EP3118564B1 - Method for protecting a vehicle against an attack by a laser beam - Google Patents
Method for protecting a vehicle against an attack by a laser beam Download PDFInfo
- Publication number
- EP3118564B1 EP3118564B1 EP16001537.6A EP16001537A EP3118564B1 EP 3118564 B1 EP3118564 B1 EP 3118564B1 EP 16001537 A EP16001537 A EP 16001537A EP 3118564 B1 EP3118564 B1 EP 3118564B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- laser
- laser beam
- missile
- aerial vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 30
- 230000005855 radiation Effects 0.000 claims description 29
- 230000006378 damage Effects 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000003672 processing method Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 2
- 241000093804 Berzelia galpinii Species 0.000 description 2
- 241001295925 Gegenes Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 241000881711 Acipenser sturio Species 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004509 smoke generator Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/30—Command link guidance systems
- F41G7/301—Details
- F41G7/303—Sighting or tracking devices especially provided for simultaneous observation of the target and of the missile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H13/00—Means of attack or defence not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/01—Arrangements thereon for guidance or control
Definitions
- the invention relates to a method for protecting a vehicle from attack by a laser beam.
- High-energy lasers can transmit very high power over several kilometers and over a longer period of time. With such services, sensitive parts of vehicles can be so severely damaged or destroyed within a few seconds that the functioning of the vehicles is jeopardized. Thus, for example, aircraft can be attacked from the ground, in particular slow-moving commercial aircraft with relatively low maneuverability are particularly vulnerable.
- the WO 02/14777 A1 describes a method for protecting an object from a laser device, in which, upon detection of a laser radiation of the laser device, retroreflectors are ejected or fired from the object to be protected or from an environment thereof in order to disturb and possibly damage the laser device.
- the aircraft is equipped with a laser detection and warning system that can output a warning signal.
- a sensor system detects laser radiation of the laser beam and a guided missile flies into the laser beam and thereby shading the vehicle.
- the laser beam can no longer or only weakly penetrate the vehicle and the shadow protects the vehicle. If the vehicle has already been illuminated, an already warmed point of the vehicle can cool down.
- the shading is expediently done so quickly that the laser energy deposited on the vehicle has not yet led to threatening damage to the vehicle.
- the method is particularly suitable for use against a high energy laser source or a high energy laser beam. Also advantageous is a defense of a sturgeon laser.
- the sensor system comprises at least one sensor sensitive to laser radiation, which detects the laser radiation of the laser beam.
- the sensor or the sensor system is expediently sensitive in a radiation spectrum which is usually used for high-energy lasers or interfering lasers.
- the spectrum in which the sensor is sensitive may be limited to a band about one laser wavelength commonly used for high energy lasers.
- the band is at most ⁇ 100 nm around the wavelength of 3800 nm.
- the sensor expediently recognizes characteristics typical of laser radiation, such as the presence of coherent radiation.
- the sensor system detects by means of image processing methods a laser beam as such in the environment, for example on the basis of scattered radiation.
- the sensor system advantageously contains an image sensor, for example a matrix detector.
- the sensor system may be part of the vehicle and the sensor may be permanently installed in the vehicle.
- the sensor system detects laser radiation of the laser beam, ie radiation directly emitted by the laser source and / or laser radiation scattered from the laser beam, for example by the scattering of the laser beam in the air, on particles and / or on an object.
- the sensor system absorbs the radiation and converts it into a measuring signal.
- a control unit expediently determines a threat level of the laser radiation, for example by a classification in at least the levels threatening or harmless. This can be done, for example, via the measured scattered light intensity in the atmosphere, an energy input into the sensor system, a spread spectrum and / or over a temporal characteristic of the radiation, such as a pulsation.
- the vehicle is preferably an aircraft, and may be fixed-wing aircraft or a rotorcraft, such as a helicopter.
- the invention is also advantageously applicable for protecting a land vehicle or a watercraft.
- the vehicle may be a manned or unmanned vehicle.
- the missile is expediently a guided missile and in particular an unmanned missile. It may be equipped with a rocket engine and / or an air-breathing engine, such as a turbine engine. in this connection is an air-breathing engine at a collision protection of the vehicle by the missile advantageous.
- a suitably additional rocket motor is advantageous for a quick start and the rapid achievement of a shading position.
- a missile without its own engine for example in the form of a steering column.
- the missile is provided with a shading sail, which is extendable during the flight of the missile, so that a shading surface of the missile is increased.
- the guided missile accompanies the vehicle and keeps the vehicle from being shaded by the laser beam.
- the guided missile is thus advantageously a loiterable missile capable of moving at substantially the same speed as the vehicle is moving.
- the loiterinformatione guided missile can remain between the vehicle and a laser source of the laser beam and protects the vehicle by shading in this way, at least over a predetermined period of time and / or as long as a classified as threatening laser beam is detected.
- the missile is launched from the vehicle.
- a particularly rapid protection of the vehicle from the laser beam can be achieved because the missile is already on site and can dive into the laser beam for shading.
- a light guided missile is favorable. Also in terms of cost, a lighter and easier missile is advantageous. Cost and weight can be saved if the missile is drive-free, so has no own drive motor.
- the guided missile can be launched from the vehicle, expediently forward, including a direction obliquely forward to be understood.
- the Loiterrich of the missile is created by a Mitsegeln the missile below the vehicle, suitably obliquely down to keep a sufficient speed.
- Such a missile can be shot down, sail down towards the laser source of the laser beam and thereby shade the vehicle flying higher up. This can be understood below that the missile reduces its distance from the laser source and increases its distance from the vehicle: the closer the missile comes to the laser source, the slower he must fly forward compared to the vehicle flying above.
- One way to control the missile is to determine the location of the laser source of the laser beam. From this location and the position of the vehicle a shading corridor can be calculated in which the missile must remain in order to shade the vehicle. The end of the shading corridor at the laser source remains fixed in space or moves along with the movement of the laser source, and the other end moves with the moving vehicle. If the position of the shading corridor is known, the missile can be held in it for shading the vehicle.
- the flight of the missile may be controlled by a control unit of the missile and / or a control unit of the vehicle.
- One of the control units expediently recognizes the laser beam as such, for example on the basis of scattered radiation of the laser beam and in particular with the aid of image processing methods or on detection of a luminous light spot on the vehicle.
- the control unit determines from the data of the sensor system the position of a laser source which emits the laser beam.
- a radiation end of the laser beam can be detected, and from the position of the beam, the position of the laser source can be determined.
- the position from triangulation can be determined from the data of several sensors.
- the position of the laser source can be detected as a direction, for example as an absolute direction or as a direction relative to the direction of flight of the aircraft. It is also possible to determine the direction as an absolute, ie geographical, direction.
- a determination of a distance of the laser source from the sensor system is advantageous. This can be done particularly easily using a flying height of the vehicle. If the direction of the laser source and the altitude are known, the distance to the laser source can be calculated from this in a simple manner, in particular taking into account topographical data of an overflown landscape.
- the control unit initiates a start of the missile expediently in dependence on the recognition result. If a laser beam is recognized as such and it is also classified as threatening to the vehicle, the missile is started. If a laser beam is not recognized as such or classified as non-threatening, the launching of the missile expediently fails.
- the flight of the missile can be controlled independently by a control unit of the missile. Additionally or alternatively, it is possible that the remaining in the vehicle control unit controls the flight of the missile or mitêtt. For example, the self-controlling missile an escape or Abschattungsan flirt be issued by the vehicle, which is then taken into account by the control unit of the missile.
- a control of the missile from the vehicle is also advantageous if the position of the laser beam or the laser source is accurately determined by the vehicle or the vehicle detects an impact of the laser beam.
- the missile can be directed from the vehicle into a shading position or into the shading corridor.
- a control unit determines both the position of the vehicle and the position of a laser source of the laser beam.
- the control unit can control the flight of the missile and hold it between the laser source and the vehicle.
- the control unit also determines the position of the missile and takes into account this in the control of the missile.
- the positions may be absolute positions, for example with respect to an earth coordinate system, or relative positions of the vehicle and the laser source and in particular the steering missile to each other.
- the areas of a vehicle are usually different laser hard, and also less laser-hard points are present whose destruction does not lead to a critical condition of the vehicle in general. Accordingly, it is advantageous if the flight of the missile is controlled so that it remains between the laser source and a predetermined, to be protected laser-sensitive point of the vehicle.
- a laser-sensitive point of the vehicle can be deliberately shadowed by the corresponding flight control of the missile.
- the missile remains between the laser source and the predetermined location, that is, at a position such that the location is shadowed by the laser beam or would shadow it as the laser beam illuminates the location.
- a laser-sensitive location may be such a location or area whose irradiation with a high energy laser for a period of less than 5 seconds generally results in a critical condition of the vehicle.
- a laser-sensitive body is not only a geometric point on the vehicle to understand, but a spatially extended area that is to be protected from irradiation by high-energy laser radiation.
- the sum of the laser-sensitive points of the vehicle is expediently limited to a maximum of 25% of the silhouettes of the vehicle visible from the laser source.
- a further possibility for controlling the guided missile is that a spot illuminated by the laser beam of the vehicle is detected and localized. If the position of the laser source is known, a shading corridor can be calculated and the missile can remain held within the shading corridor. However, even if the position of the laser source is not known, a lighted spot on the vehicle may be shaded, especially if the missile is held relatively close to the vehicle. For example, the missile flies directly under the vehicle and shadows the illuminated spot. It is advantageous in this case if the position of a lighting location at which the laser beam hits the vehicle is determined and the guided missile is controlled as a function of the position of the lighting location.
- Detecting a spot illuminated by the laser beam on the vehicle is possible in a particularly simple manner from a missile flying in the vicinity, in particular the guided missile.
- it can have a vehicle-oriented sensor which is prepared for the detection of a laser light spot.
- the sensor senses the illuminated location at which the laser beam hits the vehicle, and a control unit, advantageously a control unit of the guided missile, determines the position of the lighting location, for example relative to a position of the missile and or a reference point of the vehicle.
- the control unit can now control the flight of the guided missile so that the illuminated spot disappears on the vehicle.
- the illuminated spot can be used with or without recognition of their relative position to the guided missile as a control variable, in particular as a controlled variable, for steering the missile. If the illuminated spot is recognizable on the vehicle, the flight of the guided missile is controlled so that the illuminated spot disappears.
- the illuminated spot covers a laser-sensitive point of the vehicle.
- the detection can be performed by a control unit of the missile. The detection can be based on stored sensitivity data of the vehicle. If a laser-sensitive point of the vehicle is illuminated, the flight of the guided missile is expediently controlled so that the Light spot disappears. If the illuminated spot is not a laser-sensitive spot, the illumination of the spot does not lead to critical damage to the spot even with a longer illumination, so that shading of this sufficiently laser-hard spot can be dispensed with.
- the missile can be controlled so that it shaded another - especially laser-sensitive - spot, so it remains between the laser source and this laser-sensitive point even if it is not illuminated.
- a control unit determines the position of the lighting location on the vehicle on the basis of characteristic image features of the vehicle.
- the characteristic image features are expediently at least partially stored in a database to which the control unit has access.
- a laser sensor For the protection of a laser sensor, it is advantageous if this is arranged on a side facing away from the laser source side of the missile and, for example, is oriented upward. Upwards here can be understood that the center of gravity of the recording orientation of the sensor is directed into the upper half-space, whose zenith is in the opposite direction to the center of the earth. This may also be the case with a guided missile parked on the ground in regular parking position, so that the sensor is arranged on top of the guided missile. The missile can observe the vehicle from below and monitor it for lighting.
- a protection of the vehicle by the guided missile can be detected from an attacking point and a control of the laser beam can be changed accordingly.
- the laser beam is aligned in rapid succession on several laser-sensitive points, so that in each case a large amount of laser energy is deposited. Due to the inertia of the guided missile, this may not be able to follow the rapid change of destination. Nevertheless, in order to achieve sufficient protection of the vehicle, it is advantageous if the flight of the missile is controlled so that the missile casts its shadow on several areas of the vehicle to be protected so that none of the points illuminated by the laser beam for more than a predetermined time duration becomes. For example, the lighting of a second location is accepted without the missile being controlled to shadow this second location. Only when this second location is illuminated so long that the predetermined time period is reached threatened, the position of the missile is changed relative to the aircraft and the second location is shaded to cool it.
- the predetermined amount of time may depend on a laser sensitivity of the locations, so that the longer the time the laser hardens the location in question, the greater the time duration.
- the time period may also depend on a laser power that has been calculated, for example, by a control unit of the vehicle. Further, the time period may be dependent upon the number of illuminated locations on the vehicle in the past.
- the predetermined period of time can be dependent on a distance of the illuminated locations from each other, so that an alternating duration, which assumes a change of the missile from one shading position to the other, is taken into account.
- the period of time may depend on the amount of laser energy previously deposited at that location and a cooling time. If the points have already been illuminated before and the cooling time was low, then the predetermined period of time is shorter than if the cooling time had been greater.
- an irradiated point on the vehicle is determined.
- a temperature, a deposited amount of energy, a degree of deterioration and / or the like of this location can be determined.
- a laser hardness of the site can be taken into account, for example a destruction period from which further irradiation of the site leads to destruction of the site.
- an alternating duration which takes a change in the shading position of the guided missile from a shadowed to an irradiated point, can be determined.
- a changeover time may be determined at which the missile is controlled to a new shading position. At the time of change, the missile will now be directed to the new location to be shaded.
- the flight of the guided missile is controlled such that a shadow of the missile changes from the momentarily shaded point to a momentarily irradiated point as a function of a cooling time of the momentarily shaded point. Furthermore, it is expedient to take into account a laser hardness or damage time of the point currently irradiated and an alternating duration which takes the movement of the shadow between the points.
- the guided missile ejects a shading means.
- a shading means may include smoke, flicker elements or the like.
- the shading means is expediently ejected in addition to the drive exhaust gas of the missile, so that the ejection can be independent of a thrust control of the missile.
- the guided missile expediently comprises a shading means nozzle, which is provided in addition to the engine jet opening.
- the flight of the missile is controlled so that the ejected shading shadows a predetermined, laser-sensitive point of the vehicle at least partially.
- the shading means is ejected as a function of the position of a lighting spot on the vehicle and the position of the guided missile. For example, if the lighting point behind the missile so that shading must be achieved by the missile by a deceleration of the missile, so the shading means can be first ejected to achieve shading in addition or earlier before the missile with its solid structures, the shading of this Job can begin.
- tinsel elements When using tinsel elements, it is advantageous if they have a retroreflective property.
- the laser beam is reflected at the bauble elements in the opposite direction, so that a part of the laser radiation is reflected back to the laser source. Their function can be impaired as a result.
- the missile has a braking means, such as a brake flap or a brake sail, for reducing the speed of flight.
- a braking means such as a brake flap or a brake sail, for reducing the speed of flight. This is expediently extended during the flight and brakes the missile depending on the degree of extension. The airspeed can be draughty reduced and a falling back of the missile can be reached quickly.
- the missile extends after its launch a shading element and thereby increases its shadow area, in particular to at least 1.5 times the shading surface of the missile at the start. This can cause inaccuracies in flight control be compensated for the missile and / or it can be shadowed several laser-sensitive points at the same time.
- the missile has a reflector, in particular a retroreflector.
- the reflector may for example be seconded to a shading element, which is extended after the start of the missile.
- the invention is directed to a missile for protecting a vehicle from attack by a laser beam.
- the guided missile according to the invention comprises a sensor system for sensing laser radiation of the laser beam and a control unit which is designed to fly the guided missile into the laser beam and to shadow the vehicle from the laser beam.
- the control unit is also prepared to keep the shadow of the missile on the vehicle.
- FIG. 1 shows a vehicle 2 in the form of an aircraft, which is designed in this case as a commercial aircraft for the transport of passengers or air freight.
- a laser system 6 is positioned, which in the in FIG. 1 represented moment a laser beam 8, which is generated by a laser source 10, directed into the sky.
- the laser system 6 is placed in the embodiment shown on the ground and immovable. However, it is also possible that the laser system 6 is movable and is mounted, for example, in an aircraft. All details described below and related to the laser source 10 are then to be adapted accordingly to the mobility or height above the ground.
- the laser system 6 is a high-energy laser system which emits the laser beam 8 predominantly in the infrared spectral range, for example at 3.8 microns, wherein the Laser beam 8 over a distance of several kilometers transported enough energy to destroy sensitive parts of the aircraft and thereby endangering its flying capacity acutely.
- the laser system 6 is used to combat aircraft and has a control unit which pivots the laser beam 8 on the vehicle 2 and the laser beam 8 automatically tracks the movement of the aircraft 2.
- a laser-sensitive point of the vehicle 2 is deposited, to which the laser beam 8 is automatically directed by means of image processing methods to irradiate the laser system 6 pictorially deposited point of the aircraft 2 over a period of a few seconds and thereby destroy.
- a designator laser system or marker laser system can be fought or disturbed, which illuminates the vehicle 2 in order to control a guided missile into the vehicle 2. By shading the vehicle 2 and / or destroying the laser source 10, this mark can be disturbed, so that the attacking missile can not find the vehicle 2.
- the following description refers to a stationary high energy laser system 6 without being limited to this system.
- the aircraft has a sensor system 16 with a plurality of sensors 18, which are each signaled by a control unit 20.
- the aircraft is equipped with five sensors 18, one in the rear half of the fuselage, one in the front half of the fuselage, one on each wing of the aircraft, and one upward sensor 18 on the upper half of the fuselage of the aircraft ,
- the sensors 18 of the sensor system 16 actively monitor the airspace for laser radiation.
- the sensors 18 each comprise an image sensor behind a 180 ° optics, so that the scene of a hemisphere of the surrounding space is imaged onto a laser-sensitive element.
- an image of the laser beam 8 can be recorded in the environment, and from this further information on the laser beam 8 can be determined.
- an image of the laser beam 8 is recorded, from whose wavelength or spectrum and whose geometry the control unit 20 of the sensor system 16 recognizes the laser beam 8 as such, in particular by means of image processing methods.
- Geometrical features can be used to see the laser beam 8 as a straight line in the landscape.
- it has a sharply defined end on the laser source 10.
- the laser beam becomes weaker, as long as it does not strike an object FIG. 1 is shown, so that a defined end is not readily determinable. This feature of the upper attenuation of the laser radiation can also be used for laser detection.
- the control unit 20 From the geometric data of the laser beam 8 and its spectrum and radiation intensity, the control unit 20 first classifies the laser beam 8 in the three stages harmless, potentially dangerous and dangerous. In a classification harmless in the level of the laser beam 8 is further observed, however, neither the laser beam 8 is shadowed nor the laser source 10 is combated. Classification in one of the other two levels will prepare for shading and / or combat.
- a canister 22, which accommodates at least one of the missiles 12, is pivoted in the direction of the laser source 10. This pivoting is in FIG. 1 indicated by the curved double arrow on the canister 22.
- the ejection of the missile 14 from the fuselage of the aircraft 2 is prepared. Classification into the highest of the threat classes will initiate combat and / or shadowing. For this purpose, for example, a release of an operator of the aircraft 2, such as a pilot, necessary. However, this has already been given in advance, for example because it is known that the aircraft is flying through a potentially dangerous region.
- the position of the laser source 10 is known. This determines the control unit 20, for example, from the geometry of the laser beam 8. Thus, at the location of the abrupt end of the laser beam 8, the laser source 10 can be suspected.
- the laser beam 8 can be given a direction, at least a rough direction at the top and bottom, wherein the laser source 10 is positioned only at a lower end of the laser beam 8. In this way, a direction of the laser source 10 relative to the aircraft 2 can be determined. From the direction and a flight altitude of the aircraft and expediently a topography of the overflown landscape, the distance between aircraft and laser source 10 can be determined, in particular the absolute geographic coordinates of the laser source 10 are determined.
- the detection of the laser beam 8 takes place insofar by a recording of the laser beam 8 from the side, wherein from the laser beam 8 scattered in the atmosphere laser radiation is recorded. This can also be done by the upward sensor 18 whose view is adjusted to the laser source 10. On the basis of the orientation of the visible part of the laser beam 8, a further course of the laser beam 8 can also be extrapolated in the environment.
- the determination of the position of the laser source 10 is detected by another of the sensors 18 of the sensor system 16, for example by a sensor 18 on a wing of the aircraft 2.
- This recognizes the laser beam 8 per se and both abrupt ends, the control unit 20, the lower abrupt end of the laser beam 8 as the location of Laser source 10 selects.
- a position determination of the laser source 10 by means of triangulation.
- At least one missile 12, 14 is now started by the aircraft.
- the control of the start takes over the control unit 20 of the sensor system 16, which may also be part of a central vehicle control of the vehicle 2.
- FIG. 2 and FIG. 3 show two embodiments for protecting the aircraft, which can be performed individually or in combination.
- the missile 14 is dropped from the fuselage of the aircraft, and this begins its Loiterflug, which is substantially parallel to the flight of the aircraft.
- the purpose of this flight is to shade the aircraft, in particular at least laser-sensitive points of the aircraft, from the laser beam 8.
- the missile 14 is driven with an air-breathing internal combustion engine, such as a turbine, so that a long flight in the company of the vehicle 2 is possible.
- a rocket motor is possible, in particular a solid fuel motor, which is tuned in terms of its performance on the airspeed of the aircraft.
- the missile 14 is equipped with large wings for large-scale shading of the aircraft.
- At least the entire lower side of the missile 14 is laser-hardened, so that an irradiation of at least three minutes by the high-energy laser beam 8 does not produce damage to the missile 14 which interferes with the flight.
- Part of the underside is equipped with retroreflectors, which reflect a part of the laser radiation back to the laser source 10.
- the position of the laser beam 8 in the space or its end on the vehicle 2 can be determined by sensors 18 of the sensor system 16.
- Corresponding control signals are given by the control unit 20 to a control unit 24 of the missile 14.
- the missile 14 determines the shading itself and controls its flight from this.
- the missile 14 on an upward laser-sensitive sensor 26 which monitors the aircraft 2 from below.
- An impact of the laser beam 8 on the aircraft 2 is detected, and the missile 14 is controlled so that the irradiation spot of the laser beam 8 on the aircraft 2 disappears.
- the flight is controlled so that the controlled variable, namely the visibility of the laser spot on the aircraft 2, disappears or at least reduced.
- the laser beam 8 is moved away from the aircraft, the laser spot also disappears. In this case, the missile 14 continues to accompany the aircraft for a predetermined distance or time duration in order to maintain protection against the potentially again dangerous laser beam 8.
- a missile 14 with a rocket engine it may be that the solid fuel of the rocket motor is consumed after a while. In this case, a second missile 14 can be started, which further shadows the vehicle 2. Even if in FIG. 1 only one missile 14 is shown in the vehicle 2, but several may be present and be started in succession.
- a missile 12 is launched in the form of a steering rocket.
- the missile 2 may be designed as a steering floor, which is designed without its own drive, but is steerable and for the purpose sailable on a long flight.
- This missile 12 is started from the canister 22, for example, by a drop, a launch and / or a launch of a missile engine of the missile 12. Since the missile 12 by the alignment of the canister 22 on the laser source 10 and / or forward and down already aligned starts, detours can be avoided and the missile 12 can be quickly brought into a favorable shading position. This is particularly advantageous when using a steerable projectile, which also has a control unit for controlling the steered flight and a steering system for performing the steering.
- a shading corridor 28 is first determined by the control unit 20.
- This shading corridor 28 extends from the laser source 10 to the vehicle 2 and is designed in its geometry so that it includes all the imaginary lines from the laser source 10 to all points of the vehicle 2.
- lines from the laser source 10 to spatial points which are more than a predetermined distance away from the vehicle 2 are not within the shading corridor 28. This distance serves to compensate for calculation inaccuracies and is expediently less than 50 m, in particular less than 10 m.
- the shading corridor 28 is calculated by the control unit 20 from the positions of the laser source 10 and the vehicle 2 as well as the dimensions, the orientation and / or the direction of movement and speed of the vehicle 2 in space.
- the position of the shading corridor 28, in particular its geometry and position in space, may be determined in absolute, earth-fixed coordinates or in relative coordinates which relate to a reference space moved with the vehicle 2.
- a plurality of laser-sensitive points 30, 32 of the vehicle 2 are deposited, which in FIG. 4 are illustrated by a front dotted area 30 and a rear dotted area 32.
- These laser-sensitive points 30, 32 include those areas on the vehicle whose irradiation by a high-energy laser within a predetermined period of, for example, less than 10 seconds lead to damage to the vehicle 2, which impairs its functionality.
- Shading corridors 34, 36 which are calculated in FIG. 2, are also calculated for these laser-sensitive points 30, 32 FIG. 3 dotted or dashed lines are indicated.
- the shading corridor 28 include the Shadowing corridor 34, 36 exclusively all imaginary lines from the laser source 10 to all possible points of the laser-sensitive points 30, 32nd
- the guided missile 12 was launched forward and obliquely downwards, so that its distance from the laser source 10 is reduced by the flight and its distance from the vehicle 12 is simultaneously increased.
- the flight of the guided missile 12 is in this case controlled by the control unit 20 of the aircraft 2, wherein the control unit 20 is connected via a radio link with the control unit of the missile 12 in connection.
- the flight of the missile 12 is controlled so that the missile 12 always within the Abschattungskorridors 28 and 34, 36 remains. Leaves the laser beam 8 the shading corridor 28, so he no longer applies to the vehicle 2, the missile 12 still remains within the Abschattungskorridors 28 in order to shade the vehicle 2 as quickly as possible with a renewed pivoting of the laser beam 8 on the vehicle 2.
- the guided missile 12 remains within one of the special shading passages 34, 36 for protecting a laser-sensitive point 30, 32 of the vehicle 2.
- the laser beam 8 leaves one of the shading passages 34, 36, but remains in the shading corridor 28, that is to say at a non-laser-sensitive point the vehicle 2, so the missile 12 still remains within one of the Abschattungskorridore 34, 36 in order to protect the relevant laser-sensitive point 30, or 32 swiftly when the laser beam 8 pivots on this.
- the laser beam 8 is aimed at the vehicle 2 and forms a light spot 38 at a laser-sensitive point 32.
- the guided missile 12 or the missile 14, to which the method descriptions also refer, is directed such that it at least partially shields the laser-sensitive point 32.
- two shading elements 40 were extended in the form of shading sails after the launch of the missile 12, 14, which more than double the shading surface of the missile 12, 14.
- the shading elements 40 are coated with a retroreflective layer, which in FIG. 4 is indicated by a hatching of the shading elements 40. If the laser beam 8 strikes this layer, it is partially reflected back to the laser source 10 and damages its optics or other elements there, so that the functionality of the laser source 10 is impaired.
- the flight of the missile 12, 14 is now controlled, for example, by the control unit 20 or the control unit 24 of the missile 12, 14, that the missile 12, 14 completely shading the light spot 38.
- the luminous intensity of the light spot 38 is measured, either by the sensor 26 of the missile 12, 14 or by one of the sensors 18 of the aircraft 2.
- the light intensity can be used as a controlled variable for controlling the steering of the missile 12, 14, wherein the control target the Disappearance of the luminosity is.
- the missile 14 With the missile 14, this can be achieved very easily, since its sensor 26 can easily detect and measure the luminous intensity of the luminous spot 38 during a loiter flight. If the missile 12 is designed as a sailable projectile, it removes relatively quickly from the vehicle 12. Although the measurement of the luminous intensity of the luminous spot 38 is still possible, it is still more difficult. The measurement is therefore expediently carried out by one of the sensors 18. These are placed so that they can scan at least all the laser-sensitive points 30, 32.
- the missile 12, 14 If the position of the light spot 38 on the vehicle changes, for example, it moves into a non-laser-sensitive area, as in FIG FIG. 4 is indicated by the light spot 42, the missile 12, 14 so remains in the shading corridor 34, 36 so that it shaded a laser-sensitive point 30, 32. Shading of the other areas of the vehicle 2 is dispensed with. However, if the laser beam 8 is guided to another laser-sensitive point 30, as in FIG FIG. 4 is indicated by the light spot 44, the missile 12, 14 is directed into a shading position of the corresponding laser-sensitive point 30. However, this does not have to take place immediately, but can take place after a waiting period, which depends on the laser hardness of the region 30 or the amount of energy deposited there.
- the guided missile 12, 14 controls the newly illuminated laser-sensitive area 30 and shadows it against the laser beam 8. If the laser beam 8 jumps to another laser-sensitive region 32, the missile 12, 14 remains in such a way that it shadows the previously irradiated laser-sensitive point 30 until it reaches a non-critical state, for example has cooled down long enough. Only then is the missile 12, 14 steered to shadowing another laser-sensitive point 32.
- FIG. 5 shows a further embodiment in which the shadowing of two light spots 38, 44 is enhanced by the ejection of gaseous shading agent 46.
- the missile 12, 14 comprises a smoke generator or a flicker ejector, the baubles, such as foil pieces ejected.
- the shading means 46 has the purpose of shading and may also serve the purpose of retroreflection, especially when using flicker elements.
- the radiation-critical time of the laser-sensitive points 30, 32 so small that an alternating illumination of these points 30, 32 by the laser beam 8 to a critical destruction of at least one of these points 30, 32 leads.
- the missile 12, 14 protects the points 30, 32 according to a stored priority.
- This priority may be the importance of elements of the aircraft 2 located at locations 30, 32.
- the missile 12, 14 with higher priority protects the front laser-sensitive area 30 and tries to at least partially protect the rear area 32 with the aid of the shading means 46, or shadow.
- the rear light spot 38 lies just in front of the front light spot 44, so that the two locations 30, 32 can be adequately shaded.
- this arrangement of the light spots 38, 44 is rather not the rule. If the light spot 38 lies obliquely behind the light spot 44, then the constellation is off FIG. 5 not available.
- ejection of shading means 46 nevertheless makes sense, since the change of the shading position of the missile 12, 14 from one location 30 to another location 32 takes a while. For example, after completion of the shadowing of the front laser sensitive spot 30, the missile 32 may be steered sideways until it flies just in front of the spot 38 on the rear laser sensitive spot 32. The emission of the shading agent 46 can be started and continue until the missile 12, 14 reaches the laser-sensitive point 32 by slowing down its airspeed and immediately shades the light spot 38.
- the missile 12, 14 is equipped with a brake flap 48, the in FIG. 5 is indicated only by a transverse line.
- the brake flap 48 can also be realized in an equivalent manner by a brake parachute or other extendable or ejectable element.
- a plurality of missiles 12 are started by the vehicle 2. This is in FIG. 3 indicated by the multiple existing missile 12 in canister 22.
- the missiles 12 are controlled in such a way that several or all of the laser-sensitive points 30, 32 of the vehicle 2 are shaded, in particular independently of the position of the light spot 38, 42, 44.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Lasers (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl.The invention relates to a method for protecting a vehicle from attack by a laser beam.
Mit Hochenergielasern lassen sich sehr hohe Leistungen über mehrere Kilometer und über eine längere Zeitdauer übertragen. Mit solchen Leistungen können empfindliche Teile von Fahrzeugen innerhalb von einigen Sekunden so schwer beschädigt oder zerstört werden, dass die Funktionsfähigkeit der Fahrzeuge gefährdet ist. So können beispielsweise Luftfahrzeuge vom Boden aus angegriffen werden, wobei insbesondere langsam fliegende Verkehrsflugzeuge mit verhältnismäßig geringer Manövrierfähigkeit besonders gefährdet sind.High-energy lasers can transmit very high power over several kilometers and over a longer period of time. With such services, sensitive parts of vehicles can be so severely damaged or destroyed within a few seconds that the functioning of the vehicles is jeopardized. Thus, for example, aircraft can be attacked from the ground, in particular slow-moving commercial aircraft with relatively low maneuverability are particularly vulnerable.
Zum Schutz von Objekten und zur Warnung vor Laserstrahlung sind aus dem Stand der Technik diverse Verfahren und Systeme bekannt: Die
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein wirkungsvolles Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl anzugeben.It is therefore an object of the present invention to provide an effective method for protecting a vehicle from attack by a laser beam.
Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei dem erfindungsgemäß ein Sensorsystem Laserstrahlung des Laserstrahls detektiert und ein Lenkflugkörper in den Laserstrahl hinein fliegt und das Fahrzeug hierdurch abschattet. Der Laserstrahl kann nicht mehr oder nur noch geschwächt zum Fahrzeug durchdringen und durch den Schatten wird das Fahrzeug geschützt. Wurde das Fahrzeug bereits beleuchtet, so kann eine bereits erwärmte Stelle des Fahrzeugs abkühlen. Die Abschattung geschieht zweckmäßigerweise so zügig, dass die am Fahrzeug deponierte Laserenergie noch nicht zu für das Fahrzeug bedrohlichen Schäden geführt hat.This object is achieved by a method of the aforementioned type, in which according to the invention a sensor system detects laser radiation of the laser beam and a guided missile flies into the laser beam and thereby shading the vehicle. The laser beam can no longer or only weakly penetrate the vehicle and the shadow protects the vehicle. If the vehicle has already been illuminated, an already warmed point of the vehicle can cool down. The shading is expediently done so quickly that the laser energy deposited on the vehicle has not yet led to threatening damage to the vehicle.
Das Verfahren ist besonders geeignet zum Einsatz gegen eine Hochenergielaserquelle beziehungsweise einem Hochenergielaserstrahl. Ebenfalls vorteilhaft ist eine Abwehr eines Störlasers. Das Sensorsystem umfasst zumindest einen für Laserstrahlung sensitiven Sensor, der die Laserstrahlung des Laserstrahls detektiert. Hierfür ist der Sensor beziehungsweise das Sensorsystem zweckmäßigerweise in einem Strahlungsspektrum sensitiv, das üblicherweise für Hochenergielaser oder Störlaser verwendet wird. Um die Erkennung von Streustrahlung zu vereinfachen, kann das Spektrum, im dem der Sensor sensitiv ist, auf ein Band um eine Laserwellenlänge beschränkt werden, die üblicherweise für Hochenergielaser verwendet wird. Beispielsweise liegt das Band maximal ± 100 nm um die Wellenlänge von 3800 nm herum. Außerdem erkennt der Sensor zweckmäßigerweise für Laserstrahlung typische Charakteristiken, wie beispielsweise das Vorliegen von kohärenter Strahlung. Weiter ist es vorteilhaft, wenn das Sensorsystem mittels bildverarbeitender Methoden einen Laserstrahl als solchen in der Umgebung erkennt, beispielsweise anhand von Streustrahlung. Hierfür enthält das Sensorsystem vorteilhafterweise einen Bildsensor, beispielsweise einen Matrixdetektor.The method is particularly suitable for use against a high energy laser source or a high energy laser beam. Also advantageous is a defense of a sturgeon laser. The sensor system comprises at least one sensor sensitive to laser radiation, which detects the laser radiation of the laser beam. For this purpose, the sensor or the sensor system is expediently sensitive in a radiation spectrum which is usually used for high-energy lasers or interfering lasers. To facilitate detection of stray radiation, the spectrum in which the sensor is sensitive may be limited to a band about one laser wavelength commonly used for high energy lasers. For example, the band is at most ± 100 nm around the wavelength of 3800 nm. In addition, the sensor expediently recognizes characteristics typical of laser radiation, such as the presence of coherent radiation. Further, it is advantageous if the sensor system detects by means of image processing methods a laser beam as such in the environment, for example on the basis of scattered radiation. For this purpose, the sensor system advantageously contains an image sensor, for example a matrix detector.
Das Sensorsystem kann Teil des Fahrzeugs sein, und der Sensor kann fest im Fahrzeug verbaut sein. Das Sensorsystem detektiert Laserstrahlung des Laserstrahls, also von der Laserquelle direkt emittierte Strahlung und/oder aus dem Laserstrahl gestreute Laserstrahlung, beispielsweise durch die Streuung des Laserstrahls in der Luft, an Partikeln und/oder an einem Gegenstand. Das Sensorsystem nimmt die Strahlung auf und wandelt sie in ein Messsignal um. Aus dem Messsignal ermittelt eine Steuereinheit zweckmäßigerweise eine Bedrohungsstufe der Laserstrahlung, beispielsweise durch eine Klassifikation in zumindest die Stufen bedrohlich oder harmlos. Dies kann beispielsweise über die gemessene Streulichtstärke in der Atmosphäre, einen Energieeintrag in das Sensorsystem, ein Streuspektrum und/oder über ein zeitliches Charakteristikum der Strahlung erfolgen, wie eine Pulsierung.The sensor system may be part of the vehicle and the sensor may be permanently installed in the vehicle. The sensor system detects laser radiation of the laser beam, ie radiation directly emitted by the laser source and / or laser radiation scattered from the laser beam, for example by the scattering of the laser beam in the air, on particles and / or on an object. The sensor system absorbs the radiation and converts it into a measuring signal. From the measurement signal, a control unit expediently determines a threat level of the laser radiation, for example by a classification in at least the levels threatening or harmless. This can be done, for example, via the measured scattered light intensity in the atmosphere, an energy input into the sensor system, a spread spectrum and / or over a temporal characteristic of the radiation, such as a pulsation.
Das Fahrzeug ist vorzugsweise ein Luftfahrzeug, und kann Starrflügler oder ein Drehflügler, wie ein Hubschrauber sein. Die Erfindung ist jedoch auch zum Schützen eines Landfahrzeugs oder eines Wasserfahrzeugs vorteilhaft anwendbar. Das Fahrzeug kann ein bemanntes oder unbemanntes Fahrzeug sein.The vehicle is preferably an aircraft, and may be fixed-wing aircraft or a rotorcraft, such as a helicopter. However, the invention is also advantageously applicable for protecting a land vehicle or a watercraft. The vehicle may be a manned or unmanned vehicle.
Der Flugkörper ist zweckmäßigerweise ein Lenkflugkörper und insbesondere ein unbemannter Flugkörper. Er kann mit einem Raketenmotor und/oder einem Luft atmenden Motor, wie beispielsweise einem Turbinenantrieb, ausgestattet sein. Hierbei ist ein Luft atmender Motor bei einem Begleitschutz des Fahrzeugs durch den Flugkörper vorteilhaft. Ein zweckmäßigerweise zusätzlicher Raketenmotor ist für einen schnellen Start und das zügige Erreichen einer Abschattungsposition vorteilhaft. Ebenfalls möglich ist ein Flugkörper ohne einen eigenen Motor, beispielsweise in Form eines Lenkgeschosses. Zweckmäßigerweise ist der Flugkörper mit einem Abschattungssegel versehen, das während des Flugs des Flugkörpers ausfahrbar ist, sodass eine Abschattungsfläche des Flugkörpers vergrößert wird.The missile is expediently a guided missile and in particular an unmanned missile. It may be equipped with a rocket engine and / or an air-breathing engine, such as a turbine engine. in this connection is an air-breathing engine at a collision protection of the vehicle by the missile advantageous. A suitably additional rocket motor is advantageous for a quick start and the rapid achievement of a shading position. Also possible is a missile without its own engine, for example in the form of a steering column. Conveniently, the missile is provided with a shading sail, which is extendable during the flight of the missile, so that a shading surface of the missile is increased.
Vorteilhafterweise begleitet der Lenkflugkörper das Fahrzeug und hält das Fahrzeug vom Laserstrahl abgeschattet. Der Lenkflugkörper ist insofern vorteilhafterweise ein loiterfähiger Flugkörper, der in der Lage ist, sich mit im Wesentlichen der gleichen Geschwindigkeit zu bewegen, mit der sich das Fahrzeug bewegt. Der loiterfähige Lenkflugkörper kann zwischen dem Fahrzeug und einer Laserquelle des Laserstrahls verbleiben und schützt das Fahrzeug durch Abschattung auf diese Weise zumindest über eine vorgegebene Zeitdauer und/oder solange ein als bedrohlich klassifizierter Laserstrahl erkannt wird.Advantageously, the guided missile accompanies the vehicle and keeps the vehicle from being shaded by the laser beam. The guided missile is thus advantageously a loiterable missile capable of moving at substantially the same speed as the vehicle is moving. The loiterfähige guided missile can remain between the vehicle and a laser source of the laser beam and protects the vehicle by shading in this way, at least over a predetermined period of time and / or as long as a classified as threatening laser beam is detected.
In einer vorteilhaften Ausführungsform der Erfindung wird der Lenkflugkörper vom Fahrzeug aus gestartet. Hierdurch kann ein besonders schneller Schutz des Fahrzeugs vor dem Laserstrahl erreicht werden, da der Flugkörper bereits vor Ort ist und zur Abschattung in den Laserstrahl eintauchen kann.In an advantageous embodiment of the invention, the missile is launched from the vehicle. In this way, a particularly rapid protection of the vehicle from the laser beam can be achieved because the missile is already on site and can dive into the laser beam for shading.
Je nach Tragfähigkeit des Fahrzeugs ist ein leichter Lenkflugkörper günstig. Auch hinsichtlich der Kosten ist ein leichter und einfacher Lenkflugkörper vorteilhaft. Kosten und Gewicht können eingespart werden, wenn der Lenkflugkörper antriebsfrei ist, also keinen eigenen Antriebsmotor aufweist. In einem solchen Fall kann der Lenkflugkörper vom Fahrzeug aus abgeschossen werden, zweckmäßigerweise nach vorne, worunter auch eine Richtung schräg nach vorne verstanden werden soll. Die Loiterfähigkeit des Flugkörpers entsteht durch ein Mitsegeln des Lenkflugkörpers unterhalb des Fahrzeugs, zweckmäßigerweise schräg nach unten, um eine ausreichende Geschwindigkeit zu halten. Ein solcher Flugkörper kann abgeschossen werden, nach unten in Richtung zur Laserquelle des Laserstrahls segeln und hierdurch das weiter oben fliegende Fahrzeug abschatten. Hierunter kann im Folgenden verstanden werden, dass der Lenkflugkörper seinen Abstand zur Laserquelle verringert und seinen Abstand zum Fahrzeug vergrößert: Je näher der Flugkörper zur Laserquelle kommt, desto langsamer muss er vorwärts fliegen im Vergleich zum weiter oben fliegenden Fahrzeug.Depending on the carrying capacity of the vehicle, a light guided missile is favorable. Also in terms of cost, a lighter and easier missile is advantageous. Cost and weight can be saved if the missile is drive-free, so has no own drive motor. In such a case, the guided missile can be launched from the vehicle, expediently forward, including a direction obliquely forward to be understood. The Loiterfähigkeit of the missile is created by a Mitsegeln the missile below the vehicle, suitably obliquely down to keep a sufficient speed. Such a missile can be shot down, sail down towards the laser source of the laser beam and thereby shade the vehicle flying higher up. This can be understood below that the missile reduces its distance from the laser source and increases its distance from the vehicle: the closer the missile comes to the laser source, the slower he must fly forward compared to the vehicle flying above.
Eine Möglichkeit zur Steuerung des Lenkflugkörpers besteht darin, dass der Ort der Laserquelle des Laserstrahls bestimmt wird. Aus diesem Ort und der Position des Fahrzeugs kann ein Abschattungskorridor berechnet werden, in dem der Flugkörper bleiben muss, um das Fahrzeug abzuschatten. Das Ende des Abschattungskorridors an der Laserquelle bleibt fix im Raum oder wandert mit der Bewegung der Laserquelle mit, und das andere Ende wandert mit dem bewegten Fahrzeug mit. Ist die Lage des Abschattungskorridors bekannt, kann der Flugkörper in diesem gehalten werden zur Abschattung des Fahrzeugs.One way to control the missile is to determine the location of the laser source of the laser beam. From this location and the position of the vehicle a shading corridor can be calculated in which the missile must remain in order to shade the vehicle. The end of the shading corridor at the laser source remains fixed in space or moves along with the movement of the laser source, and the other end moves with the moving vehicle. If the position of the shading corridor is known, the missile can be held in it for shading the vehicle.
Der Flug des Lenkflugkörpers kann von einer Steuereinheit des Lenkflugkörpers und/oder einer Steuereinheit des Fahrzeugs gesteuert werden. Eine der Steuereinheiten erkennt den Laserstrahl zweckmäßigerweise als solchen, beispielsweise anhand von Streustrahlung des Laserstrahls und insbesondere mit Hilfe bildverarbeitender Methoden oder anhand der Erkennung eines leuchtenden Lichtflecks auf dem Fahrzeug.The flight of the missile may be controlled by a control unit of the missile and / or a control unit of the vehicle. One of the control units expediently recognizes the laser beam as such, for example on the basis of scattered radiation of the laser beam and in particular with the aid of image processing methods or on detection of a luminous light spot on the vehicle.
Insofern ist es vorteilhaft, wenn die Steuereinheit aus den Daten des Sensorsystems die Position einer Laserquelle bestimmt, die den Laserstrahl aussendet. Hierbei kann ein Strahlende des Laserstrahls erkannt werden, und aus der Lage des Strahls kann die Position der Laserquelle bestimmt werden. Alternativ oder zusätzlich kann die Position aus Triangulation aus den Daten mehrerer Sensoren bestimmt werden. Die Position der Laserquelle kann als eine Richtung erfasst werden, beispielsweise als absolute Richtung oder als eine Richtung relativ zur Flugrichtung des Luftfahrzeugs. Ebenfalls ist es möglich, die Richtung als absolute, also geografische Richtung zu bestimmen.In this respect, it is advantageous if the control unit determines from the data of the sensor system the position of a laser source which emits the laser beam. In this case, a radiation end of the laser beam can be detected, and from the position of the beam, the position of the laser source can be determined. Alternatively or additionally, the position from triangulation can be determined from the data of several sensors. The position of the laser source can be detected as a direction, for example as an absolute direction or as a direction relative to the direction of flight of the aircraft. It is also possible to determine the direction as an absolute, ie geographical, direction.
Weiter ist eine Bestimmung einer Entfernung der Laserquelle vom Sensorsystem vorteilhaft. Dies kann besonders einfach unter Verwendung einer Flughöhe des Fahrzeugs geschehen. Ist die Richtung der Laserquelle und die Flughöhe bekannt, kann hieraus die Entfernung zur Laserquelle in einfacher Weise errechnet werden, insbesondere unter Einbeziehung topografischer Daten einer überflogenen Landschaft.Furthermore, a determination of a distance of the laser source from the sensor system is advantageous. This can be done particularly easily using a flying height of the vehicle. If the direction of the laser source and the altitude are known, the distance to the laser source can be calculated from this in a simple manner, in particular taking into account topographical data of an overflown landscape.
Die Steuereinheit leitet einen Start des Flugkörpers zweckmäßigerweise in Abhängigkeit vom Erkennungsergebnis ein. Ist ein Laserstrahl als solcher erkannt und ist er zudem als bedrohlich für das Fahrzeug eingestuft, so wird der Flugkörper gestartet. Wird ein Laserstrahl nicht als solcher erkannt oder als nicht bedrohlich klassifiziert, unterbleibt das Starten des Flugkörpers zweckmäßigerweise.The control unit initiates a start of the missile expediently in dependence on the recognition result. If a laser beam is recognized as such and it is also classified as threatening to the vehicle, the missile is started. If a laser beam is not recognized as such or classified as non-threatening, the launching of the missile expediently fails.
Der Flug des Flugkörpers kann durch eine Steuereinheit des Flugkörpers selbständig gesteuert werden. Zusätzlich oder alternativ ist es möglich, dass die im Fahrzeug verbleibende Steuereinheit den Flug des Flugkörpers steuert beziehungsweise mitsteuert. Beispielsweise kann dem selbständig steuernden Flugkörper eine Ausweich- oder Abschattungsanweisung vom Fahrzeug ausgegeben werden, die dann von der Steuereinheit des Flugkörpers berücksichtigt wird.The flight of the missile can be controlled independently by a control unit of the missile. Additionally or alternatively, it is possible that the remaining in the vehicle control unit controls the flight of the missile or mitsteuert. For example, the self-controlling missile an escape or Abschattungsanweisung be issued by the vehicle, which is then taken into account by the control unit of the missile.
Eine Steuerung des Lenkflugkörpers vom Fahrzeug aus ist auch dann vorteilhaft, wenn die Lage des Laserstahls beziehungsweise der Laserquelle vom Fahrzeug genau ermittelt wird oder das Fahrzeug ein Auftreffen des Laserstrahls detektiert. Der Flugkörper kann vom Fahrzeug aus in eine Abschattungsposition bzw. in den Abschattungskorridor dirigiert werden.A control of the missile from the vehicle is also advantageous if the position of the laser beam or the laser source is accurately determined by the vehicle or the vehicle detects an impact of the laser beam. The missile can be directed from the vehicle into a shading position or into the shading corridor.
Hierfür ist es vorteilhaft, wenn eine Steuereinheit, insbesondere die des Fahrzeugs, sowohl die Position des Fahrzeugs als auch die Position einer Laserquelle des Laserstrahls ermittelt. Die Steuereinheit kann den Flug des Lenkflugkörpers steuern und diesen zwischen der Laserquelle und dem Fahrzeug halten. Zweckmäßigerweise ermittelt die Steuereinheit auch die Position des Lenkflugkörpers und berücksichtigt diese bei der Steuerung des Lenkflugkörpers. Die Positionen können absolute Positionen sein, beispielsweise mit einem Bezug auf ein Erdkoordinatensystem, oder relative Positionen des Fahrzeugs und der Laserquelle und insbesondere des Lenkflugkörpers zueinander.For this purpose, it is advantageous if a control unit, in particular that of the vehicle, determines both the position of the vehicle and the position of a laser source of the laser beam. The control unit can control the flight of the missile and hold it between the laser source and the vehicle. Conveniently, the control unit also determines the position of the missile and takes into account this in the control of the missile. The positions may be absolute positions, for example with respect to an earth coordinate system, or relative positions of the vehicle and the laser source and in particular the steering missile to each other.
Die Bereiche eines Fahrzeugs sind in der Regel unterschiedlich laserhart, und auch weniger laserharte Stellen sind vorhanden, deren Zerstörung nicht zu einem kritischen Zustand des Fahrzeugs allgemein führt. Entsprechend ist es vorteilhaft, wenn der Flug des Lenkflugkörpers so gesteuert wird, dass dieser zwischen der Laserquelle und einer vorbestimmten, zu schützenden lasersensiblen Stelle des Fahrzeugs verbleibt. So kann beispielsweise eine lasersensitive Stelle des Fahrzeugs gezielt durch die entsprechende Flugsteuerung des Flugkörpers abgeschattet werden. Der Flugkörper verbleibt zwischen der Laserquelle und der vorbestimmten Stelle, ist also an einer solchen Position, dass die Stelle vom Laserstrahl abgeschattet ist oder sie abschatten würde, wenn der Laserstrahl die Stelle beleuchten würde.The areas of a vehicle are usually different laser hard, and also less laser-hard points are present whose destruction does not lead to a critical condition of the vehicle in general. Accordingly, it is advantageous if the flight of the missile is controlled so that it remains between the laser source and a predetermined, to be protected laser-sensitive point of the vehicle. Thus, for example, a laser-sensitive point of the vehicle can be deliberately shadowed by the corresponding flight control of the missile. The missile remains between the laser source and the predetermined location, that is, at a position such that the location is shadowed by the laser beam or would shadow it as the laser beam illuminates the location.
Eine lasersensible Stelle kann eine solche Stelle bzw. ein solcher Bereich sein, dessen Bestrahlung mit einem Hochenergielaser für einen Dauer von weniger als 5 Sekunden zu einem kritischen Zustand des Fahrzeugs allgemein führt. Als lasersensible Stelle ist hierbei nicht nur ein geometrischer Punkt am Fahrzeug zu verstehen, sondern ein räumlich ausgedehnter Bereich, der vor Bestrahlung durch Hochenergielaserstrahlung zu schützen ist. Die Summe der lasersensiblen Stellen des Fahrzeugs beschränkt sich zweckmäßigerweise auf maximal 25% der von der Laserquelle sichtbaren Silhouettenfläche des Fahrzeugs.A laser-sensitive location may be such a location or area whose irradiation with a high energy laser for a period of less than 5 seconds generally results in a critical condition of the vehicle. As a laser-sensitive body is not only a geometric point on the vehicle to understand, but a spatially extended area that is to be protected from irradiation by high-energy laser radiation. The sum of the laser-sensitive points of the vehicle is expediently limited to a maximum of 25% of the silhouettes of the vehicle visible from the laser source.
Eine weitere Möglichkeit zur Steuerung des Lenkflugkörpers besteht darin, dass eine vom Laserstrahl beleuchtete Stelle des Fahrzeugs erkannt und diese lokalisiert wird. Ist die Position der Laserquelle bekannt, kann ein Abschattungskorridor berechnet werden und der Flugkörper kann innerhalb des Abschattungskorridors gehalten bleiben. Jedoch auch dann, wenn die Position der Laserquelle nicht bekannt ist, kann eine beleuchtete Stelle am Fahrzeug abgeschattet werden, insbesondere wenn der Lenkflugkörper relativ nahe am Fahrzeug gehalten wird. Beispielsweise fliegt der Lenkflugkörper direkt unter dem Fahrzeug und schattet die beleuchtete Stelle ab. Es ist insofern vorteilhaft, wenn die Position einer Leuchtstelle, an der der Laserstrahl das Fahrzeug trifft, bestimmt wird und der Lenkflugkörper in Abhängigkeit von der Position der Leuchtstelle gesteuert wird.A further possibility for controlling the guided missile is that a spot illuminated by the laser beam of the vehicle is detected and localized. If the position of the laser source is known, a shading corridor can be calculated and the missile can remain held within the shading corridor. However, even if the position of the laser source is not known, a lighted spot on the vehicle may be shaded, especially if the missile is held relatively close to the vehicle. For example, the missile flies directly under the vehicle and shadows the illuminated spot. It is advantageous in this case if the position of a lighting location at which the laser beam hits the vehicle is determined and the guided missile is controlled as a function of the position of the lighting location.
Eine Erkennung einer am Fahrzeug vom Laserstrahl beleuchteten Stelle ist besonders einfach von einem in der Nähe fliegenden Flugkörper, insbesondere dem Lenkflugkörper, möglich. Hierzu kann dieser einen auf das Fahrzeug ausgerichteten Sensor aufweisen, der zur Erkennung eines Laserleuchtflecks vorbereitet ist. Der Sensor sensiert die Leuchtstelle, an der der Laserstrahl das Fahrzeug trifft, und eine Steuereinheit, zweckmäßigerweise eine Steuereinheit des Lenkflugkörpers, bestimmt die Position der Leuchtstelle, beispielsweise relativ zu einer Position des Lenkflugkörpers und oder einer Referenzstelle des Fahrzeugs. Die Steuereinheit kann den Flug des Lenkflugkörpers nun so steuern, dass die Leuchtstelle auf dem Fahrzeug verschwindet. Die Leuchtstelle kann mit oder ohne Erkennung ihrer Relativposition zum Lenkflugkörper als Steuergröße, insbesondere als Regelgröße, zur Lenkung des Lenkflugkörpers verwendet werden. Ist die Leuchtstelle auf dem Fahrzeug erkennbar, so wird der Flug des Lenkflugkörpers so gesteuert, dass die Leuchtstelle verschwindet.Detecting a spot illuminated by the laser beam on the vehicle is possible in a particularly simple manner from a missile flying in the vicinity, in particular the guided missile. For this purpose, it can have a vehicle-oriented sensor which is prepared for the detection of a laser light spot. The sensor senses the illuminated location at which the laser beam hits the vehicle, and a control unit, advantageously a control unit of the guided missile, determines the position of the lighting location, for example relative to a position of the missile and or a reference point of the vehicle. The control unit can now control the flight of the guided missile so that the illuminated spot disappears on the vehicle. The illuminated spot can be used with or without recognition of their relative position to the guided missile as a control variable, in particular as a controlled variable, for steering the missile. If the illuminated spot is recognizable on the vehicle, the flight of the guided missile is controlled so that the illuminated spot disappears.
Zweckmäßigerweise wird erkannt, ob die Leuchtstelle eine lasersensible Stelle des Fahrzeugs bedeckt. Die Erkennung kann von einer Steuereinheit des Lenkflugkörpers durchgeführt werden. Die Erkennung kann anhand von hinterlegten Sensibilitätsdaten des Fahrzeugs erfolgen. Wird eine lasersensible Stelle des Fahrzeugs beleuchtet, so wird der Flug des Lenkflugkörpers zweckmäßigerweise so gesteuert, dass die Leuchtstelle verschwindet. Ist die beleuchtete Stelle keine lasersensible Stelle, die Beleuchtung der Stelle führt also auch bei einer längeren Beleuchtung nicht zu einer kritischen Beschädigung der Stelle, so kann auf die Abschattung dieser ausreichend laserharten Stelle verzichtet werden. Der Lenkflugkörper kann so gesteuert werden, dass er eine andere - insbesondere lasersensitive - Stelle abschattet, er also zwischen der Laserquelle und dieser lasersensitiven Stelle verbleibt auch wenn diese nicht beleuchtet wird.Appropriately, it is detected whether the illuminated spot covers a laser-sensitive point of the vehicle. The detection can be performed by a control unit of the missile. The detection can be based on stored sensitivity data of the vehicle. If a laser-sensitive point of the vehicle is illuminated, the flight of the guided missile is expediently controlled so that the Light spot disappears. If the illuminated spot is not a laser-sensitive spot, the illumination of the spot does not lead to critical damage to the spot even with a longer illumination, so that shading of this sufficiently laser-hard spot can be dispensed with. The missile can be controlled so that it shaded another - especially laser-sensitive - spot, so it remains between the laser source and this laser-sensitive point even if it is not illuminated.
Zur Bestimmung der Position der beleuchteten Stelle auf dem Fahrzeug ist es vorteilhaft, wenn eine Steuereinheit die Position der Leuchtstelle auf dem Fahrzeug anhand charakteristischer Bildmerkmale des Fahrzeugs bestimmt. Hierzu sind die charakteristischen Bildmerkmale zweckmäßigerweise zumindest teilweise in einer Datenbank hinterlegt, auf die die Steuereinheit Zugriff hat.For determining the position of the illuminated location on the vehicle, it is advantageous if a control unit determines the position of the lighting location on the vehicle on the basis of characteristic image features of the vehicle. For this purpose, the characteristic image features are expediently at least partially stored in a database to which the control unit has access.
Zum Schutz eines Lasersensors ist es vorteilhaft, wenn dieser auf einer der Laserquelle abgewandten Seite des Lenkflugkörpers angeordnet ist und beispielsweise nach oben ausgerichtet ist. Nach oben kann hierbei so verstanden werden, dass der Schwerpunkt der Aufnahmeausrichtung des Sensors in den oberen Halbraum gerichtet ist, dessen Zenit in entgegengesetzter Richtung zum Erdmittelpunkt liegt. Dies kann auch bei einem auf dem Erdboden in regulärer Parkstellung geparkten Lenkflugkörper sein Fall sein, sodass der Sensor auf der Oberseite des Lenkflugkörpers angeordnet ist. Der Lenkflugkörper kann das Fahrzeug von unten beobachten und auf Leuchtstellen überwachen.For the protection of a laser sensor, it is advantageous if this is arranged on a side facing away from the laser source side of the missile and, for example, is oriented upward. Upwards here can be understood that the center of gravity of the recording orientation of the sensor is directed into the upper half-space, whose zenith is in the opposite direction to the center of the earth. This may also be the case with a guided missile parked on the ground in regular parking position, so that the sensor is arranged on top of the guided missile. The missile can observe the vehicle from below and monitor it for lighting.
Ein Schutz des Fahrzeugs durch den Lenkflugkörper kann von einer angreifenden Stelle aus erkannt und eine Steuerung des Laserstrahls kann entsprechend verändert werden. Beispielsweise wird der Laserstrahl in schneller Folge auf mehrere lasersensitive Stellen ausgerichtet, sodass an diesen Stellen jeweils eine große Menge Laserenergie deponiert wird. Durch die Trägheit des Lenkflugkörpers ist dieser eventuell nicht in der Lage, dem schnellen Zielwechsel zu folgen. Um dennoch einen ausreichenden Schutz des Fahrzeugs zu erreichen ist es vorteilhaft, wenn der Flug des Lenkflugkörpers so gesteuert wird, dass der Lenkflugkörper seinen Schatten auf mehrere zu schützende Stellen des Fahrzeugs so wirft, dass keine der Stellen länger als eine jeweils vorgegebene Zeitdauer vom Laserstrahl beleuchtet wird. So wird beispielsweise die Beleuchtung einer zweiten Stelle hingenommen, ohne dass der Lenkflugkörper zur Abschattung dieser zweiten Stelle gesteuert wird. Erst wenn diese zweite Stelle so lange beleuchtet wird, dass die vorgegebene Zeitdauer erreicht zu werden droht, so wird die Position des Lenkflugkörpers relativ zum Luftfahrzeug geändert und die zweite Stelle wird zu deren Abkühlung abgeschattet.A protection of the vehicle by the guided missile can be detected from an attacking point and a control of the laser beam can be changed accordingly. For example, the laser beam is aligned in rapid succession on several laser-sensitive points, so that in each case a large amount of laser energy is deposited. Due to the inertia of the guided missile, this may not be able to follow the rapid change of destination. Nevertheless, in order to achieve sufficient protection of the vehicle, it is advantageous if the flight of the missile is controlled so that the missile casts its shadow on several areas of the vehicle to be protected so that none of the points illuminated by the laser beam for more than a predetermined time duration becomes. For example, the lighting of a second location is accepted without the missile being controlled to shadow this second location. Only when this second location is illuminated so long that the predetermined time period is reached threatened, the position of the missile is changed relative to the aircraft and the second location is shaded to cool it.
Die vorgegebene Zeitdauer kann von einer Lasersensibilität der Stellen abhängen, sodass die Zeitdauer desto größer ist, je laserhärter die betreffende Stelle ist. Die Zeitdauer kann auch von einer Laserleistung abhängen, die beispielsweise von einer Steuereinheit des Fahrzeugs berechnet wurde. Weiter kann die Zeitdauer von der Anzahl der in der Vergangenheit beleuchteten Stellen am Fahrzeug abhängig sein. Außerdem kann die vorgegebene Zeitdauer von einem Abstand der beleuchteten Stellen zueinander abhängig sein, sodass eine Wechseldauer, die ein Wechsel des Lenkflugkörpers von einer Abschattungsposition in die andere einnimmt, berücksichtigt wird. Des Weiteren kann die Zeitdauer von der Menge einer zuvor an dieser Stelle deponierten Laserenergie und einer Abkühlzeit abhängen. Wurden die Stellen bereits zuvor beleuchtet und die Abkühlzeit war gering, so ist die vorgegebene Zeitdauer kleiner, als wenn die Abkühlzeit größer gewesen ist.The predetermined amount of time may depend on a laser sensitivity of the locations, so that the longer the time the laser hardens the location in question, the greater the time duration. The time period may also depend on a laser power that has been calculated, for example, by a control unit of the vehicle. Further, the time period may be dependent upon the number of illuminated locations on the vehicle in the past. In addition, the predetermined period of time can be dependent on a distance of the illuminated locations from each other, so that an alternating duration, which assumes a change of the missile from one shading position to the other, is taken into account. Furthermore, the period of time may depend on the amount of laser energy previously deposited at that location and a cooling time. If the points have already been illuminated before and the cooling time was low, then the predetermined period of time is shorter than if the cooling time had been greater.
Beispielsweise wird eine bestrahlte Stelle am Fahrzeug bestimmt. Nun können eine Temperatur, eine deponierte Energiemenge, ein Beeinträchtigungsgrad und/oder dergleichen dieser Stelle bestimmt werden. Weiter kann eine Laserhärte der Stelle berücksichtigt werden, beispielsweise eine Zerstörungszeitdauer, ab der eine weitere Bestrahlung der Stelle zu einer Zerstörung der Stelle führt. Ferner kann eine Wechseldauer, die ein Wechsel der Abschattungsposition des Lenkflugkörpers von einer abgeschatteten zu einer bestrahlten Stelle dauert, bestimmt werden. In Abhängigkeit von einem oder mehreren der oben genannten Größen kann ein Wechselzeitpunkt bestimmt werden, an dem der Lenkflugkörper an eine neue Abschattungsposition gesteuert wird. Zum Wechselzeitpunkt wird der Flugkörper nun an die neue abzuschattende Stelle dirigiert.For example, an irradiated point on the vehicle is determined. Now, a temperature, a deposited amount of energy, a degree of deterioration and / or the like of this location can be determined. Furthermore, a laser hardness of the site can be taken into account, for example a destruction period from which further irradiation of the site leads to destruction of the site. Furthermore, an alternating duration, which takes a change in the shading position of the guided missile from a shadowed to an irradiated point, can be determined. Depending on one or more of the above variables, a changeover time may be determined at which the missile is controlled to a new shading position. At the time of change, the missile will now be directed to the new location to be shaded.
Es ist vorteilhaft, wenn der Flug des Lenkflugkörpers so gesteuert wird, dass ein Flugkörperschatten von der momentan beschatteten Stelle zu einer momentan bestrahlten Stelle wechselt in Abhängigkeit von einer Abkühldauer der momentan beschatteten Stelle. Weiter kann zweckmäßigerweise eine Laserhärte beziehungsweise Beschädigungszeit der momentan bestrahlten Stelle und eine Wechseldauer, die das Bewegen des Schattens zwischen den Stellen dauert, berücksichtigt werden.It is advantageous if the flight of the guided missile is controlled such that a shadow of the missile changes from the momentarily shaded point to a momentarily irradiated point as a function of a cooling time of the momentarily shaded point. Furthermore, it is expedient to take into account a laser hardness or damage time of the point currently irradiated and an alternating duration which takes the movement of the shadow between the points.
Eine weitere Möglichkeit der Abschattung besteht darin, dass der Lenkflugkörper ein Abschattungsmittel ausstößt. Ein solches Abschattungsmittel kann Rauch, Flitterelemente oder dergleichen umfassen. Das Abschattungsmittel wird zweckmäßigerweise zusätzlich zum Antriebsabgas des Lenkflugkörpers ausgestoßen, sodass der Ausstoß unabhängig von einer Schubsteuerung des Lenkflugkörpers sein kann. Hierfür umfasst der Lenkflugkörper zweckmäßigerweise eine Abschattungsmitteldüse, die zusätzlich zur Triebstrahlöffnung vorhanden ist.Another possibility of shading is that the guided missile ejects a shading means. Such a shading means may include smoke, flicker elements or the like. The shading means is expediently ejected in addition to the drive exhaust gas of the missile, so that the ejection can be independent of a thrust control of the missile. For this purpose, the guided missile expediently comprises a shading means nozzle, which is provided in addition to the engine jet opening.
Weiter ist es vorteilhaft, wenn der Flug des Lenkflugkörpers so gesteuert wird, dass das ausgestoßene Abschattungsmittel eine vorbestimmte, lasersensitive Stelle des Fahrzeugs zumindest teilweise abschattet. Insbesondere ist es vorteilhaft, wenn das Abschattungsmittel in Abhängigkeit von der Position einer Leuchtstelle auf dem Fahrzeug und der Position des Lenkflugkörpers ausgestoßen wird. Liegt beispielsweise die Leuchtstelle hinter dem Lenkflugkörper, sodass eine Abschattung durch den Lenkflugkörper durch eine Abbremsung des Lenkflugkörpers erreicht werden muss, so kann zunächst das Abschattungsmittel ausgestoßen werden, um eine Abschattung zusätzlich oder bereits früher zu erreichen bevor der Lenkflugkörper mit seinen festen Strukturen die Abschattung dieser Stelle beginnen kann.Further, it is advantageous if the flight of the missile is controlled so that the ejected shading shadows a predetermined, laser-sensitive point of the vehicle at least partially. In particular, it is advantageous if the shading means is ejected as a function of the position of a lighting spot on the vehicle and the position of the guided missile. For example, if the lighting point behind the missile so that shading must be achieved by the missile by a deceleration of the missile, so the shading means can be first ejected to achieve shading in addition or earlier before the missile with its solid structures, the shading of this Job can begin.
Bei Verwendung von Flitterelementen ist es vorteilhaft, wenn diese eine retroreflektierende Eigenschaft haben. Der Laserstrahl wird an den Flitterelementen in entgegengesetzte Richtung reflektiert, sodass ein Teil der Laserstrahlung auf die Laserquelle zurückgeworfen wird. Deren Funktion kann hierdurch beeinträchtigt werden.When using tinsel elements, it is advantageous if they have a retroreflective property. The laser beam is reflected at the bauble elements in the opposite direction, so that a part of the laser radiation is reflected back to the laser source. Their function can be impaired as a result.
Um eine schnelle Manövrierfähigkeit für eine schnelle Abschattung zu erreichen, ist es vorteilhaft, wenn der Lenkflugkörper ein Bremsmittel, wie eine Bremsklappe oder ein Bremssegel, zum Verringern der Fluggeschwindigkeit aufweist. Dieses wird zweckmäßigerweise während des Fluges ausgefahren und bremst den Lenkflugkörper in Abhängigkeit von dem Ausfahrgrad ab. Die Fluggeschwindigkeit kann zugig verringert und ein Rückfallen des Lenkflugkörpers schnell erreicht werden.In order to achieve fast maneuverability for rapid shadowing, it is advantageous if the missile has a braking means, such as a brake flap or a brake sail, for reducing the speed of flight. This is expediently extended during the flight and brakes the missile depending on the degree of extension. The airspeed can be draughty reduced and a falling back of the missile can be reached quickly.
Außerdem ist es vorteilhaft, wenn der Flugkörper nach seinem Start ein Abschattungselement ausfährt und hierdurch seine Schattenfläche vergrößert, insbesondere auf das zumindest 1,5-fache der Abschattungsfläche des Lenkflugkörpers beim Start. Hierdurch können Ungenauigkeiten bei der Flugsteuerung des Lenkflugkörpers ausgeglichen werden und/oder es können mehrere lasersensitive Stellen zugleich abgeschattet werden.Moreover, it is advantageous if the missile extends after its launch a shading element and thereby increases its shadow area, in particular to at least 1.5 times the shading surface of the missile at the start. This can cause inaccuracies in flight control be compensated for the missile and / or it can be shadowed several laser-sensitive points at the same time.
Zur Störung der Funktion der Laserquelle ist es außerdem vorteilhaft, wenn Lenkflugkörper einen Reflektor aufweist, insbesondere einen Retroreflektor. Der Reflektor kann beispielsweise auf einem Abschattungselement abgeordnet sein, das nach dem Start des Lenkflugkörpers ausgefahren wird.To disrupt the function of the laser source, it is also advantageous if the missile has a reflector, in particular a retroreflector. The reflector may for example be seconded to a shading element, which is extended after the start of the missile.
Außerdem ist die Erfindung gerichtet auf einen Lenkflugkörper zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl. Um einen wirkungsvollen Schutz des Fahrzeugs vor dem Angriff zu erreichen, umfasst der Lenkflugkörper erfindungsgemäß ein Sensorsystem zum Sensieren von Laserstrahlung des Laserstrahls und eine Steuereinheit, die dazu ausgelegt ist, den Lenkflugkörper in den Laserstrahl hineinzufliegen und das Fahrzeug vor dem Laserstrahl abzuschatten. Zweckmäßigerweise ist die Steuereinheit auch dazu vorbereitet, den Schatten des Lenkflugkörpers auf dem Fahrzeug zu halten.In addition, the invention is directed to a missile for protecting a vehicle from attack by a laser beam. In order to achieve effective protection of the vehicle from the attack, the guided missile according to the invention comprises a sensor system for sensing laser radiation of the laser beam and a control unit which is designed to fly the guided missile into the laser beam and to shadow the vehicle from the laser beam. Conveniently, the control unit is also prepared to keep the shadow of the missile on the vehicle.
Die bisher gegebene Beschreibung vorteilhafter Ausgestaltungen der Erfindung enthält zahlreiche Merkmale, die in einigen abhängigen Ansprüchen zu mehreren zusammengefasst wiedergegeben sind. Diese Merkmale können jedoch zweckmäßigerweise auch einzeln betrachtet und zu sinnvollen weiteren Kombinationen zusammengefasst werden, insbesondere bei Rückbezügen von Ansprüchen, sodass ein einzelnes Merkmal eines abhängigen Anspruchs mit einem einzelnen, mehreren oder allen Merkmalen eines anderen abhängigen Anspruchs kombinierbar ist. Außerdem sind diese Merkmale jeweils einzeln und in beliebiger geeigneter Kombination sowohl mit dem erfindungsgemäßen Verfahren als auch mit der erfindungsgemäßen Vorrichtung gemäß den unabhängigen Ansprüchen kombinierbar. So sind Verfahrensmerkmale auch als Eigenschaften der entsprechenden Vorrichtungseinheit gegenständlich formuliert zu sehen und funktionale Vorrichtungsmerkmale auch als entsprechende Verfahrensmerkmale.The description of advantageous embodiments of the invention given so far contains numerous features that are summarized in several dependent claims in several groups. However, these features may conveniently be considered individually and grouped together into meaningful further combinations, in particular when reclaiming claims, so that a single feature of a dependent claim can be combined with a single, several or all features of another dependent claim. In addition, these features can be combined individually and in any suitable combination both with the method according to the invention and with the device according to the invention according to the independent claims. Thus, process features can also be formulated formally as properties of the corresponding device unit and functional device features also as corresponding process features.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich in Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Die Ausführungsbeispiele dienen der Erläuterung der Erfindung und beschränken die Erfindung nicht auf die darin angegebene Kombination von Merkmalen, auch nicht in Bezug auf funktionale Merkmale. Außerdem können dazu geeignete Merkmale eines jeden Ausführungsbeispiels auch explizit isoliert betrachtet, aus einem Ausführungsbeispiel entfernt, in ein anderes Ausführungsbeispiel zu dessen Ergänzung eingebracht und/oder mit einem beliebigen der Ansprüche kombiniert werden.The above-described characteristics, features, and advantages of this invention, as well as the manner in which they are achieved, will become clearer and more clearly understood in connection with the following description of the embodiments, which will be described in detail in conjunction with the drawings. The embodiments serve to illustrate the invention and do not limit the invention to the combination of features specified therein, not even in Reference to functional characteristics. In addition, suitable features of each embodiment may also be explicitly considered isolated, removed from one embodiment, incorporated into another embodiment to complement it, and / or combined with any of the claims.
Es zeigen:
- FIG 1
- ein Luftfahrzeug unmittelbar vor einem Angriff durch ein Lasersystem,
- FIG 2
- das Luftfahrzeug, das von einem loiternden Lenkflugkörper gegen einen Laserstrahl des Lasersystems abgeschattet wird,
- FIG 3
- das Luftfahrzeug, das von einem auf die Laserquelle zu fliegenden Lenkflugkörper gegen einen Laserstrahl abgeschattet wird,
- FIG 4
- das Luftfahrzeug in einer Ansicht von unten mit drei von Laserstrahlen beleuchteten Stellen, von denen eine durch einen Lenkflugkörper teilweise abgeschattet wird, und
- FIG 5
- den Lenkflugkörper beim Abschatten einer beleuchteten Stelle durch seine festen Strukturen und dem teilweisen Abschatten einer anderen beleuchteten Stelle durch ein gasförmiges Abschattungsmittel.
- FIG. 1
- an aircraft immediately before an attack by a laser system,
- FIG. 2
- the aircraft, which is shaded by a loitering guided missile against a laser beam from the laser system,
- FIG. 3
- the aircraft being shaded by a guided missile aimed at the laser source against a laser beam,
- FIG. 4
- the aircraft in a view from below with three laser-illuminated areas, one of which is partially shaded by a guided missile, and
- FIG. 5
- the missile when shadowing a lit spot by its solid structures and the partial shading of another illuminated spot by a gaseous shading means.
Das Lasersystem 6 ist ein Hochenergielasersystem, das den Laserstrahl 8 vorwiegend im infraroten Spektralbereich aussendet, beispielsweise bei 3,8 µm, wobei der Laserstrahl 8 über eine Distanz von mehreren Kilometern genügend Energie transportiert, um empfindliche Teile des Luftfahrzeugs zu zerstören und hierdurch dessen Flugfähigkeit akut zu gefährden. Das Lasersystem 6 dient zum Bekämpfen von Luftfahrzeugen und weist eine Steuereinheit auf, die den Laserstrahl 8 auf das Fahrzeug 2 schwenkt und den Laserstrahl 8 automatisiert der Bewegung des Luftfahrzeugs 2 nachführt. In der Steuereinheit ist eine lasersensitive Stelle des Fahrzeugs 2 hinterlegt, auf die der Laserstrahl 8 mittels bildverarbeitender Methoden automatisch gerichtet wird, um die im Lasersystem 6 bildhaft hinterlegte Stelle des Luftfahrzeugs 2 über einen Zeitraum von einigen Sekunden zu bestrahlen und hierdurch zu zerstören.The
Anstelle des Hochenergielasersystems 6 kann ein Designatorlasersystem bzw. Markierlasersystem bekämpft oder gestört werden, das das Fahrzeug 2 anleuchtet, um einen Lenkflugkörper in das Fahrzeug 2 zu steuern. Durch eine Abschattung des Fahrzeugs 2 und/oder eine Zerstörung der Laserquelle 10 kann diese Markierung gestört werden, so dass der angreifende Lenkflugkörper das Fahrzeug 2 nicht finden kann. Die folgende Beschreibung bezieht sich auf ein stationäres Hochenergielasersystem 6, ohne dass damit eine Einschränkung auf dieses System verbunden wäre.Instead of the high-
Zum Schützen des Fahrzeugs 2 weist dieses zumindest einen Flugkörper 12, 14 auf, wobei in
Aus den geometrischen Daten des Laserstrahls 8 sowie dessen Spektrum und Strahlungsintensität klassifiziert die Steuereinheit 20 den Laserstrahl 8 zunächst in die drei Stufen harmlos, potentiell gefährlich und gefährlich. Bei einer Klassifikation in die Stufe harmlos wird der Laserstrahl 8 weiter beobachtet, jedoch wird weder der Laserstrahl 8 abgeschattet noch die Laserquelle 10 bekämpft. Bei einer Klassifikation in eine der beiden anderen Stufen wird eine Abschattung und/oder Bekämpfung vorbereitet. Hierzu wird ein Kanister 22, der zumindest einen der Flugkörper 12 beherbergt, in die Richtung der Laserquelle 10 verschwenkt. Diese Verschwenkbarkeit ist in
Sowohl für die Abschattung als auch für eine Bekämpfung der Laserquelle 10 ist es vorteilhaft, wenn die Position der Laserquelle 10 bekannt ist. Diese ermittelt die Steuereinheit 20 beispielsweise aus der Geometrie des Laserstrahls 8. So kann an der Stelle des abrupten Endes des Laserstrahls 8 die Laserquelle 10 vermutet werden. Außerdem kann dem Laserstrahl 8 eine Richtung gegeben werden, zumindest eine grobe Richtung oben und unten, wobei die Laserquelle 10 nur an einem unteren Ende des Laserstrahls 8 positioniert ist. Auf diese Weise kann eine Richtung der Laserquelle 10 relativ zum Luftfahrzeug 2 ermittelt werden. Aus der Richtung und einer Flughöhe des Luftfahrzeugs und zweckmäßigerweise einer Topografie der überflogenen Landschaft, kann auch die Entfernung zwischen Luftfahrzeug und Laserquelle 10 bestimmt werden, insbesondere werden die absoluten geografischen Koordinaten der Laserquelle 10 bestimmt.Both for shading and for controlling the
Die Erkennung des Laserstrahls 8 erfolgt insofern durch eine Aufnahme des Laserstrahls 8 von der Seite, wobei aus dem Laserstrahl 8 an der Atmosphäre gestreute Laserstrahlung aufgenommen wird. Dies kann auch durch den nach oben gerichteten Sensor 18 geschehen, dessen Blick auf die Laserquelle 10 verstellt ist. Anhand der Ausrichtung des sichtbaren Teils des Laserstrahls 8 kann ferner ein weiterer Verlauf des Laserstrahls 8 in der Umgebung extrapoliert werden.The detection of the
Für den Fall, dass der Laserstrahl 8 bereits auf das Luftfahrzeug 2 gerichtet ist und somit das undefinierte obere Ende nicht mehr als solches zu erkennen ist und der Laserstrahl 8 sowohl oben als auch unten ein abruptes Ende aufweist, kann die Ermittlung der Position der Laserquelle 10 durch einen anderen der Sensoren 18 des Sensorsystems 16 vorgenommen werden, beispielsweise durch einen Sensor 18 an einem Flügel des Luftfahrzeugs 2. Dieser erkennt den Laserstrahl 8 an sich und beide abrupte Enden, wobei die Steuereinheit 20 das untere abrupte Ende des Laserstrahls 8 als Standort der Laserquelle 10 auswählt. Ebenfalls möglich ist eine Positionsbestimmung der Laserquelle 10 mittels Triangulation. Sobald drei oder mehr Sensoren 18 den Laserstrahl 8 erkannt und dessen unteres abruptes Ende bestimmt haben, kann neben der Richtung der Laserquelle 10 auch deren Entfernung durch die bekannte Ausrichtung der Sensoren 18 am Luftfahrzeug 2 zueinander bestimmt werden.In the event that the
Zum Schutz des Luftfahrzeugs wird nun zumindest ein Flugkörper 12, 14 vom Luftfahrzeug gestartet. Die Steuerung des Starts übernimmt die Steuereinheit 20 des Sensorsystems 16, die auch ein Teil einer zentralen Fahrzeugsteuerung des Fahrzeugs 2 sein kann.To protect the aircraft, at least one
Zum Halten des Flugkörpers 14 im Laserstrahl 8 bestehen mehrere Möglichkeiten. Beispielsweise kann die Position des Laserstrahls 8 im Raum bzw. dessen Ende auf dem Fahrzeug 2 durch Sensoren 18 des Sensorsystems 16 ermittelt werden. Entsprechende Steuersignale werden von der Steuereinheit 20 an eine Steuereinheit 24 des Flugkörpers 14 gegeben.For holding the
Eine Alternative oder zusätzliche Möglichkeit besteht darin, dass der Flugkörper 14 die Abschattung selbst bestimmt und hieraus seinen Flug steuert. So weist der Flugkörper 14 einen nach oben gerichteten lasersensitiven Sensor 26 auf, der das Luftfahrzeug 2 von unten überwacht. Ein Auftreffen des Laserstrahls 8 auf dem Luftfahrzeug 2 wird erkannt, und der Flugkörper 14 wird so gesteuert, dass der Bestrahlungsfleck des Laserstrahls 8 auf dem Luftfahrzeug 2 verschwindet. Hierzu wird der Flug so geregelt, dass die Regelgröße, nämlich die Sichtbarkeit des Laserflecks auf dem Luftfahrzeug 2, verschwindet oder zumindest verringert wird. Wenn andererseits der Laserstrahl 8 vom Luftfahrzeug weg bewegt wird, verschwindet der Laserfleck ebenfalls. In diesem Fall begleitet der Flugkörper 14 das Luftfahrzeug noch eine vorgegebene Strecke bzw. Zeitdauer weiter, um einen Schutz gegen den potentiell wieder gefährlichen Laserstrahl 8 aufrechtzuhalten.An alternative or additional possibility is that the
Gerade bei einem Flugkörper 14 mit einem Raketenmotor kann es sein, dass der Festbrennstoff des Raketenmotors nach einer Weile verbraucht ist. In diesem Falle kann ein zweiter Flugkörper 14 gestartet werden, der das Fahrzeug 2 weiter abschattet. Auch wenn in
Eine zusätzliche oder alternative Methode zum Abschatten des Fahrzeugs 2 durch einen Flugkörper 12 ist anhand der Zeichnung aus
Die im Folgenden beschriebenen Verfahren können mit dem Lenkflugkörper 12 und/oder mit dem Lenkflugkörper 14 durchgeführt werden. Zum Steuern des Lenkflugkörpers 12 und/oder des Lenkflugkörpers 14 aus
Weiter sind in der Steuereinheit 20 mehrere lasersensitive Stellen 30, 32 des Fahrzeugs 2 hinterlegt, die in
Bei dem in
Anhand der Darstellung aus
Der Flug des Lenkflugkörpers 12, 14 wird nun so gesteuert, beispielsweise von der Steuereinheit 20 oder der Steuereinheit 24 des Lenkflugkörpers 12, 14, dass der Lenkflugkörper 12, 14 den Leuchtfleck 38 vollständig abschattet. Hierzu wird die Leuchtintensität des Leuchtfleck 38 gemessen, entweder durch den Sensor 26 des Flugkörpers 12, 14 oder durch einen der Sensoren 18 des Luftfahrzeugs 2. Die Leuchtintensität kann als Regelgröße zur Regelung der Lenkung des Flugkörpers 12, 14 verwendet werden, wobei das Regelziel das Verschwinden der Leuchtstärke ist. Mit dem Flugkörper 14 kann dies sehr einfach erreicht werden, da dessen Sensor 26 bei einem Loiterflug die Leuchtstärke des Leuchtflecks 38 problemlos erkennen und messen kann. Ist der Flugkörper 12 als segelfähiges Geschoss ausgeführt, so entfernt er sich relativ schnell vom Fahrzeug 12. Durch die große Distanz ist die Messung der Leuchtstärke des Leuchtflecks 38 zwar immer noch möglich, jedoch schwieriger. Die Messung wird daher zweckmäßigerweise von einem der Sensoren 18 durchgeführt. Diese sind so platziert, dass sie zumindest alle lasersensitiven Stellen 30, 32 abtasten können.The flight of the
Verändert sich die Position des Leuchtflecks 38 am Fahrzeug, wandert er beispielsweise in einen nicht lasersensitiven Bereich, wie in
Nun schützt der Flugkörper 12, 14 die Stellen 30, 32 gemäß einer hinterlegten Priorität. Diese Priorität kann die Wichtigkeit von an den Stellen 30, 32 befindlichen Elementen des Luftfahrzeugs 2 sein. Es ist jedoch auch möglich, dass der Flugkörper 12, 14 mit höherer Priorität den vorderen lasersensitiven Bereich 30 schützt und versucht, den hinteren Bereich 32 unter Zuhilfenahme des Abschattungsmittel 46 zumindest teilweise zu schützen, beziehungsweise abzuschatten. Bei der in
Allerdings ist es Ausstoßen von Abschattungsmittel 46 dennoch sinnvoll, da der Wechsel der Abschattungsposition des Flugkörpers 12, 14 von einer Stelle 30 zu anderen Stelle 32 eine Weile dauert. Beispielsweise kann der Flugkörper 32 nach Beendigung der Abschattung der vorderen lasersensitiven Stelle 30 zur Seite gesteuert werden, bis er genau vor dem Leuchtfleck 38 auf der hinteren lasersensitiven Stelle 32 fliegt. Der Ausstoß des Abschattungsmittels 46 kann begonnen werden und so lange andauern, bis der Flugkörper 12, 14 durch Abbremsen seiner Fluggeschwindigkeit die lasersensitive Stelle 32 erreicht und den Leuchtfleck 38 unmittelbar abschattet.However, ejection of shading means 46 nevertheless makes sense, since the change of the shading position of the
Zur Beschleunigung dieses Bremsvorgangs ist der Flugkörper 12, 14 mit einer Bremsklappe 48 ausgestartet, die in
In einem weiteren Verfahren werden mehrere Flugkörper 12 vom Fahrzeug 2 gestartet. Dies ist in
- 22
- Fahrzeugvehicle
- 44
- Landschaftlandscape
- 66
- Lasersystemlaser system
- 88th
- Laserstrahllaser beam
- 1010
- Laserquellelaser source
- 1212
- Flugkörpermissile
- 1414
- Flugkörpermissile
- 1616
- Sensorsystemsensor system
- 1818
- Sensorsensor
- 2020
- Steuereinheitcontrol unit
- 2222
- Kanistercanister
- 2424
- Steuereinheitcontrol unit
- 2626
- Sensorsensor
- 2828
- AbschattungskorridorAbschattungskorridor
- 3030
- lasersensitive Stellelaser-sensitive point
- 3232
- lasersensitive Stellelaser-sensitive point
- 3434
- AbschattungskorridorAbschattungskorridor
- 3636
- AbschattungskorridorAbschattungskorridor
- 3838
- Leuchtfleckspot
- 4040
- Abschattungselementshading
- 4242
- Leuchtfleckspot
- 4444
- Leuchtfleckspot
- 4646
- Abschattungsmittelshading
- 4848
- Bremsklappeairbrake
Claims (15)
- Method for protecting a vehicle (2) from an attack by a laser beam (8), wherein a sensor system (16) detects laser radiation of the laser beam (8) and a guided aerial vehicle (12, 14) flies into the laser beam (8) and shadows the vehicle (2) thereby.
- Method according to Claim 1,
characterized
in that the guided aerial vehicle (12, 14) is launched from the vehicle (2) and the flight of the guided aerial vehicle (12, 14) is controlled from the vehicle (2). - Method according to Claim 1 or 2,
characterized
in that the guided aerial vehicle (12) is fired towards the front from the vehicle and said guided aerial vehicle sails in the direction of a laser source (10) of the laser beam (8). - Method according to any one of the preceding claims,
characterized
in that the positions of the vehicle (2) and also of the guided aerial vehicle (12, 14) and a laser source (10) of the laser beam (8) are established and the guided aerial vehicle (12, 14) is kept between the laser source (10) and the vehicle (2) in the laser beam (8). - Method according to any one of the preceding claims,
characterized
in that the position of a luminous spot (38, 42, 44), at which the laser beam (8) strikes the vehicle (2), is determined and the guided aerial vehicle (12, 14) is controlled depending on the position of the luminous spot (38, 42, 44). - Method according to any one of the preceding claims,
characterized
in that the guided aerial vehicle (12, 14) has a sensor (26) directed to the vehicle (2), said sensor sensing a luminous spot (38, 42, 44), at which the laser beam (8) strikes the vehicle (2). - Method according to Claim 6,
characterized
in that the sensor (26) is arranged on a side of the guided aerial vehicle (12, 14) facing away from the laser source (10) and aligned upwardly. - Method according to any one of the preceding claims,
characterized
in that a flight of the guided aerial vehicle (12, 14) is controlled in such a way that the guided aerial vehicle (12, 14) casts its shadow on a plurality of spots (30, 32) of the vehicle (2) to be protected in such a way that none of the spots (30, 32) are illuminated by the laser beam (8) for longer than a respectively predetermined time duration. - Method according to any one of the preceding claims,
characterized
in that the flight of the guided aerial vehicle (12, 14) is controlled in such a way that a aerial vehicle shadow changes from the currently shadowed spot to the currently irradiated spot depending on a cooling duration of the currently shadowed spot, a damage time of the currently irradiated spot and a change duration taken up by moving the shadow between the spots. - Method according to any one of the preceding claims,
characterized
in that the guided aerial vehicle (12, 14) ejects a shadowing means (46). - Method according to Claim 10,
characterized
in that the shadowing means (46) is ejected depending on the position of a luminous spot (38, 42, 44) on the vehicle (2) and the position of the guided aerial vehicle (12, 14). - Method according to any one of the preceding claims,
characterized
in that the guided aerial vehicle (12, 14) has an air break (48) for reducing its flight speed. - Method according to any one of the preceding claims,
characterized
in that the guided aerial vehicle (12, 14) extends a shadowing element (40) after its launch and, as result thereof, increases its shadow area to at least 1.5-times the size. - Method according to any one of the preceding claims,
characterized
in that the guided aerial vehicle (12, 14) has a retroreflector. - Guided aerial vehicle (12, 14) for protecting a vehicle (2) against attack by a laser beam (8), said guided aerial vehicle having a sensor (26) for sensing laser radiation of the laser beam (8) and a control unit (24), the latter being designed to fly the guided aerial vehicle (12, 14) into the laser beam (8), to shadow the vehicle (2) from the laser beam (8) and keep the shadow of the guided aerial vehicle (12, 14) on the vehicle (2).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015009360.6A DE102015009360A1 (en) | 2015-07-17 | 2015-07-17 | Method of protecting a vehicle from attack by a laser beam |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3118564A1 EP3118564A1 (en) | 2017-01-18 |
EP3118564B1 true EP3118564B1 (en) | 2018-09-12 |
Family
ID=56411364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16001537.6A Active EP3118564B1 (en) | 2015-07-17 | 2016-07-12 | Method for protecting a vehicle against an attack by a laser beam |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3118564B1 (en) |
DE (1) | DE102015009360A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107885223B (en) * | 2017-10-31 | 2020-02-14 | 武汉大学 | Unmanned aerial vehicle retrieves bootstrap system based on laser |
GB2586456A (en) * | 2019-08-16 | 2021-02-24 | Bae Systems Plc | Vehicle surface |
US11815914B2 (en) * | 2020-05-20 | 2023-11-14 | Jonathan Ralph Burdick | Adaptive anti-laser system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4471683A (en) * | 1982-08-26 | 1984-09-18 | The United States Of America As Represented By The Secretary Of The Air Force | Voice command weapons launching system |
SE519866C2 (en) * | 2000-08-17 | 2003-04-15 | Celsiustech Electronics Ab | Procedure for interfering and possibly damaging a laser device, as well as a protection system |
US9134174B2 (en) * | 2013-01-07 | 2015-09-15 | The Boeing Company | Laser detection and warning system |
US9970811B2 (en) * | 2013-08-30 | 2018-05-15 | Torrey Pines Logic, Inc. | Passive, wide-spectral-band laser threat sensor |
-
2015
- 2015-07-17 DE DE102015009360.6A patent/DE102015009360A1/en not_active Withdrawn
-
2016
- 2016-07-12 EP EP16001537.6A patent/EP3118564B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3118564A1 (en) | 2017-01-18 |
DE102015009360A1 (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4444635C2 (en) | Self-defense device against missiles | |
DE102010005199B4 (en) | Method and device for determining the location of a flying target | |
EP3118564B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP2597415B1 (en) | Method and device for tracking a moving target object | |
DE102011009459B4 (en) | Method and device for averting an attacking missile | |
DE4402855C2 (en) | Defense device for an attacking target airborne missile | |
EP3118567B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP3118563B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
DE3707888C2 (en) | ||
EP3376154B1 (en) | Method for protecting a cruise missile | |
DE2522927C2 (en) | SYSTEM FOR REPLACEMENT, DISTRACTION AND DESTRUCTION OF ARMS | |
EP3118565B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP3118566B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
DE3217336A1 (en) | Method and device for camouflaging water vehicles against electromagnetic radiation | |
EP3699544B1 (en) | Dircm with dual target tracking | |
DE102020103249B4 (en) | Method for protecting a helicopter with smoke and helicopter with smoke protection system | |
DE102010015045B4 (en) | Method and system for determining trajectories of fast-moving objects or projectiles by means of a time-wavelength-coded detection space | |
EP3894779A1 (en) | Method for protecting moving or stationary objects from approaching laser-guided threats | |
EP3800483A1 (en) | Alignment of a detector of a dircm module relative to a target | |
DE102011014599B4 (en) | A method of protecting an object from attack by an approaching flying object | |
DE19605337C2 (en) | Process for changing the infrared signature of an aircraft | |
DE3938798C1 (en) | Low flying or hovering aircraft combating - laying out probes with sensors along typical flight path, and launching light signal on detection of aircraft, marking its position | |
DE102010015046A1 (en) | System for detecting and determining trajectory of projectile, in e.g. fixed wing air craft, has radiation room covering room portion of detection room, where room portion is irradiated by defined wavelength of multi-wavelength laser | |
DE102022130560A1 (en) | Method and device for defence against aircraft, in particular unmanned aircraft | |
EP3943874A1 (en) | Effector for combating a target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEHL DEFENCE GMBH & CO. KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170504 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180321 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEHL DEFENCE GMBH & CO. KG |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MASUR, MICHAEL Inventor name: KUENZNER, NICOLAI Inventor name: NOLTE, ARNE Inventor name: GROSS, MICHAEL Inventor name: STELTE, NORBERT Inventor name: KUHN, THOMAS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016001883 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1041124 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016001883 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
26N | No opposition filed |
Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190712 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160712 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1041124 Country of ref document: AT Kind code of ref document: T Effective date: 20210712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240912 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 9 |