4 mg/day, about 5 mg/day, about 10 mg/day, about 15 mg/day, about 20 mg/day, about 30 mg/day, about 40 mg/day, about 50 mg/day, about 60 mg/day, about 70 mg/day, about 80 mg/day, about 90 mg/day, about 100 mg/day, about 200 mg/day, about 300 mg/day, about 400 mg/day, about 500 mg/day, about 600 mg/day, about 700 mg/day, about 800 mg/day, or about 900 mg/day.
  • the compounds are administered in pM or nM concentrations. In certain embodiments, the compounds are administered in about 1 pM, about 2 pM, about 3 pM, about 4 pM, about 5 pM, about 6 pM, about 7 pM, about 8 pM, about 9 pM, about 10 pM, about 20 pM, about 30 pM, about 40 pM, about 50 pM, about 60 pM, about 70 pM, about 80 pM, about 90 pM, about 100 pM, about 200 pM, about 300 pM, about 400 pM, about 500 pM, about 600 pM, about 700 pM, about 800 pM, about 900 pM, about 1 nM, about 2 nM, about 3 nM, about 4 nM, about 5 nM, about 6 nM, about 7 nM, about 8 nM, about 9 nM, about 10 nM, about 20 pM,
  • the dosage form is a solid dosage form, and the size of the compound in the dosage form is important.
  • the compound is less than about 3 ⁇ m, less than about 2 ⁇ m, or less than about 1 ⁇ m in diameter.
  • the active agent is about 0.1 ⁇ m to about 3.0 ⁇ m in diameter. In certain embodiments, the active agent is from about 0.5 ⁇ m to about 1.5 ⁇ m in diameter.
  • the active agent is about 0.2 ⁇ m, about 0.3 ⁇ m, about 0.4 ⁇ m, about 0.5 ⁇ m, about 0.6 ⁇ m, about 0.7 ⁇ m, about 0.8 ⁇ m, about 0.9 ⁇ m, about 1.0 ⁇ m, about 1.1 ⁇ m, about 1.2 ⁇ m, about 1.3 ⁇ m, about 1.4 ⁇ m, or about 1.5 ⁇ m in diameter.
  • a formulation intended for oral administration to humans may contain from about 0.1 mg to about 5 g of the active agent (or compound) compounded with an appropriate and convenient carrier material varying from about 5% to about 95% of the total composition.
  • Unit dosages will generally contain between about 0.5 mg to about 1500 mg of the active agent.
  • the dosage may be about: 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 21 mg, 22 mg, 23 mg, 24 mg 25 mg, 26 mg, 27 mg, 28 mg, 29 mg, 30 mg, 31 mg, 32 mg, 33 mg, 34 mg 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 55 mg, 60 mg, 65, mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 100 mg, etc., up to about 1500 mg of the compound.
  • the invention relates to combination of two active agents.
  • the ratio of the first active agent to the second active agent is about: 200:1, 190:1, 180:1, 170:1, 160:1, 150:1, 140:1, 130:1, 120:1, 110:1, 100:1, 90:1, 80:1, 70:1, 60:1, 50:1, 40:1, 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1. It further may be preferable to have a more equal distribution of pharmaceutical agents.
  • the ratio of the first active agent to the second active agent is about: 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, or 1:4. It may also be advantageous for the pharmaceutical combination to have a relatively large amount of the second component compared to the first component. In certain instances, the ratio of the second active agent to the first active agent is about 200:1, 190:1, 180:1, 170:1, 160:1, 150:1, 140:1, 130:1, 120:1, 110:1, 100:1, 90:1, 80:1, 70:1, 60:1, 50:1, 40:1, 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1.
  • a composition comprising any of the above identified combinations of the first therapeutic agent and second therapeutic agent may be administered in divided doses about 1, 2, 3, 4, 5, 6, or more times per day or in a form that will provide a rate of release effective to attain the desired results.
  • the dosage form may contain both the first and second active agents.
  • the dosage form may be administered one time per day if it contains both the first and second active agents.
  • a formulation intended for oral administration to humans may contain from about 0.1 mg to about 5 g of the first therapeutic agent and about 0.1 to about 5 g of the second therapeutic agent, both of which are compounded with an appropriate and convenient about of carrier material varying from about 5% to about 95% of the total composition.
  • Unit dosages will generally contain between about 0.5 mg to about 1500 mg of the first therapeutic agent and 0.5 mg to 1500 mg of the second therapeutic agent.
  • the dosage may be about: 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 100 mg, etc., up to about 1500 mg of the first therapeutic agent.
  • the dosage may be about: 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 100 mg, etc., up to about 1500 mg of the second therapeutic agent.
  • Fig. 1B illustrates representative images of localization of amyloid deposits (6E10) and microglia (Iba1) in mice treated with Cromolyn Sodium (3.15mg/kg) or PBS daily for seven days.
  • Fig. 1C illustrates the effect of Cromolyn Sodium on microglial A ⁇ uptake in vitro. Microglial cells were cultured and incubated with 50 nM of synthetic A ⁇ 40 or A ⁇ 42 and 0, 10 nM, 10 ⁇ M or 1 mM of Cromolyn Sodium for 16 hours. After the incubation, the concentrations of A ⁇ x-40 ( Fig.
  • FIG. 2 illustrates representative plaques of all the plaques and the microglial cells surrounding those deposits in Tg-2576 mice of the study.
  • An image analysis looking at the percentage of Iba-1 positive processes colocalizing with the amyloid staining versus the total amount of Iba-1 signal surrounding the plaque demonstrated that there was more Iba-1/Amyloid colocalization when the mice were treated with Cromolyn Sodium as opposed to any other groups. This result correlates with our results in Example 1 and our in vitro data.
  • BV2 microglial cell cultures were treated with cromolyn and/or ibuprofen (10 ⁇ M, 100 ⁇ M, 1 mM) for 16 hours. Afterwards, cells were incubated with soluble A ⁇ 42 and the compounds for 3 hours. After incubation, cells were collected for ELISA analysis.
  • Figure 3 graphically illustrates the results of BV2 microglial cells treated with cromolyn, and with cromolyn and ibuprofen exhibit increased A ⁇ 42 uptake levels relative to BV2 microglia treated with the vehicle.
  • Acetic anhydride (0.5 g, 4.6 mmol) was slowly added to a mixture of 5,5'-[(2-hydroxy-1,3-propanediyl)bis(oxy)]bis[4-oxo-4 H -1-benzopyran-2-ethanol (0.5 g, 1.14 mmol) in pyridine (20 mL) cooled to 0-5°C. The mixture was stirred for 3 hr at 0-5°C and then allowed to warm to room temperature. TLC indicted the reaction was complete. Methylene chloride was added and the mixture was washed with 10% HCl until the aqueous phase was acidic. The methylene chloride layer was dried over anhydrous sodium sulfate and solvent was evaporated.
  • Example 4 A ⁇ aggregation inhibition assay.
  • Synthetic Aa ⁇ 42 in final 5 uM was incubated with 10, 100, 1,000 nM of test compounds for 1 hour.
  • the aggregation was initiated with heparin at 0.5 mg/ml in final concentration.
  • the assay buffer consisted of 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl 2 , 1.25 mM Na 2 H 2 PO 4 , 2 mM CaCl 2 , 25 mM Glucose, and NaHCO 3 to adjust pH to 7.4.
  • the assay buffer was used as a control.
  • the aggregation was measured by intensity of Thioflavin T binding, which was detected by fluorescent excitation/emission at 450 nm/480 nm (Spectra Max M3 plate reader, Molecular Devices) in a kinetic mode. Aggregation was recorded as the kinetics was calculated as Vmax by the plate reader's software.
  • the assay was performed in triplicate and expressed as standard mean ⁇ SD. Blue dotted line indicate the assay buffer control.
  • Figure 4 illustrates the results of the assay.
  • Figure 5 graphically illustrates the results of a one-way of the differences in the A ⁇ levels and the ratios of A ⁇ (42:40).
  • BV2-CD33 WT The effect of compounds in BV2 cells stably expressing full-length human CD33 was assessed to explore whether they reverse CD33-mediated inhibition of A ⁇ uptake ( Griciuc et al., 2013 Neuron 78, 631-643 ).
  • the compound numbers, molecular weight and concentration of the stock solutions are summarized in Table 1.
  • the invention relates to cromolyn derivative C4.
  • Cromolyn derivatives C1-C3 and C5-C8 are not part of the invention.
  • Cromolyn derivatives, C3 and C4 displayed lower solubility in DMSO in comparison to C1, C2, C5, C6, C7 and C8. Therefore, a 25 mM stock solutions for all the compounds except for C3 and C4 were prepared.
  • the stock solutions for C3 and C4 were prepared at 5 mM and 7.5 mM, respectively.
  • C1 is the parent compound - cromolyn disodium.
  • Table 1 Summary of compounds tested in microglial cells Compound Number Compound Name Stock Solution (mM) C1 Cromolyn Disodium 25 C2 F-Cromolyn Diacid 25 C3 ET-Cromolyn 5 C4 F-ET-Cromolyn 7.5 C5 Triol-Cromolyn 25 C6 F-Triol-Cromolyn 25 C7 Ac-Triol-Cromolyn 25 C8 POM-Cromolyn 25
  • naive BV2 cells were treated with DMSO (control) or cromolyn at 500 ⁇ M for 16 hours. Afterwards, cells were washed with PBS and treated with DMSO or cromolyn in the presence of the fluorescently-tagged A ⁇ 42 peptide (400 nM, red) for 2 hours. At the end of the treatment, the cells were washed and labeled them with a plasma membrane dye (green). Using confocal microscopy and the fluorescence signal in the red channel, the levels of intracellular A ⁇ 42 peptide were quantified. All the quantifications were performed by a blind observer with the ImageJ software. Remarkably, cromolyn sodium led to increased uptake of A ⁇ 42 in naive BV2 microglial cells ( Fig. 6A-Fig. 6D ).
  • cromolyn sodium modulates A ⁇ 42 uptake in na ⁇ ve BV2 microglial cells was determined by using the ELISA assay. Additionally, whether cromolyn sodium leads to increased A ⁇ 42 uptake levels in BV2 cells stably expressing full-length human CD33 (BV2-CD33 WT ) was determined. To this purpose, both naive BV2 and BV2-CD33 WT cell lines were treated with DMSO (control) or cromolyn at different concentrations for 16 hours. Then, the cells were washed with PBS and treated with DMSO or cromolyn and soluble untagged A ⁇ 42 peptide (400 nM) for 2 hours. The collected cell lysates were analyzed for A ⁇ 42 uptake levels using the A ⁇ 42-specific ELISA kit from Wako. The ELISA results were normalized to the protein concentration levels that were previously quantified using the BCA assay.
  • naive BV2 or BV2-CD33 WT cells were plated in proliferating media.
  • cells were treated with DMSO (control) or the compounds at different concentrations in proliferating media for 3 hours.
  • C1, C2, C5, C6, C7 and C8 were tested at 10, 50, 100 and 150 ⁇ M, while C3 and C4 were assessed at 5, 25, 50 and 75 ⁇ M due to solubility limit in DMSO.
  • cells were washed with PBS and treated with DMSO or compounds in the presence of the untagged A ⁇ 42 peptide (400 nM) in DMEM media for 2 hours.
  • naive BV2 microglial cells were incubated with DMSO (vehicle) or cromolyn derivatives at different concentrations for 3 hours. The cells were then washed and incubated with DMSO or compounds and soluble untagged A ⁇ 42 for additional 2 hours. Afterwards, the cell media was collected and measured LDH released by the damaged cells to identify the compounds that induce cytolysis. The LDH assay showed that the cromolyn derivative C8 is the only compound showing toxicity when tested at 100 and 150 ⁇ M ( Fig. 8 ). Therefore, 100 and 150 ⁇ M concentrations for C8 were excluded from the A ⁇ 42 uptake assays.
  • Example 8 Modulation of A ⁇ 42 uptake in microglial cells by cromolyn derivatives
  • naive BV2 microglial cells were treated with DMSO (control) or cromolyn derivative compounds at different concentrations for 3 hours. Afterwards, the cells were washed and treated with DMSO or compounds in the presence of untagged A ⁇ 42 peptide for 2 hours. At the end of the treatment, the cell lysates were collected. The analysis for intracellular A ⁇ 42 levels is performed using an A ⁇ 42-specific ELISA kit. The parent compound C1 (cromolyn sodium) led to a modest increase of A ⁇ 42 uptake at 100 and 150 ⁇ M in BV2 cells.
  • the C1 aliquot received with the other cromolyn derivatives displayed lower solubility in DMSO than the C1 aliquot that was sent to us the first time (without the cromolyn derivatives).
  • the compound C6 led to a robust inhibition of A ⁇ 42 uptake in BV2 microglial cells.
  • the cromolyn derivative C4 led to an increased uptake of A ⁇ 42 peptide at 75 ⁇ M in naive BV2 microglial cells ( Fig. 9 ).
  • BV2-CD33 WT cells were treated with DMSO (control) or cromolyn derivatives at different concentrations ranging between 5 and 150 ⁇ M.
  • the cromolyn derivatives C1 and C3-8 were tested.
  • the compound C2 was tested with other cromolyn derivatives in the second set of experiments.
  • Treatment with the compound C4 at 75 ⁇ M resulted in a two-fold increase in A ⁇ 42 uptake in comparison to DMSO treatment and displayed a dose-dependent effect at 50 ⁇ M ( Fig. 10 ).
  • the IC 50 for C4 was 54.7 ⁇ M in BV2-CD33 WT cells.
  • the compound C6 exhibits a dose-dependent effect in mediating inhibition of A ⁇ 42 uptake in BV2-CD33 WT cells when compared to DMSO treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Dermatology (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Psychology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Claims (12)

  1. Composé ayant la formule suivante :
    Figure imgb0038
    destiné à une utilisation dans le traitement d'une inflammation des neurones chez un patient qui en a besoin, dans lequel l'inflammation de neurones est choisie parmi la sclérose latérale amyotrophique (SLA), la maladie de Huntington, la maladie de Parkinson (MP), l'accident ischémique et une affection associée à une maladie à prions
  2. Composé destiné à une utilisation selon la revendication 1, dans lequel lorsque l'inflammation des neurones est une SLA, le composé est administré par voie IP et/ou IV.
  3. Composé destiné à une utilisation selon la revendication 1, dans lequel le composé est administré par voie transdermique ou par inhalation.
  4. Composé destiné à une utilisation selon la revendication 1, dans lequel, lorsque l'inflammation des neurones est une SLA, l'utilisation comprend en outre la co-administration d'un second composé choisi parmi les CD4+ ; le siARN ; les miARN qui améliorent les SLA ; un modificateur de morphologie gliale ; le SOD1 de contrôle ; le riluzole, médicament anti-agrégation et médicament ciblant l'AD.
  5. Composé destiné à une utilisation selon la revendication 1, dans lequel, lorsque l'inflammation de neurones est une SLA, l'utilisation comprend en outre la co-administration d'un second composé choisi parmi un médicament de ciblage d'anticorps qui améliore la SLA et un médicament de ciblage anti-inflammatoire qui améliore la SLA.
  6. Composé destiné à une utilisation selon l'une quelconque des revendications 1 à 3, dans lequel l'utilisation comprend en outre la co-administration d'un second composé choisi parmi un médicament de ciblage qui améliore la neurodégénérescence associée à l'amyloïdose ou aux tauopathies.
  7. Composé destiné à une utilisation selon la revendication 1, dans lequel, lorsque l'inflammation des neurones
    est la MP, l'utilisation comprend en outre la co-administration d'un second composé choisi parmi un médicament ciblant l'alpha-synucléine qui améliore la MP et un médicament de ciblage de Parkinson qui améliore la MP.
  8. Composition pharmaceutique destinée à une utilisation dans le traitement d'une inflammation des neurones chez un patient qui en a besoin, dans laquelle l'inflammation de neurones est choisie parmi la sclérose latérale amyotrophique (SLA), la maladie de Huntington, la maladie de Parkinson (MP), l'accident ischémique et une affection associée à une maladie à prions ; et dans laquelle la composition pharmaceutique comprend un support pharmaceutiquement acceptable et
    Figure imgb0039
  9. Composition pharmaceutique destinée à une utilisation selon la revendication 8, dans laquelle la composition pharmaceutique est sous la forme d'un comprimé, d'une pilule, d'une capsule, d'une poudre, d'un granulé, d'une solution ou d'une suspension parentérale stérile, d'un aérosol dosé ou à pulvérisation liquide, d'une goutte, d'une ampoule, d'un dispositif d'auto-injection ou d'un suppositoire.
  10. Composition pharmaceutique destinée à une utilisation selon la revendication 8, dans laquelle la composition pharmaceutique est une composition solide.
  11. Composition pharmaceutique destinée à une utilisation selon la revendication 10, dans laquelle la composition solide est une poudre ou un comprimé.
  12. Composition pharmaceutique destinée à une utilisation selon la revendication 8 ou la revendication 9, dans laquelle la composition pharmaceutique est administrée par voie orale, parentérale, intranasale, sublinguale, rectale, par inhalation, ou par insufflation.
EP17847576.0A 2016-08-31 2017-08-31 Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives Active EP3506894B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662382192P 2016-08-31 2016-08-31
PCT/US2017/049702 WO2018045217A1 (fr) 2016-08-31 2017-08-31 Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23185892.9 Division-Into 2023-07-17

Publications (4)

Publication Number Publication Date
EP3506894A1 EP3506894A1 (fr) 2019-07-10
EP3506894A4 EP3506894A4 (fr) 2020-07-29
EP3506894C0 EP3506894C0 (fr) 2023-08-23
EP3506894B1 true EP3506894B1 (fr) 2023-08-23

Family

ID=61309436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17847576.0A Active EP3506894B1 (fr) 2016-08-31 2017-08-31 Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives

Country Status (8)

Country Link
US (3) US20190240194A1 (fr)
EP (1) EP3506894B1 (fr)
JP (2) JP2019524865A (fr)
KR (1) KR20190044647A (fr)
CN (2) CN116889562A (fr)
AU (1) AU2017321782B2 (fr)
CA (1) CA3033079A1 (fr)
WO (1) WO2018045217A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925282B2 (en) 2009-01-29 2018-03-27 The General Hospital Corporation Cromolyn derivatives and related methods of imaging and treatment
CA3111941A1 (fr) 2012-10-25 2014-05-01 The General Hospital Corporation Polytherapies pour le traitement de la maladie d'alzheimer et des troubles associes
US10525005B2 (en) 2013-05-23 2020-01-07 The General Hospital Corporation Cromolyn compositions and methods thereof
AU2014340182B2 (en) 2013-10-22 2019-05-23 The General Hospital Corporation Cromolyn derivatives and related methods of imaging and treatment
WO2017091644A1 (fr) * 2015-11-23 2017-06-01 Aztherapies, Inc. Compositions et méthodes de traitement d'un avc ischémique
EP3506894B1 (fr) 2016-08-31 2023-08-23 The General Hospital Corporation Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives
CN111163770A (zh) * 2017-07-08 2020-05-15 综合医院公司 鉴定用于治疗阿尔茨海默氏病的治疗性药物或试剂的筛选平台
CN111565711B (zh) 2017-07-20 2023-01-03 阿茨治疗股份有限公司 色甘酸钠和布洛芬的粉末化制剂
EP3773543A4 (fr) * 2018-04-09 2022-04-06 The General Hospital Corporation Polythérapies pour le traitement de la sclérose latérale amyotrophique et de troubles apparentés
KR20210071943A (ko) 2018-07-02 2021-06-16 더 제너럴 하스피탈 코포레이션 크로몰린 소듐 및 α-락토스의 분말화된 제형
KR20210071974A (ko) * 2018-09-05 2021-06-16 더 제너럴 하스피탈 코포레이션 사이토카인 방출 증후군을 치료하는 방법
CA3122989A1 (fr) * 2018-12-10 2020-06-18 The General Hospital Corporation Esters cromoglycique et leurs utilisations
CN112375058A (zh) * 2020-11-11 2021-02-19 杭州卢普生物科技有限公司 色甘酸二乙酯和色甘酸钠的制备方法
US20240067635A1 (en) * 2020-12-28 2024-02-29 David R. Elmaleh Cromolyn derivatives and uses thereof
WO2022178278A1 (fr) * 2021-02-19 2022-08-25 The Trustees Of Columbia University In The City Of New York Compositions et méthodes de modélisation de la microglie humaine

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686412A (en) 1965-03-25 1972-08-22 Colin Fitzmaurice Compositions containing bis-chromonyl compounds for inhibiting antigen-antibody reactions
GB1144905A (en) 1965-03-25 1969-03-12 Fisons Pharmaceuticals Ltd Substituted bis-(2-carboxy-chromonyl-oxy) derivatives and preparation and pharmaceutical compositions thereof
GB1242211A (en) 1967-08-08 1971-08-11 Fisons Pharmaceuticals Ltd Pharmaceutical composition
US3957965A (en) 1967-08-08 1976-05-18 Fisons Limited Sodium chromoglycate inhalation medicament
GB1257162A (fr) 1968-02-16 1971-12-15
US4405598A (en) 1976-01-30 1983-09-20 Fisons, Limited Composition for treating asthma
DE3104294A1 (de) 1981-02-07 1982-08-19 Hoechst Ag, 6000 Frankfurt Substituierte diazaspirodecane, ihre herstellung, ihre verwendung als stabilisatoren fuer organische polymere, sowie die so stabilisierten polymeren
US4429545A (en) 1981-08-03 1984-02-07 Ocean & Atmospheric Science, Inc. Solar heating system
BE897058A (fr) 1982-06-25 1983-12-16 Sandoz Sa Utilisation d'un derive du spiro-succinimide dans le traitement de la demence du type alzheimer
US4996296A (en) 1983-07-27 1991-02-26 Yeda Research & Development Co., Ltd. Cromolyn binding protein in highly purifed form, and methods for the isolation thereof
US5231170A (en) 1986-08-27 1993-07-27 Paul Averback Antibodies to dense microspheres
US4919915A (en) 1987-03-03 1990-04-24 Paul Averback Method for detecting the ability to prevent red-to-green congophilic birefringence
DE69034007T2 (de) 1989-04-28 2003-05-08 Riker Laboratories Inc., Northridge Inhalationsvorrichtung für Trockenpulver
US5376386A (en) 1990-01-24 1994-12-27 British Technology Group Limited Aerosol carriers
DE4405387A1 (de) 1994-02-19 1995-08-24 Hoechst Ag Verfahren zur Herstellung von Polyalkyl-1-oxa-diazaspirodecan-Verbindungen
US6168776B1 (en) 1994-07-19 2001-01-02 University Of Pittsburgh Alkyl, alkenyl and alkynyl Chrysamine G derivatives for the antemortem diagnosis of Alzheimer's disease and in vivo imaging and prevention of amyloid deposition
TR199600329A2 (tr) 1995-05-05 1997-03-21 Hoffmann La Roche Seker alkollerin yeni sülfürik asit esterleri.
US6026809A (en) 1996-01-25 2000-02-22 Microdose Technologies, Inc. Inhalation device
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US6309623B1 (en) 1997-09-29 2001-10-30 Inhale Therapeutic Systems, Inc. Stabilized preparations for use in metered dose inhalers
MEP4108A (xx) 1997-09-29 2010-02-10 Inhale Therapeutic Syst Perforisane mikročestice i postupci za njihovu primjenu
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
US5904937A (en) 1997-10-03 1999-05-18 Fmc Corporation Taste masked pharmaceutical compositions
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
KR100561223B1 (ko) 1998-06-12 2006-03-15 마이크로도스 테크놀로지즈 인코포레이티드 약제 및 약물의 계량, 포장 및 운송
US6197963B1 (en) 1998-08-13 2001-03-06 The Trustees Of The University Of Pennsylvania Non-peptide peptidomimetics
ATE382386T1 (de) 1998-11-13 2008-01-15 Jagotec Ag Multidosis-trockenpulverinhalator mit pulverreservoir
DK1140105T3 (da) 1998-12-24 2004-02-23 Janssen Pharmaceutica Nv Galantaminpræparat med styret frigivelse
JP2001151673A (ja) 1999-09-06 2001-06-05 Nikken Chem Co Ltd 吸入用粉末製剤の製造方法
US20020107173A1 (en) 1999-11-04 2002-08-08 Lawrence Friedhoff Method of treating amyloid beta precursor disorders
US20020009491A1 (en) 2000-02-14 2002-01-24 Rothbard Jonathan B. Compositions and methods for enhancing drug delivery across biological membranes and tissues
WO2001062284A2 (fr) 2000-02-21 2001-08-30 Pharmexa A/S Nouvelle methode de regulation negative d'amyloide
JP2003530437A (ja) 2000-04-13 2003-10-14 マヨ ファウンデーション フォー メディカル エデュケーション アンド リサーチ Aβ42低下物質
US20080021085A1 (en) 2000-04-13 2008-01-24 Mayo Foundation For Medical Education And Research Method of reducing abeta42 and treating diseases
PE20011227A1 (es) 2000-04-17 2002-01-07 Chiesi Farma Spa Formulaciones farmaceuticas para inhaladores de polvo seco en la forma de aglomerados duros
MY120279A (en) 2000-05-26 2005-09-30 Pharmacia Corp Use of a celecoxib composition for fast pain relief
US20020016359A1 (en) 2000-06-29 2002-02-07 Hellberg Mark R. Compositions and methods of treating neurodegenerative diseases
US8519005B2 (en) 2000-07-27 2013-08-27 Thomas N. Thomas Compositions and methods to prevent toxicity of antiinflammatory agents and enhance their efficacy
FR2815030A1 (fr) 2000-10-05 2002-04-12 Lipha Derives nitroso de la diphenylamine, compositions pharmaceutiques les contenant et leur utilisation pour la preparation de medicaments
US6511960B2 (en) 2001-01-05 2003-01-28 Alphamed Pharmaceuticals Corp Cromolyn for eye and ear infections
US6696039B2 (en) 2001-04-23 2004-02-24 Trustees Of The University Of Pennsylvania Amyloid plaque aggregation inhibitors and diagnostic imaging agents
US20040259952A1 (en) 2001-11-29 2004-12-23 Richat Abbas Formulations for oral administration of cromolyn sodium
ES2337350T3 (es) 2002-05-10 2010-04-23 Oriel Therapeutics, Inc. Inhalador de polvo seco para uso con medios de dispensacion activados por polimeros piezoelectricos y envases de blisteres asociado que comprende un material polimerico piezoelectrico.
EP1601379A1 (fr) * 2003-02-13 2005-12-07 Licentia OY Utilisation d'un agent de blocage d'activation ou de blocage de degranulation de mastocytes dans la preparation d'un medicament destine a traiter un patient sujet aux thrombolyses
US20060276455A1 (en) 2003-02-13 2006-12-07 Lindsberg Perttu J Use of a mast cell activation or degranulation blocking agent in the manufacture of a medicament for the treatment of cerebral ischemia
US20040223918A1 (en) 2003-05-07 2004-11-11 Chrysalis Technologies Incorporated Aerosolization of cromolyn sodium using a capillary aerosol generator
GB0321607D0 (en) 2003-09-15 2003-10-15 Vectura Ltd Manufacture of pharmaceutical compositions
US20070053843A1 (en) 2003-10-28 2007-03-08 Dawson Michelle L Inhalable pharmaceutical formulations employing lactose anhydrate and methods of administering the same
GB0326632D0 (en) 2003-11-14 2003-12-17 Jagotec Ag Dry powder formulations
DE10355559A1 (de) 2003-11-21 2005-06-23 Orthogen Ag Transskin
US8088935B2 (en) 2003-12-23 2012-01-03 Ironwood Pharmaceuticals, Inc. Compounds and methods for the treatment of asthma
US20070093457A1 (en) 2004-02-11 2007-04-26 Nadir Arber Compositions for treatment of cancer and inflammation with curcumin and at least one nsaid
US20050182044A1 (en) 2004-02-17 2005-08-18 Bruinsma Gosse B. Combinatorial therapy with an acetylcholinesterase inhibitor and (3aR)-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3,-b]indol-5-yl phenylcarbamate
WO2006001877A2 (fr) 2004-04-13 2006-01-05 Myriad Genetics, Inc. Composition pharmaceutique et methode de traitement de troubles neurodegeneratifs
CN101098678A (zh) 2004-04-23 2008-01-02 锡德克斯公司 含有磺基烷基醚环糊精的dpi制剂
ES2339790T3 (es) 2004-08-30 2010-05-25 Seo Hong Yoo Efecto neuroprotector de udca solubilizado en modelo isquemico focal.
JP2008518935A (ja) * 2004-11-01 2008-06-05 セオ ホン ユー 筋萎縮性側索硬化症の神経退行を減少させるための方法及び組成物
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
KR20070122497A (ko) 2005-04-22 2007-12-31 제넨테크, 인크. Cd20 항체로 치매 또는 알츠하이머병을 치료하는 방법
AU2006251832A1 (en) 2005-05-27 2006-11-30 Queen's University At Kingston Treatment of protein folding disorders
US20070178166A1 (en) 2005-12-15 2007-08-02 Acusphere, Inc. Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration
US8263645B2 (en) 2006-02-03 2012-09-11 Pari Pharma Gmbh Disodium cromoglycate compositions and methods for administering same
AR059356A1 (es) 2006-02-14 2008-03-26 Astrazeneca Ab Nuevos radioligandos
WO2007102059A1 (fr) 2006-03-06 2007-09-13 Pfizer Japan Inc. Derives de sulfonyl benzimidazole
KR20090026247A (ko) 2006-03-09 2009-03-12 와라타 파마수티컬즈, 인크. 단백질 응집 장애의 치료를 위한 사이클로헥산 폴리알콜 제형
US7700616B2 (en) 2006-05-08 2010-04-20 Molecular Neuroimaging, Llc. Compounds and amyloid probes thereof for therapeutic and imaging uses
US8445437B2 (en) 2006-07-27 2013-05-21 The Brigham And Women's Hospital, Inc. Treatment and prevention of cardiovascular disease using mast cell stabilizers
US20100173960A1 (en) 2006-09-21 2010-07-08 Antonio Cruz The Combination of a Cyclohexanehexol and a NSAID for the Treatment of Neurodegenerative Diseases
CA2670405A1 (fr) 2006-11-24 2008-05-29 Waratah Pharmaceuticals Inc. Traitements par combinaison pour la maladie d'alzheimer et des maladies analogues
JP5675340B2 (ja) 2007-04-18 2015-02-25 プロビオドルグ エージー 新規阻害剤
US20080292625A1 (en) 2007-04-18 2008-11-27 Sally Schroeter Prevention and treatment of cerebral amyloid angiopathy
WO2008134618A2 (fr) 2007-04-27 2008-11-06 The General Hospital Corporation Nouveaux marqueurs d'imagerie pour détecter et traiter précocement les plaques amyloïdes générées par la maladie d'alzheimer et des troubles associés
US20090110679A1 (en) 2007-07-13 2009-04-30 Luk-Chiu Li Methods and compositions for pulmonary administration of a TNFa inhibitor
GB0714134D0 (en) 2007-07-19 2007-08-29 Norton Healthcare Ltd Dry-powder medicament
ES2498040T3 (es) 2007-07-27 2014-09-24 Janssen Alzheimer Immunotherapy Tratamiento de enfermedades amiloidogénicas con anticuerpos anti-beta humanizados
JO3076B1 (ar) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap نظم العلاج المناعي المعتمد على حالة apoe
CA2718035C (fr) 2008-03-21 2017-10-24 The General Hospital Corporation Derives d'inositol destines a la detection et au traitement de la maladie d'alzheimer et de troubles connexes
KR20110071050A (ko) 2008-04-29 2011-06-28 파넥스트 알츠하이머 질환 및 관련 장애의 치료를 위한 조니사미드 및 아캄프로세이트의 조합 조성물
MX2011007663A (es) 2009-01-22 2011-08-15 Raqualia Pharma Inc Compuestos de sulfona heterociclica, saturada y sustituida en n, con actividad agonistica del receptor de cb2.
US8381454B1 (en) 2009-01-23 2013-02-26 Markus R. Robinson Segmented, elongated, expandable, 4-season, double-walled, low-cost, rigid extruded plastic panel structures
US9925282B2 (en) 2009-01-29 2018-03-27 The General Hospital Corporation Cromolyn derivatives and related methods of imaging and treatment
US8617517B2 (en) 2009-01-29 2013-12-31 The General Hospital Corporation Cromolyn derivatives and related methods of imaging and treatment
PE20160651A1 (es) 2009-03-05 2016-07-24 Abbvie Inc Proteinas de union a il-17
CA2755197A1 (fr) 2009-03-11 2010-09-16 Plexxikon, Inc. Derives de pyrrolo [2, 3-b] pyridine pour l'inhibition de raf kinases
AU2010225923B2 (en) 2009-03-16 2016-10-27 Ipintl, Llc Treating Alzheimer's disease and osteoporosis and reducing aging
PL2248517T3 (pl) 2009-05-08 2014-08-29 Pari Pharma Gmbh Stężone formulacje farmaceutyczne stabilizujące komórki tuczne
JP2013501046A (ja) * 2009-08-06 2013-01-10 ニューラルタス ファーマシューティカルズ, インコーポレイテッド マクロファージ関連障害の処置
BR112012006638B1 (pt) 2009-09-24 2020-05-26 Wista Laboratories Ltd. Forma c de di-hidrato de cloreto de metiltionínio, seu processo de preparação, e composição farmacêutica
EP2322163A1 (fr) 2009-11-03 2011-05-18 Pharnext Nouvelles approches thérapeutiques pour traiter la maladie d'Alzheimer
WO2011057199A1 (fr) 2009-11-06 2011-05-12 Adenios, Inc. Compositions destinées à traiter des troubles du snc
NZ600123A (en) 2009-11-30 2015-04-24 Aptalis Pharmatech Inc Compressible-coated pharmaceutical compositions and tablets and methods of manufacture
US20110256064A1 (en) 2010-04-16 2011-10-20 Ac Immune, S.A. Novel Compounds for the Treatment of Diseases Associated with Amyloid or Amyloid-like Proteins
WO2011136754A1 (fr) 2010-04-26 2011-11-03 Mahmut Bilgic Médicament mis au point pour le traitement de maladies respiratoires
JP2013533320A (ja) * 2010-08-12 2013-08-22 レバレジオ コーポレイション タウオパチーを治療するための組成物および方法
KR101886987B1 (ko) 2010-09-30 2018-08-08 키에시 파르마슈티시 엣스. 피. 에이. 흡입용 건조 분말 제제 내 마그네슘 스테아레이트의 용도
US20120121656A1 (en) 2010-11-15 2012-05-17 Revalesio Corporation Methods and compositions for protecting against neurotoxicity of a neurotoxic agent, and improving motor coordination associated with a neurodegenerative condition or disease
CA2827027C (fr) 2011-02-11 2019-06-04 Wista Laboratories Ltd. Sels de diaminium de phenothiazine et leurs applications
US9730921B2 (en) 2012-03-27 2017-08-15 Duke University Compositions and methods for the prevention and treatment of mast cell-induced vascular leakage
CA2870158C (fr) 2012-05-25 2017-10-24 Xlear, Inc. Compositions anti-muqueuses a base de xylitol, procedes afferents et compositions afferentes
JP6431480B2 (ja) * 2012-08-31 2018-11-28 ザ ジェネラル ホスピタル コーポレイション アルツハイマー病の治療および診断のためのビオチン複合体
AR093093A1 (es) 2012-10-23 2015-05-20 Teijin Pharma Ltd Tratamientos y profilaxis para el sindrome de lisis tumoral
CA3111941A1 (fr) 2012-10-25 2014-05-01 The General Hospital Corporation Polytherapies pour le traitement de la maladie d'alzheimer et des troubles associes
US10058530B2 (en) 2012-10-25 2018-08-28 The General Hospital Corporation Combination therapies for the treatment of Alzheimer's disease and related disorders
US10525005B2 (en) 2013-05-23 2020-01-07 The General Hospital Corporation Cromolyn compositions and methods thereof
CN110652495A (zh) 2013-05-23 2020-01-07 Az治疗公司 用于递送色甘酸的方法
AU2014340182B2 (en) * 2013-10-22 2019-05-23 The General Hospital Corporation Cromolyn derivatives and related methods of imaging and treatment
US20160367520A1 (en) * 2014-02-10 2016-12-22 Patara Pharma, LLC Mast cell stabilizers for lung disease treatment
JP2017510624A (ja) 2014-02-10 2017-04-13 パタラ ファーマ リミテッド ライアビリティ カンパニー 肥満細胞安定剤による全身性障害の治療
US20180153862A1 (en) 2014-11-21 2018-06-07 Biohaven Pharmaceutical Holding Company Limited (B Sublingual administration of riluzole
US11723864B2 (en) 2015-05-29 2023-08-15 The Texas A&M University System Antimicrobial and anti-inflammatory compositions
EP3331522A1 (fr) 2015-08-07 2018-06-13 Patara Pharma LLC Méthodes de traitement de troubles liés aux mastocytes par des stabilisateurs de mastocytes
WO2017027402A1 (fr) 2015-08-07 2017-02-16 Patara Pharma, LLC Méthodes de traitement de troubles systémiques aptes à être traités par des stabilisateurs de mastocytes, y compris de troubles liés aux mastocytes
EP3368032A1 (fr) * 2015-10-28 2018-09-05 AB Science Utilisation de masitinib et d'autres inhibiteurs de mastocyte pour le traitement de la maladie de parkinson
CA3005887A1 (fr) 2015-11-19 2017-05-26 Aztherapies, Inc. Methodes pour traiter la maladie d'alzheimer et des troubles associes
WO2017091644A1 (fr) * 2015-11-23 2017-06-01 Aztherapies, Inc. Compositions et méthodes de traitement d'un avc ischémique
BR112018069515A2 (pt) * 2016-03-25 2019-04-16 Ab Science uso de masitinibe para tratamento de uma subpopulação de pacientes com esclerose lateral amiotrófica
EP3506894B1 (fr) 2016-08-31 2023-08-23 The General Hospital Corporation Macrophages/microglies dans la neuro-inflammation associée aux maladies neurodégénératives
MX2019002781A (es) 2016-09-08 2019-09-04 Emergo Therapeutics Inc Estabilizadores de mastocitos para el tratamiento de hipercitoquinemia e infeccion viral.
CN111565711B (zh) 2017-07-20 2023-01-03 阿茨治疗股份有限公司 色甘酸钠和布洛芬的粉末化制剂
CN108164409B (zh) 2018-01-24 2021-06-18 温州医科大学 一种2-亚苄基-1-茚酮类似物及应用
EP3773543A4 (fr) 2018-04-09 2022-04-06 The General Hospital Corporation Polythérapies pour le traitement de la sclérose latérale amyotrophique et de troubles apparentés
CN108403708B (zh) 2018-05-22 2019-06-14 滨州医学院 秦皮苷在制备预防或治疗急性呼吸窘迫综合征药物中的应用
KR20210071943A (ko) 2018-07-02 2021-06-16 더 제너럴 하스피탈 코포레이션 크로몰린 소듐 및 α-락토스의 분말화된 제형
KR20210071974A (ko) 2018-09-05 2021-06-16 더 제너럴 하스피탈 코포레이션 사이토카인 방출 증후군을 치료하는 방법
CA3122989A1 (fr) 2018-12-10 2020-06-18 The General Hospital Corporation Esters cromoglycique et leurs utilisations
IL297023A (en) 2020-04-06 2022-12-01 Massachusetts Gen Hospital Methods for treating inflammatory conditions caused by the corona virus
US20230226017A1 (en) 2020-06-04 2023-07-20 The General Hospital Corporation Methods of treating a coronavirus infection
US20240067635A1 (en) 2020-12-28 2024-02-29 David R. Elmaleh Cromolyn derivatives and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CIRCULATION, vol. 116, no. 4, 24 July 2007 (2007-07-24), pages 411 - 418, ISSN: 0009-7322(print), DOI: 10.1161/CIRCULATIONAHA.106.655423 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 24 July 2007 (2007-07-24), STRBIAN DANIEL ET AL: "Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke", Database accession no. PREV200700504140 *

Also Published As

Publication number Publication date
US20240082207A1 (en) 2024-03-14
KR20190044647A (ko) 2019-04-30
WO2018045217A8 (fr) 2019-03-14
JP2019524865A (ja) 2019-09-05
EP3506894C0 (fr) 2023-08-23
AU2017321782A1 (en) 2019-03-07
US20220079914A1 (en) 2022-03-17
WO2018045217A1 (fr) 2018-03-08
CN109922800A (zh) 2019-06-21
AU2017321782B2 (en) 2022-03-10
US20190240194A1 (en) 2019-08-08
CN116889562A (zh) 2023-10-17
JP2022171666A (ja) 2022-11-11
CA3033079A1 (fr) 2018-03-08
EP3506894A4 (fr) 2020-07-29
CN109922800B (zh) 2023-06-13
US11679095B2 (en) 2023-06-20
EP3506894A1 (fr) 2019-07-10

Similar Documents

Publication Publication Date Title
US11679095B2 (en) Macrophages/microglia in neuro-inflammation associated with neurodegenerative diseases
US20230321130A1 (en) Senolytic Compositions and Uses Thereof
US20220226270A1 (en) Very-long-chain polyunsaturated fatty acids, elovanoid hydroxylated derivatives, and methods of use
TWI526427B (zh) 苯基酮羧酸鹽化合物及其藥學用途
JP4788999B2 (ja) 分枝鎖カルボン酸化合物およびその用途
AU2020358970A1 (en) Chinone-, hydrochinome- and naphthochinone-analogues of vatiquione for treatment of mitochondrial disorder diseases
WO2003055521A1 (fr) Remedes contre les troubles cognitifs legers
JP7295145B2 (ja) 神経変性疾患を治療するための医薬及びその使用
JP2022529742A (ja) 神経修復方法
CN115212194B (zh) 纳多洛尔在制备治疗缺血/再灌注损伤药物及细胞保护药物中的应用
US20230137021A1 (en) Drug Conjugates of Sugar Derivatives and Uses Thereof as Senolytic Agents
RU2799454C2 (ru) Терапевтический препарат для лечения нейродегенеративных заболеваний и его применение
JP2021520412A (ja) タンパク質ミスフォールディング疾患のための療法
KR20210123321A (ko) 류코트리엔 합성 억제제

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40010348

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20200630

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/35 20060101AFI20200623BHEP

Ipc: C07D 311/22 20060101ALI20200623BHEP

Ipc: C07D 311/04 20060101ALI20200623BHEP

Ipc: C07D 311/02 20060101ALI20200623BHEP

Ipc: A61K 31/335 20060101ALI20200623BHEP

Ipc: A61P 25/00 20060101ALI20200623BHEP

Ipc: A61K 31/352 20060101ALI20200623BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230322

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017073223

Country of ref document: DE

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230925

U01 Request for unitary effect filed

Effective date: 20230922

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230928

U20 Renewal fee paid [unitary effect]

Year of fee payment: 7

Effective date: 20231127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017073223

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

26N No opposition filed

Effective date: 20240524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831