EP3118563B1 - Method for protecting a vehicle against an attack by a laser beam - Google Patents
Method for protecting a vehicle against an attack by a laser beam Download PDFInfo
- Publication number
- EP3118563B1 EP3118563B1 EP16001535.0A EP16001535A EP3118563B1 EP 3118563 B1 EP3118563 B1 EP 3118563B1 EP 16001535 A EP16001535 A EP 16001535A EP 3118563 B1 EP3118563 B1 EP 3118563B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser beam
- missile
- vehicle
- laser
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 24
- 230000005855 radiation Effects 0.000 claims description 29
- 238000012546 transfer Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 14
- 230000006378 damage Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 241000881711 Acipenser sturio Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2253—Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2273—Homing guidance systems characterised by the type of waves
- F41G7/2293—Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/30—Command link guidance systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H13/00—Means of attack or defence not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/01—Arrangements thereon for guidance or control
Definitions
- the invention relates to a method for protecting a vehicle from attack by a laser beam.
- High-energy lasers can transmit very high power over several kilometers and over a longer period of time. With such services, sensitive parts of vehicles can be so severely damaged or destroyed within a few seconds that the functioning of the vehicles is jeopardized. Thus, for example, aircraft can be attacked from the ground, in particular slow-moving commercial aircraft with relatively low maneuverability are particularly vulnerable.
- the WO 02/14777 A1 describes a method for protecting an object from a laser device in which, upon detection of a laser radiation of the laser device, retroreflectors are ejected or fired from the object to be protected or from an environment thereof in order to disturb or possibly damage the laser device.
- the aircraft is equipped with a laser detection and warning system, with which, inter alia, the location of a laser source can be determined.
- the US 2015/0060652 A2 proposes to provide an aircraft at various points with detectors for the detection of laser emissions.
- a sensor system of the vehicle detects laser radiation of the laser beam and a control unit of the vehicle recognizes the laser beam from the data of the sensor system as such, a start of a missile for the protection of the vehicle from the Laser beam is controlled by the control unit and the missile launches from the vehicle.
- the missile can shade the vehicle and / or approach and combat a laser source emitting the laser beam. This is done expediently so quickly that the laser energy deposited on the vehicle has not yet led to threatening damage.
- a fast protection can be achieved by starting the missile from the vehicle, since then the missile is already on site and dive into the laser beam for shading and / or can quickly fly to combat the laser source on this.
- the missile is expediently equipped with a rocket motor.
- the method is particularly suitable for use against a high energy laser source or a high energy laser beam. Also advantageous is a defense of a sturgeon laser.
- the sensor system comprises at least one sensor sensitive to laser radiation, which detects the laser radiation of the laser beam.
- the sensor or the sensor system is expediently sensitive in a radiation spectrum which is usually used for high-energy lasers or interfering lasers.
- the spectrum in which the sensor is sensitive may be limited to a band around the one laser wavelength commonly used for high energy lasers.
- the band is at most ⁇ 100 nm around the wavelength of 3800 nm.
- the sensor expediently recognizes characteristics typical of laser radiation, such as the presence of coherent radiation.
- the sensor system detects by means of image processing methods, a laser beam as such in the environment, for example on the basis of scattered radiation.
- the sensor system advantageously contains an image sensor, for example a matrix detector.
- the sensor system detects laser radiation of the laser beam, ie radiation directly emitted by the laser source and / or laser radiation scattered from the laser beam, for example by the scattering of the laser beam in the air, on particles and / or on an object.
- the sensor system absorbs the radiation and converts it into a measuring signal.
- the control unit expediently determines a threat level of the laser radiation, for example by a classification in at least the levels threatening or harmless. This can be done, for example, via the measured scattered light intensity in the atmosphere, an energy input into the sensor system, a spread spectrum and / or over a temporal characteristic of the radiation, such as a pulsation.
- the vehicle is preferably an aircraft, and may be fixed-wing aircraft or a rotorcraft, such as a helicopter.
- the invention is also advantageously applicable for protecting a land vehicle or a watercraft.
- the vehicle may be a manned or unmanned vehicle.
- the control unit may have one or more arithmetic units that can be arranged in the vehicle at a location distributed over the vehicle, in the vehicle and in the missile or exclusively in the missile housed in the vehicle - and thus likewise in the vehicle.
- the control unit recognizes the laser beam as such and initiates a start of the flying body as a function of the recognition result. If a laser beam is recognized as such and it is also classified as threatening to the vehicle, the missile is launched from the vehicle. If a laser beam is not recognized as such or classified as non-threatening, the launching of the missile expediently fails.
- the missile is expediently a guided missile and in particular an unmanned missile. It may be equipped with a rocket engine and / or an air-breathing engine, such as a turbine engine. In this case, an air-breathing engine is advantageous in accompanying the vehicle by the missile, and a rocket motor is more advantageous in an intended fight the laser source. Also possible is a missile without its own engine, for example in the form of a steering column.
- the missile expediently comprises a control unit which steers the missile, for example parallel to the vehicle and / or to the laser source.
- the sensor system picks up the laser beam from the side, and the control unit detects the laser beam from sensor data obtained from the side view.
- the control unit recognizes exclusively from these sensor data.
- the laser beam can already be detected, even if he has not yet hit the vehicle, so that early detection of the laser beam as such is possible.
- the control unit since in a recording of the side only in the air scattered radiation of the laser beam is recorded, can be dispensed with a strong combustion protection of the sensor system. As a result, an image acquisition is facilitated because unprotected, image-processing sensors can be used.
- a laser beam recorded from the side can be recognized as a straight line in the environment and can thus be recognized as such by means of image processing methods.
- the sensor system has a plurality of laser-sensitive sensors. These are expediently arranged at different positions on the outer shell of the vehicle, so that they can detect the laser beam from different locations. If one of the sensors is hit and destroyed by the laser beam, the sensory activity of the sensor system can be continued or resumed by another sensor.
- the sensors are expediently spaced apart at a distance of more than one meter.
- At least one sensor is arranged in at least two regions of the group: front half of the fuselage, rear half of the fuselage, upper half of the fuselage, lower half of the fuselage, on a wing.
- At least one sensor of the sensor system is covered during operation of the sensor system.
- regular operation provides that one sensor is always covered by several sensors of the sensor system.
- at least this part of the sensors can be preserved and used for the detection of the laser beam.
- only a part of the sensors of the sensor system is directed into the environment of the vehicle and another part of the sensors is covered against the environment.
- at least one covered sensor is directed into the environment depending on the functionality of one of the other sensors, in particular is brought from a passive state into an active state.
- one sensor fails, another can be brought from the covered state to the active state directed to the environment, and the detection of the laser beam can be continued. For example, while the vehicle is in motion, a first sensor can permanently examine the surroundings of the vehicle for laser radiation. If this sensor fails, for example because it was hit by the laser beam, another sensor is activated at another position of the vehicle for further observation and thereby directed or opened into the environment.
- the sensor system has a multiple sensor with multiple sensor heads. These can, for example, be directed one after the other into the environment.
- at least one of the sensor heads is always concealed, while at least one other of the sensor heads is directed into the environment and detected.
- the multiple sensor may be, for example, a turret sensor carrying a plurality of sensors on a drum. Also possible are successively used sensors, the front sensor or an element connected to it, covering the underlying sensor.
- At least one sensor of the sensor system is directed exclusively into an upper half space above the vehicle.
- the sensor especially if it is permanently directed in the above half-space, not be hit directly.
- a detection of the laser beam is still possible on the detection of scattered radiation.
- the launched by the vehicle missile can be used to combat the laser source, which emits the laser beam.
- the missile can fly directly into the laser source and / or destroy the laser source by a detonation charge, in particular by a cone-shaped forward splitter charge.
- it is advantageous to know the position of the laser source either relative to the position and / or direction of movement of the vehicle or in absolute coordinates. If the laser beam is sensed by a sensor from the side, it can be determined as a straight line with an abrupt end. The end point of the line can be equated with the position of the laser source.
- control unit determines from the data of the sensor system the position of a laser source which emits the laser beam.
- a radiation end of the laser beam can be detected and the position of the laser source can be determined from the position of the beam.
- the position from triangulation can be determined from the data of several sensors.
- the position of the laser source can be detected as a direction, for example as an absolute direction or as a direction relative to the direction of flight of the aircraft. It is also possible to determine the direction as an absolute, ie geographical, direction.
- a determination of a distance of the laser source from the sensor system is advantageous. This can be done particularly easily using a flying height of the vehicle. If the direction of the laser source and the altitude are known, the distance to the laser source can be calculated from this in a simple manner, in particular taking into account topographical data of an overflown landscape.
- the launch of the missile is fully automatic and in particular triggered by the detection of the laser beam.
- a semi-automatic triggering is possible in which an operator of the vehicle gives an enable signal and triggering takes place only after the release signal, in particular fully automatically, for example, only when a direction or position of the laser source has been detected with sufficient certainty and accuracy.
- a start of the missile is expediently already before an alignment of the laser beam on the vehicle, so before the vehicle was hit by the laser beam.
- the launch of the missile can take place from a starting device, for example from a container.
- a starting device for example from a container.
- This can be mounted in the fuselage of the vehicle, so that in particular several missiles can be started in a salvo shot simultaneously or immediately sequentially to protect the vehicle.
- the term "start" may in this case include a launch.
- an alignment of a starting device of the missile takes place as a function of the position of the laser beam, in particular in dependence on the position of the laser source. It can be a targeted launch in the direction of the laser source, so that the time is saved for a detour flight. Accordingly, it is advantageous if the missile starts directed to a laser source of the laser beam. In this case, a curved trajectory, for example, taking into account ballistic influences, are used so that the alignment of the missile at the start does not have to be in a straight line to the laser source.
- control unit in the missile passes a target instruction on a laser source of the laser beam to a control unit of the missile. This can be done before the launch of the missile and / or in particular during the flight of the missile, for example by a data link from the vehicle to the missile.
- the control unit of the missile receives the target instruction and directs the missile to the laser source. In this way, the missile can already be started before the exact position of the laser source has been calculated.
- the flight of the missile can be controlled independently by a control unit of the missile. Additionally or alternatively, it is possible that the remaining in the vehicle control unit controls the flight of the missile or mitêtt. For example, the self-controlling missile an escape or Abschattungsan flirt be issued by the vehicle, which is then taken into account by the control unit of the missile.
- a control of the missile from the vehicle is also advantageous if the position of the laser beam or the laser source can be accurately determined by the vehicle or the vehicle detects an impact of the laser beam and delegates the missile in a shading position.
- laser-sensitive areas of the vehicle can be deliberately shadowed by the corresponding flight control of the missile, or the onward flight of the missile can be controlled in the case of a destroyed sensor of the missile further to the laser source.
- the invention is further directed to a vehicle having a sensor system for detecting a laser beam according to the features of claim 14.
- the vehicle is equipped with a missile which is prepared to control a laser source of the laser beam and / or to shadow an element of the vehicle.
- the vehicle includes a control unit that is prepared to detect the laser beam from the data of the sensor system as such and to control a launch of the missile from the vehicle to protect the vehicle from the laser beam.
- process features can also be formulated formally as properties of the corresponding device unit and functional device features also as corresponding process features.
- FIG. 1 shows a vehicle 2 in the form of an aircraft, which is designed in this case as a commercial aircraft for the transport of passengers or air freight.
- a laser system 6 is positioned, which in the in FIG. 1 represented moment a laser beam 8, which is generated by a laser source 10, directed into the sky.
- the laser system 6 is placed in the embodiment shown on the ground and immovable. However, it is also possible that the laser system 6 is movable and is mounted, for example, in an aircraft. All details described below and related to the laser source 10 are then to be adapted accordingly to the mobility or height above the ground.
- the laser system 6 is a high-energy laser system which emits the laser beam 8 predominantly in the infrared spectral range, for example at 3.8 microns, wherein the Laser beam 8 over a distance of several kilometers transported enough energy to destroy sensitive parts of the aircraft and thereby endangering its flying capacity acutely.
- the laser system 6 is used to combat aircraft and has a control unit which pivots the laser beam 8 on the vehicle 2 and the laser beam 8 automatically tracks the movement of the aircraft 2.
- a laser-sensitive point of the vehicle 2 is deposited, to which the laser beam 8 is automatically directed by means of image processing methods to irradiate the laser system 6 pictorially deposited point of the aircraft 2 over a period of a few seconds and thereby destroy.
- a designator laser system or marker laser system can be fought or disturbed, which illuminates the vehicle 2 in order to control a guided missile into the vehicle 2. By shading the vehicle 2 and / or destroying the laser source 10, this mark can be disturbed, so that the attacking missile can not find the vehicle 2.
- the following description refers to a stationary high energy laser system 6 without being limited to this system.
- this has at least one missile 12, 14, wherein in FIG. 1 to illustrate several protection methods three missiles 12 and a missile 14 are shown.
- the aircraft has a sensor system 16 with a plurality of sensors 18, which are each signaled by a control unit 20.
- the aircraft is equipped with five sensors 18, one in the rear half of the fuselage, one in the front half of the fuselage, one on each wing of the aircraft, and one upward sensor 18 on the upper half of the fuselage of the aircraft ,
- the other of the sensors 18 are covered.
- Covered in this context means that the laser-sensitive element of the corresponding sensor 18 is covered by a laser-resistant cover so that it is not destroyed by a beaming from the outside of the aircraft 2 laser beam 8, in particular can not be achieved.
- Active means in this context that a field of view of the laser-sensitive element in the environment is free and the sensor 18 receives sensor data and to the control unit 20 passes.
- one of the sensors 18 is oriented upward and can not be reached by a laser beam 8 incident from below on the aircraft 2. Aligned upward means in particular in this context that the sensor 18 is directed in a horizontal flight of the aircraft exclusively in the upper half-space. This sensor 18 is thus very well protected and also suitable to detect the laser beam 8 from scattered radiation of the laser beam 8 in the atmosphere.
- the front sensor 18 of the sensor system 16 is active and the remaining sensors 18 are covered.
- the sensor is designed as a revolver sensor and schematically in FIG. 2 shown.
- FIG. 2 shows one of the sensors 18 of the sensor system 16 from FIG. 1 ,
- the sensor 18 comprises six sensor heads 22, of which five of the sensor heads 22 are covered by a cover element 24, for example a metal plate.
- a cover element 24 for example a metal plate.
- One of the sensor heads 22 is behind an opening 26 of the cover 24, is thus aligned in the environment and can look into the environment and detect laser radiation.
- the sensor heads 22 are pivotable about a common axis, as in FIG. 2 indicated by the curved arrow. If the currently active sensor head 22 is destroyed, the turret can be further rotated by 60 °, so that the next sensor head 22 comes to lie behind the opening 26 and can detect the detection.
- a further sensor head 28 Arranged in the middle and also behind the cover element 24 is a further sensor head 28, which has the task of detecting when a high-energy laser beam 8 is directed onto the sensor 18.
- the sensor head 28 is not able to detect laser radiation per se, it measures an energy input on the cover element 24, so that an active switching of an undamaged sensor head 22 can be avoided as long as the laser beam 8 is directed to the sensor 18.
- the remainder of the sensors 18 of the aircraft 2 may be as in FIG. 2 be shown sensor 18 executed. In a simplified version, however, the rest the sensors 18 only a sensor head 22 and the sensor head 28 and a movable cover 24 on. As long as the laser beam 8 is directed to the sensor, the cover conceals the laser radiation-sensitive sensor head 22. Only when the control unit 20 has enabled the activation of the sensor and as an additional condition, the laser beam 8 does not rest on the sensor 18, the sensor head 22 and thus the Sensor 18 switched active.
- the sensor heads 22 each comprise image sensors behind a 180 ° optics, so that the scene of a hemisphere of the surrounding space is imaged onto a laser-sensitive element.
- an image of the laser beam 8 can be recorded in the environment, and from this further information about the laser beam 8 can be determined, such as geometry, position and intensity of the laser beam. From the geometry recognizes the control unit 20 of the sensor system 16, in particular by means of image processing methods, the laser beam 8 as such.
- the laser beam is seen as a straight line in the landscape.
- it has a sharply defined end on the laser source 10. At its other end, however, the laser beam becomes weaker, as long as it does not strike an object FIG. 1 is shown, so that a defined end is not readily determinable. This feature of the upper attenuation of the laser radiation can also be used for laser detection.
- the control unit 20 From the geometric data of the laser beam 8 and its spectrum and radiation intensity, the control unit 20 first classifies the laser beam 8 in the three stages harmless, potentially dangerous and dangerous. In a classification harmless in the level of the laser beam 8, which is generated for example by a laser pointer, further observed, however, neither the laser beam 8 is shadowed nor the laser source 10 is combated. Classification in one of the other two levels will prepare for shading and / or combat.
- a canister 30, which accommodates at least one of the missiles 12, is pivoted in the direction of the laser source 10. This pivoting is in FIG. 1 indicated by the curved double arrow on the canister 30. Alternatively or additionally, the ejection of the missile 14 from the fuselage of the aircraft 2 is prepared.
- Classification into the highest of the threat classes will initiate combat and / or shadowing. For this purpose, for example, a release of an operator of the aircraft 2, such as a pilot, necessary. However, this has already been given in advance, for example because it is known that the aircraft is flying through a potentially dangerous region.
- the position of the laser source 10 is known. This determines the control unit 20, for example, from the geometry of the laser beam 8. Thus, at the location of the abrupt end of the laser beam 8, the laser source 10 can be suspected.
- the laser beam 8 can be given a direction, at least a rough direction at the top and bottom, wherein the laser source 10 is positioned only at a lower end of the laser beam 8. In this way, a direction of the laser source 10 relative to the aircraft 2 can be determined. From the direction and a flight altitude of the aircraft and expediently a topography of the overflown landscape, the distance between aircraft and laser source 10 can be determined, in particular the absolute geographic coordinates of the laser source 10 are determined.
- the detection of the laser beam 8 takes place insofar by a recording of the laser beam 8 from the side, wherein from the laser beam 8 scattered in the atmosphere laser radiation is recorded. This can also be done by the upward sensor 18 whose view is adjusted to the laser source 10. On the basis of the orientation of the visible part of the laser beam 8, a further course of the laser beam 8 can also be extrapolated in the environment.
- the determination of the position of the laser source 10 is detected by another of the sensors 18 of the sensor system 16, for example by a sensor 18 on a wing of the aircraft 2.
- This recognizes the laser beam 8 per se and both abrupt ends, the control unit 20, the lower abrupt end of the laser beam 8 as the location of Laser source 10 selects.
- a position determination of the laser source 10 by means of triangulation.
- At least one missile 12, 14 is now started by the aircraft.
- the control of the start takes over the control unit 20 of the Sensor system 16, which may also be part of a central vehicle control of the vehicle 2.
- FIG. 3 shows two embodiments for protecting the aircraft, which can be performed individually or in combination.
- a missile 12 is started in the form of a steering rocket. This missile 12 is started from the canister 30, for example, by a drop, a launch and / or a launch of a missile engine of the missile 12. Since the missile 12 is already aligned by the orientation of the canister 30 to the laser source 10 to the laser source 10, detours can be avoided and the missile 12 can be sent in direct line to the laser source 10. As an alternative to the guided missile, other guided missiles may also be used, for example steerable projectiles. These are also a control unit 32 for controlling the steered flight and a steering system 34 to perform the steering. Furthermore, the missile 12 expediently comprises an active part 36 with an explosive charge for controlling the laser source 10. Depending on the design, the missile 12 may have a rocket motor for independent acceleration.
- the control of the missile 12 can be done independently by the control unit 32 of the missile 12. It is also possible that the control is carried out by the control unit 20 of the aircraft, either in addition or independently by the specification of appropriate commands to the control unit 32 of the missile 12. In this way, the missile 12 is controlled on or in the laser source 10 so that they gets destroyed. Shortly before the missile 12 reaches the laser source 10, the active part 36 can be ignited, which hurls a fragmentation charge in a forward direction and thereby destroys the laser source 10. The ignition of the active portion 36 may be by an impact fuse or a proximity fuse located in the missile head.
- the flight of the missile 12 is suitably guided by the laser beam 8.
- the missile 12 can be further observed by the sensor system 16 of the aircraft, and in the missile 12 corresponding control signals can be given.
- the missile 12 independently uses the laser beam 8 as flight guidance and steers its own flight depending on its orientation in space.
- the missile 12 thus flies guided by the laser beam 8 independently in the laser source 10.
- the flight in the laser beam. 8 or be guided along the outside of the laser beam 8 or at a suitably predetermined distance along the laser beam 8 along.
- the transfer of a target instruction from the control unit 20 to the control unit 32 is advantageous.
- at least a rough navigation in the first part of the approach can be considerably facilitated.
- the missile 14 is dropped from the fuselage of the aircraft, and this begins its flight, which is substantially parallel to the flight of the aircraft.
- the purpose of this flight is to shade the aircraft, in particular at least laser-sensitive points of the aircraft 2, from the laser beam 8.
- the missile 14 is driven by an air-breathing internal combustion engine, for example a turbine, so that a long flight accompanied by the aircraft is possible.
- a rocket motor is possible, in particular a solid fuel motor, which is tuned in terms of its performance on the airspeed of the aircraft.
- the missile 14 is equipped with large wings for large-scale shading of the aircraft. At least the entire lower side of the missile 14 is laser-hardened, so that an irradiation of at least two minutes by the high-energy laser beam 8 does not cause the flight destructive destruction on the missile 14.
- the position of the laser beam 8 in the space or its end on the vehicle 2 can be determined by sensors 18 of the sensor system 16.
- Corresponding control signals are given by the control unit 20 to a control unit 40 of the missile 14.
- the missile 14 determines the shading itself and controls its flight from this.
- the missile 14 has an upwardly directed laser-sensitive sensor, which observes the aircraft 2 from below. An impact of the laser beam 8 on the aircraft 2 is detected, and the missile 14 is controlled so that the irradiation spot of the laser beam 8 on the aircraft 2 disappears.
- the flight is controlled so that the control variable, namely the visibility of the laser spot on the aircraft 2, disappears or at least reduced. This is done by a particular achieved complete shadowing.
- the laser beam 8 is moved away from the aircraft, the laser spot also disappears. In this case, the missile 14 continues to accompany the aircraft for a predetermined distance or time duration in order to maintain protection against the potentially again dangerous laser beam 8.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl.The invention relates to a method for protecting a vehicle from attack by a laser beam.
Mit Hochenergielasern lassen sich sehr hohe Leistungen über mehrere Kilometer und über eine längere Zeitdauer übertragen. Mit solchen Leistungen können empfindliche Teile von Fahrzeugen innerhalb von einigen Sekunden so schwer beschädigt oder zerstört werden, dass die Funktionsfähigkeit der Fahrzeuge gefährdet ist. So können beispielsweise Luftfahrzeuge vom Boden aus angegriffen werden, wobei insbesondere langsam fliegende Verkehrsflugzeuge mit verhältnismäßig geringer Manövrierfähigkeit besonders gefährdet sind.High-energy lasers can transmit very high power over several kilometers and over a longer period of time. With such services, sensitive parts of vehicles can be so severely damaged or destroyed within a few seconds that the functioning of the vehicles is jeopardized. Thus, for example, aircraft can be attacked from the ground, in particular slow-moving commercial aircraft with relatively low maneuverability are particularly vulnerable.
Zum Schutz von Objekten und zur Warnung vor Laserstrahlung sind aus dem Stand der Technik diverse Verfahren und Systeme bekannt. Die
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein wirkungsvolles Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl anzugeben.It is therefore an object of the present invention to provide an effective method for protecting a vehicle from attack by a laser beam.
Diese Aufgabe wird durch ein Verfahren gemäß den Merkmalen von Patentanspruch 1 gelöst, bei dem ein Sensorsystem des Fahrzeugs Laserstrahlung des Laserstrahls detektiert und eine Steuereinheit des Fahrzeugs den Laserstrahl aus den Daten des Sensorsystems als solchen erkennt, ein Start eines Flugkörpers zum Schutz des Fahrzeugs vor dem Laserstrahl von der Steuereinheit gesteuert wird und der Flugkörper vom Fahrzeug aus startet. Der Flugkörper kann das Fahrzeug abschatten und/oder eine Laserquelle, die den Laserstrahl aussendet, anfliegen und bekämpfen. Dies geschieht zweckmäßigerweise so zügig, dass die am Fahrzeug deponierte Laserenergie noch nicht zu bedrohlichen Schäden geführt hat. Ein schneller Schutz kann durch das Starten des Flugkörpers vom Fahrzeug aus erreicht werden, da dann der Flugkörper bereits vor Ort ist und zur Abschattung in den Laserstrahl eintauchen und/oder zur Bekämpfung der Laserquelle zügig auf diese zufliegen kann.This object is achieved by a method according to the features of claim 1, wherein a sensor system of the vehicle detects laser radiation of the laser beam and a control unit of the vehicle recognizes the laser beam from the data of the sensor system as such, a start of a missile for the protection of the vehicle from the Laser beam is controlled by the control unit and the missile launches from the vehicle. The missile can shade the vehicle and / or approach and combat a laser source emitting the laser beam. This is done expediently so quickly that the laser energy deposited on the vehicle has not yet led to threatening damage. A fast protection can be achieved by starting the missile from the vehicle, since then the missile is already on site and dive into the laser beam for shading and / or can quickly fly to combat the laser source on this.
Insbesondere im letzteren Fall ist der Flugkörper zweckmäßigerweise mit einem Raketenmotor ausgerüstet.Especially in the latter case, the missile is expediently equipped with a rocket motor.
Das Verfahren ist besonders geeignet zum Einsatz gegen eine Hochenergielaserquelle beziehungsweise einem Hochenergielaserstrahl. Ebenfalls vorteilhaft ist eine Abwehr eines Störlasers. Das Sensorsystem umfasst zumindest einen für Laserstrahlung sensitiven Sensor, der die Laserstrahlung des Laserstrahls detektiert. Hierfür ist der Sensor beziehungsweise das Sensorsystem zweckmäßigerweise in einem Strahlungsspektrum sensitiv, das üblicherweise für Hochenergielaser oder Störlaser verwendet wird. Um die Erkennung von Streustrahlung zu vereinfachen, kann das Spektrum, im dem der Sensor sensitiv ist, auf ein Band um die eine Laserwellenlänge beschränkt werden, die üblicherweise für Hochenergielaser verwendet wird. Beispielsweise liegt das Band maximal ± 100 nm um die Wellenlänge von 3800 nm herum. Außerdem erkennt der Sensor zweckmäßigerweise für Laserstrahlung typische Charakteristiken, wie beispielsweise das Vorliegen von kohärenter Strahlung. Weiter ist es vorteilhaft, wenn das Sensorsystem mittels bildverarbeitender Methoden ein Laserstrahl als solchen in der Umgebung erkennt, beispielsweise anhand von Streustrahlung. Hierfür enthält das Sensorsystem vorteilhafterweise einen Bildsensor, beispielsweise einen Matrixdetektor.The method is particularly suitable for use against a high energy laser source or a high energy laser beam. Also advantageous is a defense of a sturgeon laser. The sensor system comprises at least one sensor sensitive to laser radiation, which detects the laser radiation of the laser beam. For this purpose, the sensor or the sensor system is expediently sensitive in a radiation spectrum which is usually used for high-energy lasers or interfering lasers. To facilitate the detection of stray radiation, the spectrum in which the sensor is sensitive may be limited to a band around the one laser wavelength commonly used for high energy lasers. For example, the band is at most ± 100 nm around the wavelength of 3800 nm. In addition, the sensor expediently recognizes characteristics typical of laser radiation, such as the presence of coherent radiation. Further, it is advantageous if the sensor system detects by means of image processing methods, a laser beam as such in the environment, for example on the basis of scattered radiation. For this purpose, the sensor system advantageously contains an image sensor, for example a matrix detector.
Das Sensorsystem detektiert Laserstrahlung des Laserstrahls, also von der Laserquelle direkt emittierte Strahlung und/oder aus dem Laserstrahl gestreute Laserstrahlung, beispielsweise durch die Streuung des Laserstrahls in der Luft, an Partikeln und/oder an einem Gegenstand. Das Sensorsystem nimmt die Strahlung auf und wandelt sie in ein Messsignal um. Aus dem Messsignal ermittelt die Steuereinheit zweckmäßigerweise eine Bedrohungsstufe der Laserstrahlung, beispielsweise durch eine Klassifikation in zumindest die Stufen bedrohlich oder harmlos. Dies kann beispielsweise über die gemessene Streulichtstärke in der Atmosphäre, einen Energieeintrag in das Sensorsystem, ein Streuspektrum und/oder über ein zeitliches Charakteristikum der Strahlung erfolgen, wie eine Pulsierung.The sensor system detects laser radiation of the laser beam, ie radiation directly emitted by the laser source and / or laser radiation scattered from the laser beam, for example by the scattering of the laser beam in the air, on particles and / or on an object. The sensor system absorbs the radiation and converts it into a measuring signal. From the measurement signal, the control unit expediently determines a threat level of the laser radiation, for example by a classification in at least the levels threatening or harmless. This can be done, for example, via the measured scattered light intensity in the atmosphere, an energy input into the sensor system, a spread spectrum and / or over a temporal characteristic of the radiation, such as a pulsation.
Das Fahrzeug ist vorzugsweise ein Luftfahrzeug, und kann Starrflügler oder ein Drehflügler, wie ein Hubschrauber sein. Die Erfindung ist jedoch auch zum Schützen eines Landfahrzeugs oder eines Wasserfahrzeugs vorteilhaft anwendbar. Das Fahrzeug kann ein bemanntes oder unbemanntes Fahrzeug sein.The vehicle is preferably an aircraft, and may be fixed-wing aircraft or a rotorcraft, such as a helicopter. However, the invention is also advantageously applicable for protecting a land vehicle or a watercraft. The vehicle may be a manned or unmanned vehicle.
Die Steuereinheit kann eine oder mehrere Recheneinheiten aufweisen, die im Fahrzeug an einer Stelle, über das Fahrzeug verteilt, im Fahrzeug und in Flugkörper oder ausschließlich in dem im Fahrzeug untergebrachten Flugkörper - und damit ebenfalls im Fahrzeug - angeordnet sein können. Die Steuereinheit erkennt den Laserstrahl als solchen und leitet einen Start des Flugköpers in Abhängigkeit vom Erkennungsergebnis ein. Ist ein Laserstrahl als solcher erkannt und ist er zudem als bedrohlich für das Fahrzeug eingestuft, so wird der Flugkörper vom Fahrzeug aus gestartet. Wird ein Laserstrahl nicht als solcher erkannt oder als nicht bedrohlich klassifiziert, unterbleibt das Starten des Flugkörpers zweckmäßigerweise.The control unit may have one or more arithmetic units that can be arranged in the vehicle at a location distributed over the vehicle, in the vehicle and in the missile or exclusively in the missile housed in the vehicle - and thus likewise in the vehicle. The control unit recognizes the laser beam as such and initiates a start of the flying body as a function of the recognition result. If a laser beam is recognized as such and it is also classified as threatening to the vehicle, the missile is launched from the vehicle. If a laser beam is not recognized as such or classified as non-threatening, the launching of the missile expediently fails.
Der Flugkörper ist zweckmäßigerweise ein Lenkflugkörper und insbesondere ein unbemannter Flugkörper. Er kann mit einem Raketenmotor und/oder einem Luft atmenden Motor, wie beispielsweise einem Turbinenantrieb, ausgestattet sein. Hierbei ist ein Luft atmender Motor bei einem Begleitschutz des Fahrzeugs durch den Flugkörper vorteilhaft, und ein Raketenmotor ist bei einer vorgesehenen Bekämpfung der Laserquelle vorteilhafter. Ebenfalls möglich ist ein Flugkörper ohne einen eigenen Motor, beispielsweise in Form eines Lenkgeschosses. Der Flugkörper umfasst zweckmäßigerweise eine Steuereinheit, die den Flugkörper lenkt, beispielsweise parallel zum Fahrzeug und/oder zur Laserquelle hin.The missile is expediently a guided missile and in particular an unmanned missile. It may be equipped with a rocket engine and / or an air-breathing engine, such as a turbine engine. In this case, an air-breathing engine is advantageous in accompanying the vehicle by the missile, and a rocket motor is more advantageous in an intended fight the laser source. Also possible is a missile without its own engine, for example in the form of a steering column. The missile expediently comprises a control unit which steers the missile, for example parallel to the vehicle and / or to the laser source.
Gemäß der Erfindung nimmt das Sensorsystem den Laserstrahl von der Seite auf, und die Steuereinheit erkennt den Laserstrahl aus Sensordaten, die aus der Aufnahme von der Seite gewonnen wurden. In einer vorteilhaften Ausführungsform erkennt die Steuereinheit ausschließlich aus diesen Sensordaten. Auf diese Weise kann der Laserstrahl bereits erkannt werden, auch wenn er das Fahrzeug noch nicht getroffen hat, sodass eine frühzeitige Erkennung des Laserstrahls als solchen möglich ist. Da zudem bei einer Aufnahme von der Seite nur in der Luft gestreute Strahlung des Laserstrahls aufgenommen wird, kann auf einen starken Verbrennungsschutz des Sensorsystems verzichtet werden. Hierdurch wird eine Bildaufnahme erleichtert, da ungeschützte, bildverarbeitende Sensoren verwendet werden können. Ein von der Seite aufgenommener Laserstrahl ist als gerade Linie in der Umgebung erkennbar und kann insofern mittels bildverarbeitender Methoden als solcher erkannt werden.According to the invention, the sensor system picks up the laser beam from the side, and the control unit detects the laser beam from sensor data obtained from the side view. In an advantageous embodiment, the control unit recognizes exclusively from these sensor data. In this way, the laser beam can already be detected, even if he has not yet hit the vehicle, so that early detection of the laser beam as such is possible. In addition, since in a recording of the side only in the air scattered radiation of the laser beam is recorded, can be dispensed with a strong combustion protection of the sensor system. As a result, an image acquisition is facilitated because unprotected, image-processing sensors can be used. A laser beam recorded from the side can be recognized as a straight line in the environment and can thus be recognized as such by means of image processing methods.
Durch den hohen Energieeintrag des Laserstrahls beim Auftreffen auf das Sensorsystem kann dieses innerhalb von Millisekunden zerstört werden. Um die Detektionsfähigkeit des Sensorsystems dennoch zu erhalten, ist es vorteilhaft, wenn das Sensorsystem mehrere lasersensitive Sensoren aufweist. Diese sind zweckmäßigerweise an verschiedenen Positionen an der Außenhülle des Fahrzeugs angeordnet, sodass sie den Laserstrahl von unterschiedlichen Orten detektieren können. Wird einer der Sensoren vom Laserstrahl getroffen und zerstört, kann die sensorische Tätigkeit des Sensorsystems von einem anderen Sensor weitergeführt beziehungsweise neu aufgenommen werden. Die Sensoren sind zweckmäßigerweise in einem Abstand von mehr als einem Meter voneinander beabstandet. Insbesondere ist jeweils zumindest ein Sensor in zumindest zwei Bereichen der Gruppe: vordere Hälfte des Rumpfs, hintere Hälfte des Rumpfs, obere Hälfte des Rumpfs, untere Hälfte des Rumpfs, an einem Flügel, angeordnet. Durch einen weiten Abstand der Sensoren voneinander kann außerdem der weitere Vorteil erreicht werden, dass eine Positionsberechnung einer Laserquelle durch Triangulation aus den Sensordaten von zumindest drei Sensoren möglich ist. Hierdurch kann die Position der Laserquelle in einfacher Weise bestimmt werden, und der Flugkörper kann auf diese Position eingewiesen werden.Due to the high energy input of the laser beam when hitting the sensor system, this can be destroyed within milliseconds. In order nevertheless to obtain the detection capability of the sensor system, it is advantageous if the sensor system has a plurality of laser-sensitive sensors. These are expediently arranged at different positions on the outer shell of the vehicle, so that they can detect the laser beam from different locations. If one of the sensors is hit and destroyed by the laser beam, the sensory activity of the sensor system can be continued or resumed by another sensor. The sensors are expediently spaced apart at a distance of more than one meter. In particular, in each case at least one sensor is arranged in at least two regions of the group: front half of the fuselage, rear half of the fuselage, upper half of the fuselage, lower half of the fuselage, on a wing. By a wide distance of the sensors from each other can also be achieved the further advantage that a position calculation of a laser source by triangulation from the sensor data of at least three sensors is possible. In this way, the position of the laser source can be determined easily, and the missile can be instructed to this position.
Um einem gezielten und schnellen Zerstören der Sensoren durch eine auf die Sensoren gerichtete Bewegung des Laserstrahls entgegenzuwirken, ist es vorteilhaft, wenn im Betrieb des Sensorsystems zumindest ein Sensor des Sensorsystems abgedeckt ist. Insbesondere sieht ein regulärer Betrieb vor, dass stets ein Sensor von mehreren Sensoren des Sensorsystems abgedeckt ist. Bei einem überraschenden Angriff kann zumindest dieser Teil der Sensoren erhalten bleiben und für die Erkennung des Laserstrahls eingesetzt werden. Es ist insofern vorteilhaft, wenn nur ein Teil der Sensoren des Sensorsystems in die Umgebung des Fahrzeugs gerichtet ist und ein anderer Teil der Sensoren gegen die Umgebung abgedeckt ist. Weiter ist es vorteilhaft, wenn zumindest ein abgedeckter Sensor in Abhängigkeit von der Funktionsfähigkeit eines der anderen Sensoren in die Umgebung gerichtet wird, insbesondere aus einem passiven Zustand in einen aktiven Zustand gebracht wird. Fällt ein Sensor aus, so kann ein anderer vom abgedeckten Zustand in den in die Umgebung gerichteten, aktiven Zustand gebracht werden und die Erkennung des Laserstrahls kann fortgesetzt werden. Beispielsweise kann ein erster Sensor während der Fahrt des Fahrzeugs die Umgebung des Fahrzeugs permanent nach Laserstrahlung untersuchen. Fällt dieser Sensor aus, beispielsweise weil er vom Laserstrahl getroffen wurde, wird ein anderer Sensor an einer anderen Position des Fahrzeugs zur weiteren Beobachtung aktiviert und hierdurch in die Umgebung gerichtet beziehungsweise geöffnet.In order to counteract targeted and rapid destruction of the sensors by a movement of the laser beam directed at the sensors, it is advantageous if at least one sensor of the sensor system is covered during operation of the sensor system. In particular, regular operation provides that one sensor is always covered by several sensors of the sensor system. In a surprising attack, at least this part of the sensors can be preserved and used for the detection of the laser beam. It is advantageous in that only a part of the sensors of the sensor system is directed into the environment of the vehicle and another part of the sensors is covered against the environment. Furthermore, it is advantageous if at least one covered sensor is directed into the environment depending on the functionality of one of the other sensors, in particular is brought from a passive state into an active state. If one sensor fails, another can be brought from the covered state to the active state directed to the environment, and the detection of the laser beam can be continued. For example, while the vehicle is in motion, a first sensor can permanently examine the surroundings of the vehicle for laser radiation. If this sensor fails, for example because it was hit by the laser beam, another sensor is activated at another position of the vehicle for further observation and thereby directed or opened into the environment.
Eine weitere vorteilhafte Möglichkeit zu Aufrechterhaltung der Funktionsfähigkeit des Sensorsystems besteht darin, dass das Sensorsystem einen Mehrfachsensor mit mehreren Sensorköpfen aufweist. Diese können beispielsweise nacheinander in die Umgebung gerichtet werden. Vorteilhafterweise ist stets zumindest einer der Sensorköpfe verdeckt, während zumindest ein anderer der Sensorköpfen in die Umgebung gerichtet ist und detektiert. Der Mehrfachsensor kann beispielsweise ein Revolversensor sein, der mehrere Sensoren auf eine Trommel trägt. Ebenfalls möglich sind hintereinander eingesetzte Sensoren, wobei der vordere Sensor beziehungsweise ein mit ihm verbundenes Element, den dahinter liegenden Sensor abdeckt.Another advantageous possibility for maintaining the functionality of the sensor system is that the sensor system has a multiple sensor with multiple sensor heads. These can, for example, be directed one after the other into the environment. Advantageously, at least one of the sensor heads is always concealed, while at least one other of the sensor heads is directed into the environment and detected. The multiple sensor may be, for example, a turret sensor carrying a plurality of sensors on a drum. Also possible are successively used sensors, the front sensor or an element connected to it, covering the underlying sensor.
Insbesondere bei einem Luftfahrzeug ist es vorteilhaft, wenn zumindest ein Sensor des Sensorsystems ausschließlich in einen oberen Halbraum über dem Fahrzeug gerichtet ist. Bei einem Angriff eines Laserstrahls von unten kann der Sensor, insbesondere wenn er permanent in den oben Halbraum gerichtet ist, nicht direkt getroffen werden. Eine Erkennung des Laserstrahls ist dennoch über die Erfassung der Streustrahlung möglich.Particularly in the case of an aircraft, it is advantageous if at least one sensor of the sensor system is directed exclusively into an upper half space above the vehicle. In an attack of a laser beam from below, the sensor, especially if it is permanently directed in the above half-space, not be hit directly. A detection of the laser beam is still possible on the detection of scattered radiation.
Der vom Fahrzeug gestartete Flugkörper kann zur Bekämpfung der Laserquelle, die den Laserstrahl aussendet, herangezogen werden. Hierfür kann der Flugkörper direkt in die Laserquelle hinein fliegen und/oder durch eine Detonationsladung die Laserquelle zerstören, insbesondere durch eine kegelförmig nach vorne gerichtete Splitterladung. Hierzu ist es vorteilhaft, die Position der Laserquelle, entweder relativ zur Position und/oder Bewegungsrichtung des Fahrzeugs oder in absoluten Koordinaten, zu kennen. Wenn der Laserstrahl von einem Sensor von der Seite aus sensiert wird, kann er als gerade Linie mit einem abrupten Ende bestimmt werden. Der Endpunkt der Linie kann mit der Position der Laserquelle gleichgesetzt werden.The launched by the vehicle missile can be used to combat the laser source, which emits the laser beam. For this purpose, the missile can fly directly into the laser source and / or destroy the laser source by a detonation charge, in particular by a cone-shaped forward splitter charge. For this purpose, it is advantageous to know the position of the laser source, either relative to the position and / or direction of movement of the vehicle or in absolute coordinates. If the laser beam is sensed by a sensor from the side, it can be determined as a straight line with an abrupt end. The end point of the line can be equated with the position of the laser source.
Insofern ist es vorteilhaft, wenn die Steuereinheit aus den Daten des Sensorsystems die Position einer Laserquelle bestimmt, die den Laserstrahl aussendet. Hierbei kann ein Strahlende des Laserstrahls erkannt werden und aus der Lage des Strahls die Position der Laserquelle bestimmt werden. Alternativ oder zusätzlich kann die Position aus Triangulation aus den Daten mehrerer Sensoren bestimmt werden. Die Position der Laserquelle kann als eine Richtung erfasst werden, beispielsweise als absolute Richtung oder als eine Richtung relativ zur Flugrichtung des Luftfahrzeugs. Ebenfalls ist es möglich, die Richtung als absolute, also geografische Richtung zu bestimmen.In this respect, it is advantageous if the control unit determines from the data of the sensor system the position of a laser source which emits the laser beam. In this case, a radiation end of the laser beam can be detected and the position of the laser source can be determined from the position of the beam. Alternatively or additionally, the position from triangulation can be determined from the data of several sensors. The position of the laser source can be detected as a direction, for example as an absolute direction or as a direction relative to the direction of flight of the aircraft. It is also possible to determine the direction as an absolute, ie geographical, direction.
Weiter ist eine Bestimmung einer Entfernung der Laserquelle vom Sensorsystem vorteilhaft. Dies kann besonders einfach unter Verwendung einer Flughöhe des Fahrzeugs geschehen. Ist die Richtung der Laserquelle und die Flughöhe bekannt, kann hieraus die Entfernung zur Laserquelle in einfacher Weise errechnet werden, insbesondere unter Einbeziehung topografischer Daten einer überflogenen Landschaft.Furthermore, a determination of a distance of the laser source from the sensor system is advantageous. This can be done particularly easily using a flying height of the vehicle. If the direction of the laser source and the altitude are known, the distance to the laser source can be calculated from this in a simple manner, in particular taking into account topographical data of an overflown landscape.
Um eine schnelle Bekämpfung der Laserquelle zu ermöglichen, ist es vorteilhaft, wenn der Start des Flugkörpers vollautomatisch erfolgt und insbesondere durch das Erkennen des Laserstrahls ausgelöst wird. Alternativ ist ein halbautomatisches Auslösen möglich, bei dem ein Bediener des Fahrzeugs ein Freigabesignal gibt und ein Auslösen erst nach dem Freigabesignal erfolgt, insbesondere vollautomatisch, beispielsweise erst, wenn eine Richtung beziehungsweise Position der Laserquelle mit ausreichender Sicherheit und Genauigkeit erkannt wurde. Ein Start des Flugkörpers erfolgt zweckmäßigerweise bereits vor einer Ausrichtung des Laserstrahls auf das Fahrzeug, also bevor das Fahrzeug vom Laserstrahl getroffen wurde.In order to enable rapid control of the laser source, it is advantageous if the launch of the missile is fully automatic and in particular triggered by the detection of the laser beam. Alternatively, a semi-automatic triggering is possible in which an operator of the vehicle gives an enable signal and triggering takes place only after the release signal, in particular fully automatically, for example, only when a direction or position of the laser source has been detected with sufficient certainty and accuracy. A start of the missile is expediently already before an alignment of the laser beam on the vehicle, so before the vehicle was hit by the laser beam.
Der Start des Flugkörpers kann aus einem Startgerät erfolgen, beispielsweise aus einem Container. Dieser kann im Rumpf des Fahrzeugs montiert sein, sodass insbesondere mehrere Flugkörper in einem Salvenschuss gleichzeitig oder unmittelbar sequenziell zum Schutz des Fahrzeugs gestartet werden können. Der Begriff "Start" kann hierbei einen Abschuss umfassen.The launch of the missile can take place from a starting device, for example from a container. This can be mounted in the fuselage of the vehicle, so that in particular several missiles can be started in a salvo shot simultaneously or immediately sequentially to protect the vehicle. The term "start" may in this case include a launch.
Um eine sehr schnelle Bekämpfung der Laserquelle zu ermöglichen, ist es vorteilhaft, wenn eine Ausrichtung eines Startgeräts des Flugkörpers in Abhängigkeit von der Lage des Laserstrahls erfolgt, insbesondere in Abhängigkeit von der Lage der Laserquelle. Es kann ein gezielter Abschuss in Richtung der Laserquelle erfolgen, sodass die Zeit für einen Umwegflug eingespart wird. Entsprechend ist es vorteilhaft, wenn der Flugkörper gerichtet auf eine Laserquelle des Laserstrahls startet. Hierbei kann eine gekrümmte Flugbahn, beispielsweise unter Berücksichtigung ballistischer Einflusse, zum Einsatz kommen, sodass die Ausrichtung des Flugkörpers beim Start nicht in gerader Linie auf die Laserquelle erfolgen muss.In order to enable a very fast control of the laser source, it is advantageous if an alignment of a starting device of the missile takes place as a function of the position of the laser beam, in particular in dependence on the position of the laser source. It can be a targeted launch in the direction of the laser source, so that the time is saved for a detour flight. Accordingly, it is advantageous if the missile starts directed to a laser source of the laser beam. In this case, a curved trajectory, for example, taking into account ballistic influences, are used so that the alignment of the missile at the start does not have to be in a straight line to the laser source.
Weiter ist es vorteilhaft, wenn die Steuereinheit im Flugkörper eine Zielanweisung auf eine Laserquelle des Laserstrahls an eine Steuereinheit des Flugkörpers übergibt. Dies kann vor dem Start des Flugkörpers und/oder insbesondere während des Flugs des Flugkörpers erfolgen, beispielsweise durch einen Datenlink vom Fahrzeug zum Flugkörper. Die Steuereinheit des Flugkörpers nimmt die Zielanweisung auf und lenkt den Flugkörper zur Laserquelle. Auf diese Weise kann der Flugkörper bereits gestartet werden, bevor die genaue Position der Laserquelle berechnet wurde.Further, it is advantageous if the control unit in the missile passes a target instruction on a laser source of the laser beam to a control unit of the missile. This can be done before the launch of the missile and / or in particular during the flight of the missile, for example by a data link from the vehicle to the missile. The control unit of the missile receives the target instruction and directs the missile to the laser source. In this way, the missile can already be started before the exact position of the laser source has been calculated.
Der Flug des Flugkörpers kann durch eine Steuereinheit des Flugkörpers selbständig gesteuert werden. Zusätzlich oder alternativ ist es möglich, dass die im Fahrzeug verbleibende Steuereinheit den Flug des Flugkörpers steuert beziehungsweise mitsteuert. Beispielsweise kann dem selbständig steuernden Flugkörper eine Ausweich- oder Abschattungsanweisung vom Fahrzeug ausgegeben werden, die dann von der Steuereinheit des Flugkörpers berücksichtigt wird.The flight of the missile can be controlled independently by a control unit of the missile. Additionally or alternatively, it is possible that the remaining in the vehicle control unit controls the flight of the missile or mitsteuert. For example, the self-controlling missile an escape or Abschattungsanweisung be issued by the vehicle, which is then taken into account by the control unit of the missile.
Eine Steuerung des Flugkörpers vom Fahrzeug aus ist auch dann vorteilhaft, wenn die Lage des Laserstrahls beziehungsweise der Laserquelle vom Fahrzeug genau ermittelt werden kann oder das Fahrzeug ein Auftreffen des Laserstrahls detektiert und den Flugkörper in eine Abschattungsposition delegiert. So können beispielsweise lasersensitive Stellen des Fahrzeugs gezielt durch die entsprechende Flugsteuerung des Flugkörpers abgeschattet werden, oder der Weiterflug des Flugkörpers kann bei einem zerstörten Sensor des Flugkörpers weiter zu Laserquelle hin gesteuert werden.A control of the missile from the vehicle is also advantageous if the position of the laser beam or the laser source can be accurately determined by the vehicle or the vehicle detects an impact of the laser beam and delegates the missile in a shading position. Thus, for example, laser-sensitive areas of the vehicle can be deliberately shadowed by the corresponding flight control of the missile, or the onward flight of the missile can be controlled in the case of a destroyed sensor of the missile further to the laser source.
Der Erfindung ist außerdem gerichtet auf ein Fahrzeug mit einem Sensorsystem zum Detektieren eines Laserstrahls gemäß den Merkmalen von Patentanspruch 14. Das Fahrzeug ist mit einem Flugkörper ausgestattet, der zur Bekämpfung einer Laserquelle des Laserstrahls und/oder zu einer Abschattung eines Elements des Fahrzeugs vorbereitet ist. Das Fahrzeug enthält eine Steuereinheit, die dazu vorbereitet ist, den Laserstrahl aus den Daten des Sensorsystems als solchen zu erkennen und einen Start des Flugkörpers vom Fahrzeug zum Schutz des Fahrzeugs vor dem Laserstrahl zu steuern.The invention is further directed to a vehicle having a sensor system for detecting a laser beam according to the features of
Die bisher gegebene Beschreibung vorteilhafter Ausgestaltungen der Erfindung enthält zahlreiche Merkmale, die in einigen abhängigen Ansprüchen zu mehreren zusammengefasst wiedergegeben sind. Diese Merkmale können jedoch zweckmäßigerweise auch einzeln betrachtet und zu sinnvollen weiteren Kombinationen zusammengefasst werden, insbesondere bei Rückbezügen von Ansprüchen, sodass ein einzelnes Merkmal eines abhängigen Anspruchs mit einem einzelnen, mehreren oder allen Merkmalen eines anderen abhängigen Anspruchs kombinierbar ist. Außerdem sind diese Merkmale jeweils einzeln und in beliebiger geeigneter Kombination sowohl mit dem erfindungsgemäßen Verfahren als auch mit der erfindungsgemäßen Vorrichtung gemäß den unabhängigen Ansprüchen kombinierbar.The description of advantageous embodiments of the invention given so far contains numerous features that are summarized in several dependent claims in several groups. However, these features may conveniently be considered individually and grouped together into meaningful further combinations, in particular when reclaiming claims, so that a single feature of a dependent claim can be combined with a single, several or all features of another dependent claim. In addition, these features can be combined individually and in any suitable combination both with the method according to the invention and with the device according to the invention according to the independent claims.
So sind Verfahrensmerkmale auch als Eigenschaften der entsprechenden Vorrichtungseinheit gegenständlich formuliert zu sehen und funktionale Vorrichtungsmerkmale auch als entsprechende Verfahrensmerkmale.Thus, process features can also be formulated formally as properties of the corresponding device unit and functional device features also as corresponding process features.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich in Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Die Ausführungsbeispiele dienen der Erläuterung der Erfindung und beschränken die Erfindung nicht auf die darin angegebene Kombination von Merkmalen, auch nicht in Bezug auf funktionale Merkmale. Außerdem können dazu geeignete Merkmale eines jeden Ausführungsbeispiels auch explizit isoliert betrachtet, aus einem Ausführungsbeispiel entfernt, in ein anderes Ausführungsbeispiel zu dessen Ergänzung eingebracht und/oder mit einem beliebigen der Ansprüche kombiniert werden.The above-described characteristics, features, and advantages of this invention, as well as the manner in which they are achieved, will become clearer and more clearly understood in connection with the following description of the embodiments, which will be described in detail in conjunction with the drawings. The embodiments serve to illustrate the invention and do not limit the invention to the combination of features specified therein, not even with respect to functional features. In addition, suitable features of each embodiment may also be explicitly considered isolated, removed from one embodiment, incorporated into another embodiment to complement it, and / or combined with any of the claims.
Es zeigen:
- FIG 1
- ein Luftfahrzeug unmittelbar vor einem Angriff durch ein Lasersystem,
- FIG 2
- einen Revolversensor eines Sensorsystems des Luftfahrzeugs und
- FIG 3
- mehrere Verteidigungen des Luftfahrzeugs mit Hilfe von Flugkörpern.
- FIG. 1
- an aircraft immediately before an attack by a laser system,
- FIG. 2
- a turret sensor of a sensor system of the aircraft and
- FIG. 3
- several defenses of the aircraft with the help of missiles.
Das Lasersystem 6 ist ein Hochenergielasersystem, das den Laserstrahl 8 vorwiegend im infraroten Spektralbereich aussendet, beispielsweise bei 3,8 µm, wobei der Laserstrahl 8 über eine Distanz von mehreren Kilometern genügend Energie transportiert, um empfindliche Teile des Luftfahrzeugs zu zerstören und hierdurch dessen Flugfähigkeit akut zu gefährden. Das Lasersystem 6 dient zum Bekämpfen von Luftfahrzeugen und weist eine Steuereinheit auf, die den Laserstrahl 8 auf das Fahrzeug 2 schwenkt und den Laserstrahl 8 automatisiert der Bewegung des Luftfahrzeugs 2 nachführt. In der Steuereinheit ist eine lasersensitive Stelle des Fahrzeugs 2 hinterlegt, auf die der Laserstrahl 8 mittels bildverarbeitender Methoden automatisch gerichtet wird, um die im Lasersystem 6 bildhaft hinterlegte Stelle des Luftfahrzeugs 2 über einen Zeitraum von einigen Sekunden zu bestrahlen und hierdurch zu zerstören.The
Anstelle des Hochenergielasersystems 6 kann ein Designatorlasersystem bzw. Markierlasersystem bekämpft oder gestört werden, das das Fahrzeug 2 anleuchtet, um einen Lenkflugkörper in das Fahrzeug 2 zu steuern. Durch eine Abschattung des Fahrzeugs 2 und/oder eine Zerstörung der Laserquelle 10 kann diese Markierung gestört werden, so dass der angreifende Lenkflugkörper das Fahrzeug 2 nicht finden kann. Die folgende Beschreibung bezieht sich auf ein stationäres Hochenergielasersystem 6, ohne dass damit eine Einschränkung auf dieses System verbunden wäre.Instead of the high-
Zum Schützen des Fahrzeugs 2 weist dieses zumindest einen Flugkörper 12, 14 auf, wobei in
Zum Schutz des Luftfahrzeugs ist zunächst nur einer der Sensoren 18 des Sensorsystems 16 aktiv, und die anderen der Sensoren 18 sind abgedeckt. Abgedeckt bedeutet in diesem Zusammenhang, dass das lasersensitive Element des entsprechenden Sensors 18 durch ein laserfestes Abdeckelement derart verdeckt ist, dass es durch einen von außen auf das Luftfahrzeug 2 einstrahlenden Laserstrahl 8 nicht zerstört, insbesondere nicht erreicht werden kann. Aktiv bedeutet hingegen in diesem Zusammenhang, dass ein Blickfeld des lasersensitiven Elements in die Umgebung frei ist und der Sensor 18 Sensordaten aufnimmt und an die Steuereinheit 20 weitergibt. Durch diese Sicherheitsmaßnahme kann erreicht werden, dass nicht sämtliche Sensoren 18 durch mehrere Laserstrahlen 8 oder durch einen sehr schnell über den Flugzeugrumpf wandernden Laserstrahl 8 zerstört werden, bevor der Laserstrahl 8 an sich erkannt wurde. Durch den weiten Abstand der Sensoren 18 voneinander wird außerdem ein schnelles Abrastern der einzelnen Sensoren 18 durch den Laserstrahl 8 erschwert. Zudem ist einer der Sensoren 18 nach oben ausgerichtet und durch einen von unten auf das Luftfahrzeug 2 einstrahlenden Laserstrahl 8 nicht erreichbar. Nach oben ausgerichtet bedeutet insbesondere in diesem Zusammenhang, dass der Sensor 18 bei einem waagerechten Flug des Luftfahrzeugs ausschließlich in den oberen Halbraum gerichtet ist. Dieser Sensor 18 ist hierdurch sehr gut geschützt und zudem dazu geeignet, den Laserstrahl 8 aus Streustrahlung des Laserstrahls 8 in der Atmosphäre zu erkennen.To protect the aircraft, initially only one of the
Bei dem in
In der Mitte und ebenfalls hinter dem Abdeckelement 24 angeordnet ist ein weiterer Sensorkopf 28, der die Aufgabe hat, zu erkennen, wenn ein Hochenergielaserstrahl 8 auf den Sensor 18 gerichtet ist. Der Sensorkopf 28 ist zwar nicht in der Lage, Laserstrahlung an sich zu detektieren, er misst jedoch einen Energieeintrag auf dem Abdeckelement 24, sodass ein Aktivschalten eines unbeschädigten Sensorkopfs 22 vermieden werden kann, solange der Laserstrahl 8 auf den Sensor 18 gerichtet ist.Arranged in the middle and also behind the
Die übrigen der Sensoren 18 des Luftfahrzeugs 2 können wie der in
Die Sensorköpfe 22 umfassen jeweils Bildsensoren hinter einer 180°-Optik, sodass die Szenerie einer Halbkugel des Umraums auf ein lasersensitives Element abgebildet wird. Hierdurch kann ein Bild des Laserstrahls 8 in der Umgebung aufgenommen werden, und hieraus können weitere Informationen zum Laserstrahl 8 ermittelt werden, wie Geometrie, Lage und Intensität des Laserstrahls. Aus der Geometrie erkennt die Steuereinheit 20 des Sensorsystems 16 insbesondere mittels bildverarbeitender Methoden den Laserstrahl 8 als solchen. Als geometrische Merkmale können verwendet werden, dass der Laserstrahl als gerader Strich in der Landschaft gesehen wird. Außerdem weist er ein scharf begrenztes Ende an der Laserquelle 10 auf. An seinem anderen Ende wird der Laserstrahl jedoch - sofern er nicht auf einen Gegenstand trifft - immer schwächer, wie in
Aus den geometrischen Daten des Laserstrahls 8 sowie dessen Spektrum und Strahlungsintensität klassifiziert die Steuereinheit 20 den Laserstrahl 8 zunächst in die drei Stufen harmlos, potentiell gefährlich und gefährlich. Bei einer Klassifikation in die Stufe harmlos wird der Laserstrahl 8, der beispielsweise durch einen Laserpointer erzeugt wird, weiter beobachtet, jedoch wird weder der Laserstrahl 8 abgeschattet noch die Laserquelle 10 bekämpft. Bei einer Klassifikation in eine der beiden anderen Stufen wird eine Abschattung und/oder Bekämpfung vorbereitet. Hierzu wird ein Kanister 30, der zumindest einen der Flugkörper 12 beherbergt, in die Richtung der Laserquelle 10 verschwenkt. Diese Verschwenkbarkeit ist in
Sowohl für die Abschattung als auch für eine Bekämpfung der Laserquelle 10 ist es vorteilhaft, wenn die Position der Laserquelle 10 bekannt ist. Diese ermittelt die Steuereinheit 20 beispielsweise aus der Geometrie des Laserstrahls 8. So kann an der Stelle des abrupten Endes des Laserstrahls 8 die Laserquelle 10 vermutet werden. Außerdem kann dem Laserstrahl 8 eine Richtung gegeben werden, zumindest eine grobe Richtung oben und unten, wobei die Laserquelle 10 nur an einem unteren Ende des Laserstrahls 8 positioniert ist. Auf diese Weise kann eine Richtung der Laserquelle 10 relativ zum Luftfahrzeug 2 ermittelt werden. Aus der Richtung und einer Flughöhe des Luftfahrzeugs und zweckmäßigerweise einer Topografie der überflogenen Landschaft, kann auch die Entfernung zwischen Luftfahrzeug und Laserquelle 10 bestimmt werden, insbesondere werden die absoluten geografischen Koordinaten der Laserquelle 10 bestimmt.Both for shading and for controlling the
Die Erkennung des Laserstrahls 8 erfolgt insofern durch eine Aufnahme des Laserstrahls 8 von der Seite, wobei aus dem Laserstrahl 8 an der Atmosphäre gestreute Laserstrahlung aufgenommen wird. Dies kann auch durch den nach oben gerichteten Sensor 18 geschehen, dessen Blick auf die Laserquelle 10 verstellt ist. Anhand der Ausrichtung des sichtbaren Teils des Laserstrahls 8 kann ferner ein weiterer Verlauf des Laserstrahls 8 in der Umgebung extrapoliert werden.The detection of the
Für den Fall, dass der Laserstrahl 8 bereits auf das Luftfahrzeug 2 gerichtet ist und somit das undefinierte obere Ende nicht mehr als solches zu erkennen ist und der Laserstrahl 8 sowohl oben als auch unten ein abruptes Ende aufweist, kann die Ermittlung der Position der Laserquelle 10 durch einen anderen der Sensoren 18 des Sensorsystems 16 vorgenommen werden, beispielsweise durch einen Sensor 18 an einem Flügel des Luftfahrzeugs 2. Dieser erkennt den Laserstrahl 8 an sich und beide abrupte Enden, wobei die Steuereinheit 20 das untere abrupte Ende des Laserstrahls 8 als Standort der Laserquelle 10 auswählt. Ebenfalls möglich ist eine Positionsbestimmung der Laserquelle 10 mittels Triangulation. Sobald drei oder mehr Sensoren 18 den Laserstrahl 8 erkannt und dessen unteres abruptes Ende bestimmt haben, kann neben der Richtung der Laserquelle 10 auch deren Entfernung durch die bekannte Ausrichtung der Sensoren 18 am Luftfahrzeug 2 zueinander bestimmt werden.In the event that the
Zum Schutz des Luftfahrzeugs wird nun zumindest ein Flugkörper 12, 14 vom Luftfahrzeug gestartet. Die Steuerung des Starts übernimmt die Steuereinheit 20 des Sensorsystems 16, die auch ein Teil einer zentralen Fahrzeugsteuerung des Fahrzeugs 2 sein kann.To protect the aircraft, at least one
Die Steuerung des Flugkörpers 12 kann selbstständig durch die Steuereinheit 32 des Flugkörpers 12 erfolgen. Ebenso ist es möglich, dass die Steuerung durch die Steuereinheit 20 des Luftfahrzeugs erfolgt, entweder zusätzlich oder selbstständig durch die Vorgabe entsprechender Kommandos an die Steuereinheit 32 des Flugkörpers 12. Auf diese Weise wird der Flugkörper 12 an oder in die Laserquelle 10 gesteuert, sodass diese zerstört wird. Kurz bevor der Flugkörper 12 die Laserquelle 10 erreicht, kann der Wirkteil 36 gezündet werden, der eine Splitterladung kegelförmig nach vorne schleudert und die Laserquelle 10 hierdurch zerstört. Die Zündung des Wirkteils 36 kann durch einen Aufschlagzünder oder einen Annäherungszünder erfolgen, der im Flugkörperkopf angeordnet ist.The control of the
Der Flug des Flugkörpers 12 wird zweckmäßigerweise durch den Laserstrahl 8 geführt. Hierzu kann dieser durch das Sensorsystem 16 des Luftfahrzeugs weiter beobachtet werden, und im Flugkörper 12 können entsprechende Steuersignale gegeben werden. Alternativ oder zusätzlich ist es möglich, dass der Flugkörper 12 den Laserstrahl 8 selbstständig als Flugführung verwendet und in Abhängigkeit von dessen Ausrichtung im Raum seinen eigenen Flug lenkt. Der Flugkörper 12 fliegt somit geführt vom Laserstrahl 8 selbständig in die Laserquelle 10. Hierbei kann der Flug im Laserstrahl 8 oder außen entlang des Laserstrahls 8 beziehungsweise mit einem zweckmäßigerweise vorbestimmten Abstand am Laserstrahl 8 entlang geführt werden.The flight of the
Insbesondere bei einer selbstständigen Steuerung des Flugkörpers 12 zur Laserquelle 10 ist die Übergabe einer Zielanweisung von der Steuereinheit 20 an die Steuereinheit 32 vorteilhaft. Hierdurch kann zumindest eine Grobnavigation im ersten Teil des Anflugs erheblich erleichtert werden.In particular, in an independent control of the
Im anderen Ausführungsbeispiel wird der Flugkörper 14 aus dem Rumpf des Luftfahrzeugs abgeworfen, und dieser beginnt seinen Flug, der im Wesentlichen parallel zum Flug des Luftfahrzeugs verläuft. Zweck dieses Flugs ist es, das Luftfahrzeug, insbesondere zumindest lasersensible Stellen des Luftfahrzeugs 2, vom Laserstrahl 8 abzuschatten. Der Flugkörper 14 ist mit einem Luft atmenden Verbrennungsmotor, beispielsweise einer Turbine angetrieben, sodass ein langer Flug in Begleitung des Luftfahrzeugs möglich ist. Alternativ oder zusätzlich ist ein Raketenmotor möglich, insbesondere ein Festbrennstoffmotor, der hinsichtlich seiner Leistung auf die Fluggeschwindigkeit des Luftfahrzeugs abgestimmt ist. Der Flugkörper 14 ist mit großflächigen Flügeln zur großflächigen Abschattung des Luftfahrzeugs ausgestattet. Zumindest die gesamte untere Seite des Flugkörpers 14 ist lasergehärtet ausgeführt, sodass eine Bestrahlung von zumindest zwei Minuten durch den Hochenergielaserstrahl 8 keine den Flug beeinträchtigende Zerstörung am Flugkörper 14 erzeugt.In the other embodiment, the
Zum Halten des Flugkörpers 14 im Laserstrahl 8 bestehen mehrere Möglichkeiten. Beispielsweise kann die Position des Laserstrahls 8 im Raum bzw. dessen Ende auf dem Fahrzeug 2 durch Sensoren 18 des Sensorsystems 16 ermittelt werden. Entsprechende Steuersignale werden von der Steuereinheit 20 an eine Steuereinheit 40 des Flugkörpers 14 gegeben.For holding the
Eine Alternative oder zusätzliche Möglichkeit besteht darin, dass der Flugkörper 14 die Abschattung selbst bestimmt und hieraus seinen Flug regelt. So weist der Flugkörper 14 einen nach oben gerichteten lasersensitiven Sensor auf, der das Luftfahrzeug 2 von unten beobachtet. Ein Auftreffen des Laserstrahls 8 auf dem Luftfahrzeug 2 wird erkannt, und der Flugkörper 14 wird so gesteuert, dass der Bestrahlungsfleck des Laserstrahls 8 auf dem Luftfahrzeug 2 verschwindet. Hierzu wird der Flug so geregelt, dass die Steuergröße, nämlich die Sichtbarkeit des Laserflecks auf dem Luftfahrzeug 2, verschwindet oder zumindest verringert wird. Dies wird durch eine insbesondere vollständige Abschattung erreicht. Wenn andererseits der Laserstrahl 8 vom Luftfahrzeug weg bewegt wird, verschwindet der Laserfleck ebenfalls. In diesem Fall begleitet der Flugkörper 14 das Luftfahrzeug noch eine vorgegebene Strecke bzw. Zeitdauer weiter, um einen Schutz gegen den potentiell wieder gefährlichen Laserstrahl 8 aufrecht zu erhalten.An alternative or additional possibility is that the
- 22
- Fahrzeugvehicle
- 44
- Landschaftlandscape
- 66
- Lasersystemlaser system
- 88th
- Laserstrahllaser beam
- 1010
- Laserquellelaser source
- 1212
- Flugkörpermissile
- 1414
- Flugkörpermissile
- 1616
- Sensorsystemsensor system
- 1818
- Sensorsensor
- 2020
- Steuereinheitcontrol unit
- 2222
- Sensorkopfsensor head
- 2424
- Abdeckelementcover
- 2626
- Öffnungopening
- 2828
- Sensorkopfsensor head
- 3030
- Kanistercanister
- 3232
- Steuereinheitcontrol unit
- 3434
- Lenksystemsteering system
- 3636
- Wirkteilactive part
- 3838
- Raketenmotorrocket engine
- 4040
- Steuereinheitcontrol unit
Claims (14)
- Method for protecting a vehicle (2) from an attack by a laser beam (8), wherein a sensor system (16) of the vehicle (2) detects laser radiation of the laser beam (8) and a control unit (20) of the vehicle (2) identifies the laser beam (8) from the data of the sensor system (16) as such, a launch of a missile (12, 14) for protecting the vehicle (2) from the laser beam (8) is controlled by the control unit (20) and the missile (12, 14) is launched from the vehicle (2),
characterized
in that the sensor system (16) records the laser beam (8) from the side and the control unit (20) identifies the laser beam (8) from sensor data that were obtained from the recording from the side. - Method according to Claim 1,
characterized
in that the sensor system (16) has a plurality of laser-sensitive sensors (18), which detect the laser beam (8) from different positions of the outer hull of the vehicle (2). - Method according to Claim 2,
characterized
in that only some of the sensors (18) are directed into the surroundings of the vehicle (2), other sensors (18) are covered from the surroundings and at least one covered sensor (18) is directed into the surroundings depending on the functionality of one of the other sensors (18). - Method according to any one of the preceding claims,
characterized
in that the sensor system (16) has a multi-sensor with a plurality of sensor heads (22), which can be successively directed into the surroundings. - Method according to any one of the preceding claims,
characterized
in that at least one sensor (18) of the sensor system (16) is only directed into an upper half space above the vehicle (2). - Method according to any one of the preceding claims,
characterized
in that the control unit (20) identifies a beam end of the laser beam (8) from the data of the sensor system (16) and determines the position of a laser source (10), which emits the laser beam (8), from the position of the beam end. - Method according to Claim 6,
characterized
in that a distance to the laser source (10) is determined using a flight level of the vehicle (2). - Method according to any one of the preceding claims,
characterized
in that the launch of the missile (12, 14) is effected fully automatically and triggered by identifying the laser beam (8). - Method according to any one of the preceding claims,
characterized
in that an alignment of a launcher (30) of the missile (12) is effected depending on the position of the laser beam (8). - Method according to Claim 9,
characterized
in that the missile (12) is launched directed onto a laser source (10) of the laser beam (8). - Method according to any one of the preceding claims,
characterized
in that the control unit (20) transfers to the missile (12, 14) a target instruction to a laser source (10) of the laser beam (8). - Method according to any one of the preceding claims,
characterized
in that the control unit (20) controls a flight of the guided missile (12, 14) from the vehicle (2). - Method according to Claim 12,
characterized
in that the control unit (20) establishes a position of the laser beam (8) in space and controls the flight of the missile (12, 14) using the established position. - Vehicle (2) having a sensor system (16) for detecting a laser beam (8), a missile (12, 14) and a control unit (20) that is configured to identify the laser beam (8) as such from the data of the sensor system (16) and to control a launch of the missile (12, 14) from the vehicle (2) for protecting the vehicle (2) from the laser beam (8),
characterized
in that the sensor system (16) is configured to record the laser beam (8) from the side and in that the control unit (20) is configured to identify the laser beam (8) from sensor data that were obtained from the recording from the side.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015009353.3A DE102015009353A1 (en) | 2015-07-17 | 2015-07-17 | Method of protecting a vehicle from attack by a laser beam |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3118563A1 EP3118563A1 (en) | 2017-01-18 |
EP3118563B1 true EP3118563B1 (en) | 2018-09-12 |
Family
ID=56411363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16001535.0A Active EP3118563B1 (en) | 2015-07-17 | 2016-07-12 | Method for protecting a vehicle against an attack by a laser beam |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3118563B1 (en) |
DE (1) | DE102015009353A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6774603B2 (en) * | 2017-03-06 | 2020-10-28 | 株式会社Jvcケンウッド | Laser light irradiation detection device, laser light irradiation detection method, laser light irradiation detection system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE519866C2 (en) * | 2000-08-17 | 2003-04-15 | Celsiustech Electronics Ab | Procedure for interfering and possibly damaging a laser device, as well as a protection system |
US7053812B2 (en) * | 2003-12-18 | 2006-05-30 | Textron Systems Corporation | Recoverable pod for self-protection of aircraft and method of protecting an aircraft using a recoverable pod |
US7609156B2 (en) * | 2004-04-07 | 2009-10-27 | Jeffrey D Mullen | Advanced cooperative defensive military tactics, armor, and systems |
US7478578B2 (en) * | 2005-06-24 | 2009-01-20 | Honeywell International Inc. | Commercial airliner missile protection using formation drone aircraft |
IT1391858B1 (en) * | 2008-09-09 | 2012-01-27 | Alenia Aeronautica Spa | ARRANGEMENT OF TESTING FOR A LASER THREAT RECOGNITION SYSTEM FOR A AIRCRAFT |
US9134174B2 (en) * | 2013-01-07 | 2015-09-15 | The Boeing Company | Laser detection and warning system |
US9970811B2 (en) * | 2013-08-30 | 2018-05-15 | Torrey Pines Logic, Inc. | Passive, wide-spectral-band laser threat sensor |
-
2015
- 2015-07-17 DE DE102015009353.3A patent/DE102015009353A1/en not_active Withdrawn
-
2016
- 2016-07-12 EP EP16001535.0A patent/EP3118563B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3118563A1 (en) | 2017-01-18 |
DE102015009353A1 (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4444635C2 (en) | Self-defense device against missiles | |
EP3341674B1 (en) | System for defence against threats | |
EP1520604A2 (en) | Fire fighting missile | |
DE10117007A1 (en) | Method and device for protecting mobile military equipment | |
EP3538835B1 (en) | Method and defence system for combating threats | |
DE10230939A1 (en) | Fighting vehicle has warning sensors to detect and analyze threats and select optimum countermeasures using bus connected detachable munition projectors | |
DE10050479A1 (en) | System used for protecting objects, especially combat tanks, comprises an image-producing infra-red sensor attached to a missile launching device | |
EP2482025B1 (en) | Method and device for defending against an attacking missile | |
EP3118564B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP3118563B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP3118567B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
DE102015015938A1 (en) | Autonomous, unmanned aerial vehicles to escort, escort and secure lulled vehicles such as fixed wing and rotorcraft | |
EP3376154B1 (en) | Method for protecting a cruise missile | |
DE4437729C1 (en) | Method for protecting objects emitting IR radiation, in particular ships, against missiles | |
DE2522927C2 (en) | SYSTEM FOR REPLACEMENT, DISTRACTION AND DESTRUCTION OF ARMS | |
DE3013405A1 (en) | METHOD FOR AVOIDING MESSAGE FROM LAUNCHERS FOR BALLISTIC missiles | |
DE102012000709A1 (en) | Method for repelling an approaching ballistic missile and interceptor system | |
EP3118565B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
EP3118566B1 (en) | Method for protecting a vehicle against an attack by a laser beam | |
DE3119185A1 (en) | Controllable missile | |
DE3311075C2 (en) | ||
DE102019109360A1 (en) | Invention system for defense against RAM targets and / or UAVs as well as methods for defense against RAM targets and / or UAVs | |
EP3894779A1 (en) | Method for protecting moving or stationary objects from approaching laser-guided threats | |
EP3622242A1 (en) | Protection system for protecting against light flying objects such as drones | |
DE3938798C1 (en) | Low flying or hovering aircraft combating - laying out probes with sensors along typical flight path, and launching light signal on detection of aircraft, marking its position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEHL DEFENCE GMBH & CO. KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170711 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180323 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F41H 13/00 20060101ALI20180309BHEP Ipc: F41G 7/22 20060101ALI20180309BHEP Ipc: F41G 7/30 20060101ALI20180309BHEP Ipc: F42B 15/01 20060101ALI20180309BHEP Ipc: F41H 11/00 20060101AFI20180309BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016001882 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1041123 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016001882 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
26N | No opposition filed |
Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190712 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160712 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1041123 Country of ref document: AT Kind code of ref document: T Effective date: 20210712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240912 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 9 |