EP1568098B1 - Wide band microwave band separating device - Google Patents

Wide band microwave band separating device Download PDF

Info

Publication number
EP1568098B1
EP1568098B1 EP03795990A EP03795990A EP1568098B1 EP 1568098 B1 EP1568098 B1 EP 1568098B1 EP 03795990 A EP03795990 A EP 03795990A EP 03795990 A EP03795990 A EP 03795990A EP 1568098 B1 EP1568098 B1 EP 1568098B1
Authority
EP
European Patent Office
Prior art keywords
filters
band
pass
low
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03795990A
Other languages
German (de)
French (fr)
Other versions
EP1568098A1 (en
Inventor
Jean-Claude Thales Intellectual Property Mage
Bruno Thales Intellectual Property Marcilhac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1568098A1 publication Critical patent/EP1568098A1/en
Application granted granted Critical
Publication of EP1568098B1 publication Critical patent/EP1568098B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies

Definitions

  • the present invention relates to a broadband microwave band separator device.
  • Bandpass filters currently used in microwave frequencies are generally of the type with straight lines or folded in "U". Such filters have insufficient stiffness of the flanks of their frequency / attenuation characteristic and insertion losses.
  • No. 5,838,675 discloses a microwave channel separator having a "manifold" type structure and including limiting amplifiers, which makes it difficult to implement.
  • the present invention relates to a separator device for broadband microwave receiver of the aforementioned type, this separator device does not have the aforementioned drawbacks of the devices of the prior art.
  • the separator device comprises a set of pairs of band-pass and low-pass filters, and in each pair of filters relating to a frequency band Fb n -Fh n to be separated from a set of bands, the band-pass filter has a bandwidth between Fb n and Fh n (with Fb n ⁇ Fh n ), while the low-pass filter has a cutoff frequency located at Fh n-1 , all the filters being of superconducting material cooled in operation at a temperature below the critical temperature of this material, each pair of filters being made on the same individual bar and having a common input to which these filters are connected directly.
  • the separator device 1 shown diagrammatically in FIG. 1 comprises several pairs of filters, each pair of filters consisting of a bandpass filter and a low-pass filter.
  • the separator device comprises five pairs of filters, respectively referenced 2.1 to 2.5, but it is understood that the number of filter pairs of the separator device of the invention may be different, depending on the number of channels contained in the signal received by the microwave receiver to which this separator device belongs.
  • the first pair of filters 2.1 connected just after the input 3 is that relating to the highest frequency channel (channel 1 in the example), the second pair, 2.2; connected just downstream of the first pair, refers to the channel (channel 2) at frequencies just below those of channel 1, and so on up to the pair of filters 2.5 (channel 5).
  • the channels 1 to 5 respectively have the following frequency bands (in GHz): 16-18, 12-16, 8-12, 4-8 and 2-4, but it is understood that these values may be different in other applications.
  • Each pair of filters 2.1 to 2.5 (2.1 to 2.n in the most general case) is made on the same single support substrate strip, as described below with reference to FIG. separator 1 are fixed in a box with separate cells 4, parallel to each other, and decoupled from each other by electromagnetic shields 5.1 to 5.4 formed on the walls of the boxes of the housing 4.
  • the inlet 3 is connected to the point 5 which is the common input of filters 2.1.
  • the output 6 of the pair of filters 2.1 to the next pair 2.2 is the output of the low-pass filter of the pair 2.1 (opposite its input 5).
  • This output 6 is connected to the input 7 of the pair 2.2 which is the common input of the filters of the pair 2.2 and so on up to the pair 2.5 (outputs 8, 10, 12 respectively connected to the inputs 9, 11 , 13).
  • the output 14 of the low-pass filter of the pair 2.5 is connected either to a suitable dummy load (in order to absorb residuals from the incident signal) or, for example, to a spectrum analyzer.
  • the signals from channels 1 to 5 are collected, and only these signals (without harmonics or end parts of the contiguous channels).
  • FIG. 2 shows one of the strips of the separator 1, for example the bar 2.1. Its bandpass filter is made as follows.
  • the bandpass filter described here has a bandwidth of 2 or 4 GHz, for a center frequency of between 3 and 20 GHz, but it is understood that the invention is not limited to these values, and that a person skilled in the art will be able, on reading the present description, to modify these values while obtaining the same advantages as with the present example.
  • the band-pass filter 20 shown in FIGS. 2 to 4 of the drawing comprises, for the present example, twelve lines of electrical length ⁇ / 2 coupled together and referenced L1 to L12, but it is understood that the number of lines d a filter may be different, advantageously between 12 and 16.
  • the stiffness of the flanks of the frequency / attenuation characteristic being a direct function of the number of lines, it may be necessary to seek a compromise between a high stiffness and a large bulk ( generally, devices comprising such filters should have a large number to improve their characteristics, while their size must be limited, for example when these devices are airborne).
  • L1 and L12 lines are "folded” lines with a general "V" shape.
  • the two branches of this "V" instead of being rectilinear, are each in the form of a “step” having, at mid-height, a bearing perpendicular to the axis of symmetry of the "V” at each end of which is connected an "amount” parallel to the axis of symmetry of the "V".
  • the successive lines are arranged head-to-tail, so as to be optimally coupled and to reduce the size of the filter.
  • the free end of the line L12 is directly connected to a metallized block E formed on a support bar 21 and constituting the input terminal of the filter 20.
  • the free end of the line L1 is directly connected to a metallized block S formed on the substrate 21 and constituting the output terminal of the filter 20.
  • a metallized block S formed on the substrate 21 and constituting the output terminal of the filter 20.
  • the shapes and dimensions of the terminals E and S are determined so as to give them an adequate impedance. It is also understood that, if only the bandpass filter 20 is used, the input of the filter may be on the side of the line L1, and its output on the side of the line L12.
  • the bar 21 has for example a rectangular shape, and the lines L1 to Ln follow one another in a direction 22 parallel to a long side of the bar 21. These lines have a general shape of "V" and the axes of symmetry of these " V "are all parallel to a direction 23 which is perpendicular to the direction 22, the openings of the" V "being alternately directed in the direction otherwise.
  • the common "height" of all the lines L1 to Ln is referenced h (dimension of the lines measured parallel to the direction 23).
  • all the lines are produced in the following manner, as explained below for the line Lm, identical to all other lines, only the orientation of lines alternating from one line to the next.
  • the axis of symmetry of the line Lm is referenced 24, and only half of this line is described here (to the left of the axis 24, as seen in FIG. 4), while the other half is deducing the symmetry with respect to the axis 24.
  • the line Lm comprises a first rectilinear section 25 extending over substantially half the height h. This section is parallel to the axis 24 and is distant about h / 2.
  • the section 25 is followed by a section 26 which is perpendicular to it and moves towards the axis 24 without however reaching it.
  • the section 26 is extended by a section 27 parallel to the axis 24, which extends itself by a section 28 perpendicular to the axis 24 and reaching the axis 24.
  • the other half of the line Lm consists of sections 25a to 28a, respectively symmetrical sections 25 to 28 with respect to the axis 24.
  • D be the distance between the sections 25 and 25a.
  • the sum of the lengths of the sections 28 and 28a is substantially equal to D / 3, and as a result, the lengths of the sections 26 and 26a are substantially equal to each other at D / 3.
  • the successive lines L1 to Ln are very close to each other, in order to ensure optimal coupling between them.
  • the distance d between two adjacent lines is advantageously a few tens of micrometers and preferably less than 100 ⁇ m for filter lines that can operate at frequencies between 2 and 20 GHz, for example.
  • the low-pass filter 29 of the strip 2.1 is made in a manner known per se with regard to its topology, the important difference compared to known low-pass filters operating at similar frequencies residing in the fact that the conductive elements of FIG.
  • Low-pass filters of the invention are not conventional metal layers (Cu, Au, ...) but are composed of thin superconducting layers deposited on the same substrate strip 21 as that carrying the band-pass filter described above. -above. For this reason, the low-pass filter 29 will be described here only briefly.
  • This filter 29 comprises several LC cells, for example nine cells 30.1 to 30.9.
  • Each of these cells 30.1 to 30.9 consists of a narrow line, possibly folded in meanders and acting as inductance (referenced 31.3 for the cell 30.3 only, to simplify the drawing) and a rectangular plate (referenced 32.3 for the cell 30.3) acting as a capacitor with the metallization of the other side of the substrate 21 (not visible in the drawing).
  • the electrodes of the capacitors of the cells 30.1 to 30.8 are of the same dimensions, whereas that of the cell 30.9 is of smaller dimensions.
  • the inductances of the cells 30.2 to 30.8 are identical, while those of the cells 30.1 and 30.9 are smaller.
  • the capacitor of the last cell 30.9 is connected to a small block S1 constituting the output terminal to the next pair (or to the termination for the pair 2.5).
  • the relative dimensions of the inductances and capacitors of the different cells of the low-pass filter are determined as a function of the relative impedances of the filter and of the elements connected to its input and its output, the impedance matching being able to be taken into account. charge by the first and last cells, or be progressive and affect neighboring cells.
  • the shapes and dimensions of the conductors connecting the filter cells to the terminals 15 and 16 are such that these conductors provide part of the impedance matching. In the example shown in FIG.
  • the inductor 30.1 is not connected directly to the input terminal E, but to the line L12 of the band-pass filter, almost in the middle, but it is understood that this connection could be performed differently (inductor 30.1 connected directly to the terminal E or to another place of the line L12).
  • inductor 30.1 connected directly to the terminal E or to another place of the line L12.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Inorganic Insulating Materials (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The separator comprises an assembly of pairs of pass-band and low-pass filters (2.1 - 2.5). All the filters are made of super-conducting material, cooled in operation to a temperature less than the critical temperature of the material. The filters are arranged in order of decreasing frequency band. The separator for wide band hyperfrequency receivers comprises an assembly of pairs of pass-band and low-pass filters (2.1 - 2.5). Each pair of filters relates to a band of frequencies (Fbn - Fhn) which are to be separated from a range of bands. The pass-band filter has a pass-band lying between Fbn and Fhn (with Fbn less than Fhn), whilst the low-pass filter has a cut-off frequency situated at Fhn-1. All the filters are made of super-conducting material, cooled in operation to a temperature less than the critical temperature of the material. The pairs of filters are arranged in order of decreasing bands of frequency to be separated (channel 5 - channel 1) with respect to distance from the input of the separator.

Description

La présente invention se rapporte à un dispositif séparateur de bandes hyperfréquences à large bande.The present invention relates to a broadband microwave band separator device.

Les séparateurs de bandes hyperfréquences (également dénommés « multiplexeurs ») sont des dispositifs utilisés en particulier dans des récepteurs hyperfréquences à large bande. Ces récepteurs reçoivent des signaux multicanaux à canaux adjacents que les séparateurs sont chargés de séparer individuellement. Les performances de ces récepteurs hyperfréquences à large bande sont limitées par les différents points suivants :

  • ■ l'amplificateur de tête (celui qui suit immédiatement l'antenne réceptrice) présente des non-linéarités entraînant la génération de fréquences harmoniques ;
  • ■ les mélangeurs des étages hétérodynes génèrent des produits d'intermodulation ;
  • ■ la largeur de bande instantanée de ces récepteurs est limitée;
  • ■ les filtres des séparateurs introduisent des pertes d'insertion non négligeables ;
  • ■ ces mêmes filtres ont une raideur insuffisante des flancs de leur courbe caractéristique atténuation/fréquence ;
  • ■ du fait de cette raideur insuffisante, les bandes contiguës se chevauchent ;
  • ■ si l'on veut éviter ce chevauchement, on doit écarter les unes des autres les fréquences centrales des canaux, et donc des filtres correspondants, ce qui crée des trous entre bandes contiguës.
Microwave band separators (also called "multiplexers") are devices used in particular in broadband microwave receivers. These receivers receive multichannel signals with adjacent channels that the separators are responsible for separating individually. The performance of these broadband microwave receivers is limited by the following points:
  • ■ the head amplifier (the one immediately following the receiving antenna) has non-linearities leading to the generation of harmonic frequencies;
  • ■ Mixers of heterodyne stages generate intermodulation products;
  • ■ the instant bandwidth of these receivers is limited;
  • ■ separator filters introduce significant insertion losses;
  • These same filters have an insufficient stiffness of the flanks of their attenuation / frequency characteristic curve;
  • Due to this insufficient stiffness, the contiguous bands overlap;
  • ■ If this overlap is to be avoided, the center frequencies of the channels, and therefore of the corresponding filters, must be separated from one another, which creates holes between adjacent bands.

Les filtres passe-bande utilisés actuellement en hyperfréquences sont généralement du type à lignes couplées rectilignes ou repliées en « U ». De tels filtres présentent une raideur insuffisante des flancs de leur caractéristique fréquence/atténuation et des pertes d'insertion.Bandpass filters currently used in microwave frequencies are generally of the type with straight lines or folded in "U". Such filters have insufficient stiffness of the flanks of their frequency / attenuation characteristic and insertion losses.

On connaît d'après le document US 5 838 675 un séparateur de canaux hyperfréquences à structure de type « manifold » et incluant des amplificateurs-limiteurs, ce qui en rend la réalisation complexe.No. 5,838,675 discloses a microwave channel separator having a "manifold" type structure and including limiting amplifiers, which makes it difficult to implement.

La présente invention a pour objet un dispositif séparateur pour récepteur hyperfréquences large bande du type précité, ce dispositif séparateur ne présentant pas les inconvénients précités des dispositifs de l'art antérieur.The present invention relates to a separator device for broadband microwave receiver of the aforementioned type, this separator device does not have the aforementioned drawbacks of the devices of the prior art.

Le dispositif séparateur conforme à l'invention comporte un ensemble de paires de filtres passe-bande et passe-bas, et dans chaque paire de filtres relative à une bande de fréquences Fbn-Fhn à séparer d'un ensemble de bandes, le filtre passe-bande a une bande passante comprise entre Fbn et Fhn (avec Fbn < Fhn), tandis que le filtre passe-bas a une fréquence de coupure située à Fhn-1, tous les filtres étant en matériau supraconducteur refroidi en fonctionnement à une température inférieure à la température critique de ce matériau, chaque paire de filtres étant réalisée sur une même barrette individuelle et ayant une entrée commune à laquelle ces filtres sont reliés directement.The separator device according to the invention comprises a set of pairs of band-pass and low-pass filters, and in each pair of filters relating to a frequency band Fb n -Fh n to be separated from a set of bands, the band-pass filter has a bandwidth between Fb n and Fh n (with Fb n <Fh n ), while the low-pass filter has a cutoff frequency located at Fh n-1 , all the filters being of superconducting material cooled in operation at a temperature below the critical temperature of this material, each pair of filters being made on the same individual bar and having a common input to which these filters are connected directly.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :

  • la figure 1 est un bloc-diagramme d'un dispositif séparateur conforme à l'invention ;
  • la figure 2 est une vue en plan d'une paire de filtres faisant partie d'un dispositif séparateur conforme à l'invention ;
  • la figure 3 est une vue en plan d'un mode de réalisation préféré d'un filtre passe-bande faisant partie de la paire de filtres de la figure 2 ; et
  • la figure 4 est une vue de détail agrandie du filtre de la figure 1.
The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which:
  • Figure 1 is a block diagram of a separator device according to the invention;
  • Figure 2 is a plan view of a pair of filters forming part of a separator device according to the invention;
  • Fig. 3 is a plan view of a preferred embodiment of a bandpass filter forming part of the pair of filters of Fig. 2; and
  • Figure 4 is an enlarged detail view of the filter of Figure 1.

Le dispositif séparateur 1 schématisé en figure 1 comporte plusieurs paires de filtres, chaque paire de filtres se composant d'un filtre passe-bande et d'un filtre passe-bas. Dans le cas présent, le dispositif séparateur comporte cinq paires de filtres, respectivement référencés 2.1 à 2.5, mais il est bien entendu que le nombre de paires de filtres du dispositif séparateur de l'invention peut être différent, en fonction du nombre de canaux contenus dans le signal reçu par le récepteur hyperfréquences dont fait partie ce dispositif séparateur.The separator device 1 shown diagrammatically in FIG. 1 comprises several pairs of filters, each pair of filters consisting of a bandpass filter and a low-pass filter. In the present case, the separator device comprises five pairs of filters, respectively referenced 2.1 to 2.5, but it is understood that the number of filter pairs of the separator device of the invention may be different, depending on the number of channels contained in the signal received by the microwave receiver to which this separator device belongs.

Selon une caractéristique importante de l'invention, la première paire de filtres 2.1 branchée juste après l'entrée 3 est celle se rapportant à la voie de fréquences les plus élevées (voie 1 dans l'exemple), la seconde paire, 2.2 ; branchée juste en aval de la première paire, se rapporte à la voie (voie 2) à fréquences juste inférieures à celles de la voie 1, et ainsi de suite jusqu'à la paire de filtres 2.5 (voie 5).According to an important characteristic of the invention, the first pair of filters 2.1 connected just after the input 3 is that relating to the highest frequency channel (channel 1 in the example), the second pair, 2.2; connected just downstream of the first pair, refers to the channel (channel 2) at frequencies just below those of channel 1, and so on up to the pair of filters 2.5 (channel 5).

Selon un exemple de réalisation, les voies 1 à 5 ont respectivement les bandes de fréquences suivantes (en GHz): 16-18, 12-16, 8-12, 4-8 et 2-4, mais il est bien entendu que ces valeurs peuvent être différentes dans d'autres applications.According to an exemplary embodiment, the channels 1 to 5 respectively have the following frequency bands (in GHz): 16-18, 12-16, 8-12, 4-8 and 2-4, but it is understood that these values may be different in other applications.

Chaque paire de filtres 2.1 à 2.5 (2.1 à 2.n dans le cas le plus général) est réalisée sur une même barrette de substrat de support individuelle, de la façon décrite ci-dessous en référence à la figure 2. Les différentes barrettes du séparateur 1 sont fixées dans un boîter à cases séparées 4, parallèlement les unes aux autres, et découplées entre elles par des blindages électromagnétiques 5.1 à 5.4 formés sur les cloisons des cases du boîtier 4. L'entrée 3 est reliée au point 5 qui est l'entrée commune des filtres de la paire 2.1. La sortie 6 de la paire de filtres 2.1 vers la paire suivante 2.2 est la sortie du filtre passe-bas de la paire 2.1 (à l'opposé de son entrée 5). Cette sortie 6 est reliée à l'entrée 7 de la paire 2.2 qui est l'entrée commune des filtres de la paire 2.2 et ainsi de suite jusqu'à la paire 2.5 (sorties 8, 10, 12 reliées respectivement aux entrées 9, 11, 13). Finalement, la sortie 14 du filtre passe-bas de la paire 2.5 est reliée soit à une charge fictive adaptée (afin d'absorber des résidus du signal incident) soit, par exemple, à un analyseur de spectre. Sur les sorties 15 à 19 des filtres passe-bande des paires 2.1 à 2.5 respectivement, on recueille les signaux des voies 1 à 5, et uniquement ces signaux (sans harmoniques ni parties extrêmes des voies contiguës).Each pair of filters 2.1 to 2.5 (2.1 to 2.n in the most general case) is made on the same single support substrate strip, as described below with reference to FIG. separator 1 are fixed in a box with separate cells 4, parallel to each other, and decoupled from each other by electromagnetic shields 5.1 to 5.4 formed on the walls of the boxes of the housing 4. The inlet 3 is connected to the point 5 which is the common input of filters 2.1. The output 6 of the pair of filters 2.1 to the next pair 2.2 is the output of the low-pass filter of the pair 2.1 (opposite its input 5). This output 6 is connected to the input 7 of the pair 2.2 which is the common input of the filters of the pair 2.2 and so on up to the pair 2.5 (outputs 8, 10, 12 respectively connected to the inputs 9, 11 , 13). Finally, the output 14 of the low-pass filter of the pair 2.5 is connected either to a suitable dummy load (in order to absorb residuals from the incident signal) or, for example, to a spectrum analyzer. On the outputs 15 to 19 of the band pass filters pairs 2.1 to 2.5 respectively, the signals from channels 1 to 5 are collected, and only these signals (without harmonics or end parts of the contiguous channels).

On a représenté en figure 2 une des barrettes du séparateur 1, par exemple la barrette 2.1. Son filtre passe-bande est réalisé de la façon suivante.FIG. 2 shows one of the strips of the separator 1, for example the bar 2.1. Its bandpass filter is made as follows.

Le filtre passe-bande décrit ici a une bande passante de 2 ou de 4 GHz, pour une fréquence centrale pouvant être comprise entre 3 et 20 GHz environ, mais il est bien entendu que l'invention n'est pas limitée à ces valeurs, et que l'homme du métier pourra, à la lecture de la présente description, modifier ces valeurs tout en obtenant les mêmes avantages qu'avec le présent exemple.The bandpass filter described here has a bandwidth of 2 or 4 GHz, for a center frequency of between 3 and 20 GHz, but it is understood that the invention is not limited to these values, and that a person skilled in the art will be able, on reading the present description, to modify these values while obtaining the same advantages as with the present example.

Le filtre passe-bande 20 représenté sur les figures 2 à 4 du dessin comporte, pour le présent exemple, douze lignes de longueur électrique λ/2 couplées entre elles et référencées L1 à L12, mais il est bien entendu que le nombre de lignes d'un filtre peut être différent, avantageusement compris entre 12 et 16. La raideur des flancs de la caractéristique fréquence/atténuation étant une fonction directe du nombre de lignes, on pourra être amené à rechercher un compromis entre une grande raideur et un encombrement important (généralement, les appareils comportant de tels filtres devraient en comporter un grand nombre pour améliorer leurs caractéristiques, alors que leur encombrement doit être limité, par exemple lorsque ces appareils sont aéroportés).The band-pass filter 20 shown in FIGS. 2 to 4 of the drawing comprises, for the present example, twelve lines of electrical length λ / 2 coupled together and referenced L1 to L12, but it is understood that the number of lines d a filter may be different, advantageously between 12 and 16. The stiffness of the flanks of the frequency / attenuation characteristic being a direct function of the number of lines, it may be necessary to seek a compromise between a high stiffness and a large bulk ( generally, devices comprising such filters should have a large number to improve their characteristics, while their size must be limited, for example when these devices are airborne).

Les lignes L1 et L12 sont des lignes « repliées » à forme générale en « V ». Cependant, selon une caractéristique importante de l'invention, les deux branches de ce « V », au lieu d'être rectilignes, sont chacune en forme de « marche d'escalier » présentant, à mi-hauteur, un palier perpendiculaire à l'axe de symétrie du « V » à chaque extrémité duquel se raccorde un « montant » parallèle à l'axe de symétrie du « V ». Les lignes successives sont disposées tète-bêche, de façon à être couplées de manière optimale et à réduire l'encombrement du filtre. L'extrémité libre de la ligne L12 est directement reliée à un pavé métallisé E formé sur une barrette de support 21 et constituant la borne d'entrée du filtre 20. L'extrémité libre de la ligne L1 est directement reliée à un pavé métallisé S formé sur le substrat 21 et constituant la borne de sortie du filtre 20. Bien entendu, les formes et dimensions des bornes E et S sont déterminées de façon à leur conférer une impédance adéquate. Il est également bien entendu que, si seul le filtre passe-bande 20 est utilisé, l'entrée du filtre peut se faire du côté de la ligne L1, et sa sortie du côté de la ligne L12.L1 and L12 lines are "folded" lines with a general "V" shape. However, according to an important feature of the invention, the two branches of this "V", instead of being rectilinear, are each in the form of a "step" having, at mid-height, a bearing perpendicular to the axis of symmetry of the "V" at each end of which is connected an "amount" parallel to the axis of symmetry of the "V". The successive lines are arranged head-to-tail, so as to be optimally coupled and to reduce the size of the filter. The free end of the line L12 is directly connected to a metallized block E formed on a support bar 21 and constituting the input terminal of the filter 20. The free end of the line L1 is directly connected to a metallized block S formed on the substrate 21 and constituting the output terminal of the filter 20. Of course, the shapes and dimensions of the terminals E and S are determined so as to give them an adequate impedance. It is also understood that, if only the bandpass filter 20 is used, the input of the filter may be on the side of the line L1, and its output on the side of the line L12.

Les lignes L1 à Ln (n=12 dans le présent exemple) sont formées par dépôt de couches minces de matériau supraconducteur sur la barrette 21 en matériau présentant de faibles pertes diélectriques, tel que MgO. La barrette 21 a par exemple une forme rectangulaire, et les lignes L1 à Ln se succèdent selon une direction 22 parallèle à un grand côté de la barrette 21. Ces lignes ont une forme générale de « V » et les axes de symétrie de ces « V » sont tous parallèles à une direction 23 qui est perpendiculaire à la direction 22, les ouvertures des « V » étant alternativement dirigées en sens contraires. La « hauteur » commune de toutes les lignes L1 à Ln est référencée h (dimension des lignes mesurée parallèlement à la direction 23). Dans le détail, et comme représenté en figure 4 pour quatre lignes successives Lm-1, Lm, Lm+1, Lm+2, toutes les lignes sont réalisées de la façon suivante, comme expliqué ci-après pour la ligne Lm, identique à toutes les autres lignes, seule l'orientation des lignes alternant d'une ligne à la suivante.The lines L1 to Ln (n = 12 in the present example) are formed by depositing thin layers of superconducting material on the strip 21 of material having low dielectric losses, such as MgO. The bar 21 has for example a rectangular shape, and the lines L1 to Ln follow one another in a direction 22 parallel to a long side of the bar 21. These lines have a general shape of "V" and the axes of symmetry of these " V "are all parallel to a direction 23 which is perpendicular to the direction 22, the openings of the" V "being alternately directed in the direction otherwise. The common "height" of all the lines L1 to Ln is referenced h (dimension of the lines measured parallel to the direction 23). In detail, and as represented in FIG. 4 for four successive lines Lm-1, Lm, Lm + 1, Lm + 2, all the lines are produced in the following manner, as explained below for the line Lm, identical to all other lines, only the orientation of lines alternating from one line to the next.

L'axe de symétrie de la ligne Lm est référencé 24, et on ne décrit ici qu'une moitié de cette ligne (à gauche de l'axe 24, telle que vue sur la figure 4), l'autre moitié s'en déduisant la symétrie par rapport à l'axe 24. La ligne Lm comporte un premier tronçon rectiligne 25 s'étendant sur pratiquement la moitié de la hauteur h. Ce tronçon est parallèle à l'axe 24 et en est distant d'environ h/2. Le tronçon 25 est suivi d'un tronçon 26 qui lui est perpendiculaire et se dirige vers l'axe 24 sans toutefois l'atteindre. Le tronçon 26 se prolonge par un tronçon 27 parallèle à l'axe 24, qui se prolonge lui-même par un tronçon 28 perpendiculaire à l'axe 24 et arrivant jusqu'à l'axe 24. L'autre moitié de la ligne Lm se compose des tronçons 25a à 28a, respectivement symétriques des tronçons 25 à 28 par rapport à l'axe 24.The axis of symmetry of the line Lm is referenced 24, and only half of this line is described here (to the left of the axis 24, as seen in FIG. 4), while the other half is deducing the symmetry with respect to the axis 24. The line Lm comprises a first rectilinear section 25 extending over substantially half the height h. This section is parallel to the axis 24 and is distant about h / 2. The section 25 is followed by a section 26 which is perpendicular to it and moves towards the axis 24 without however reaching it. The section 26 is extended by a section 27 parallel to the axis 24, which extends itself by a section 28 perpendicular to the axis 24 and reaching the axis 24. The other half of the line Lm consists of sections 25a to 28a, respectively symmetrical sections 25 to 28 with respect to the axis 24.

Soit D la distance entre les tronçons 25 et 25a. Selon un mode de réalisation préféré, la somme des longueurs des tronçons 28 et 28a est sensiblement égale à D/3, et il en résulte que les longueurs des tronçons 26 et 26a sont pratiquement égales chacune à D/3.Let D be the distance between the sections 25 and 25a. According to a preferred embodiment, the sum of the lengths of the sections 28 and 28a is substantially equal to D / 3, and as a result, the lengths of the sections 26 and 26a are substantially equal to each other at D / 3.

Les lignes successives L1 à Ln sont très proches les unes des autres, afin d'assurer entre elles un couplage optimal. Comme indiqué en figure 4, la distance d entre deux lignes adjacentes est avantageusement de quelques dizaines de micromètres et de préférence inférieure à 100 µm pour des lignes de filtres pouvant fonctionner à des fréquences comprises entre 2 et 20 GHz, par exemple.The successive lines L1 to Ln are very close to each other, in order to ensure optimal coupling between them. As indicated in FIG. 4, the distance d between two adjacent lines is advantageously a few tens of micrometers and preferably less than 100 μm for filter lines that can operate at frequencies between 2 and 20 GHz, for example.

Le filtre passe-bas 29 de la barrette 2.1 est réalisé de façon connue en soi pour ce qui est de sa topologie, la différence importante par rapport aux filtres passe-bas connus fonctionnant à des fréquences similaires résidant dans le fait que les éléments conducteurs du filtre passe-bas de l'invention sont, non pas des couches métalliques classiques (Cu, Au, ...) mais sont composés de couches minces supraconductrices déposées sur la même barrette de substrat 21 que celui portant le filtre passe-bande décrit ci-dessus. Pour cette raison, on ne décrira ici que brièvement le filtre passe-bas 29. Ce filtre 29 comporte plusieurs cellules L-C, par exemple neuf cellules 30.1 à 30.9. Chacune de ces cellules 30.1 à 30.9 se compose d'une ligne étroite, éventuellement repliée en méandres et faisant office d'inductance (référencée 31.3 pour la cellule 30.3 seulement, pour simplifier le dessin) et d'une plaque rectangulaire (référencée 32.3 pour la cellule 30.3) faisant office de condensateur avec la métallisation de l'autre face du substrat 21 (non visible sur le dessin). Dans l'exemple représenté sur la figure 2, les électrodes des condensateurs des cellules 30.1 à 30.8 sont de mêmes dimensions, alors que celle de la cellule 30.9 est de plus petites dimensions. Les inductances des cellules 30.2 à 30.8 sont identiques, tandis que celles des cellules 30.1 et 30.9 sont plus petites. Le condensateur de la dernière cellule 30.9 est relié à un petit pavé S1 constituant la borne de sortie vers la paire suivante (ou vers la terminaison pour la paire 2.5). Bien entendu, les dimensions relatives des inductances et des condensateurs des différentes cellules du filtre passe-bas sont déterminées en fonction des impédances relatives du filtre et des éléments reliés à son entrée et à sa sortie, l'adaptation d'impédance pouvant être prise en charge par la première et la dernière cellules, ou bien être progressive et affecter des cellules voisines. Le cas échéant, les formes et dimensions des conducteurs reliant les cellules du filtre aux bornes 15 et 16 sont telles que ces conducteurs assurent une partie de l'adaptation d'impédance. Dans l'exemple représenté en figure 2, l'inductance 30.1 est reliée non pas directement à la borne d'entrée E, mais à la ligne L12 du filtre passe-bande, presque en son milieu, mais il est bien entendu que cette liaison pourrait être réalisée différemment (inductance 30.1 reliée directement à la borne E ou à un autre endroit de la ligne L12). Bien entendu, non seulement tous les éléments de chaque barrette 2.1 à 2.5 sont en matériau supraconducteur, mais également les liaisons entre barrettes, l'ensemble des circuits représentés en figure 1 étant porté à une température inférieure à la température critique de ce matériau supraconducteur.The low-pass filter 29 of the strip 2.1 is made in a manner known per se with regard to its topology, the important difference compared to known low-pass filters operating at similar frequencies residing in the fact that the conductive elements of FIG. Low-pass filters of the invention are not conventional metal layers (Cu, Au, ...) but are composed of thin superconducting layers deposited on the same substrate strip 21 as that carrying the band-pass filter described above. -above. For this reason, the low-pass filter 29 will be described here only briefly. This filter 29 comprises several LC cells, for example nine cells 30.1 to 30.9. Each of these cells 30.1 to 30.9 consists of a narrow line, possibly folded in meanders and acting as inductance (referenced 31.3 for the cell 30.3 only, to simplify the drawing) and a rectangular plate (referenced 32.3 for the cell 30.3) acting as a capacitor with the metallization of the other side of the substrate 21 (not visible in the drawing). In the example shown in FIG. 2, the electrodes of the capacitors of the cells 30.1 to 30.8 are of the same dimensions, whereas that of the cell 30.9 is of smaller dimensions. The inductances of the cells 30.2 to 30.8 are identical, while those of the cells 30.1 and 30.9 are smaller. The capacitor of the last cell 30.9 is connected to a small block S1 constituting the output terminal to the next pair (or to the termination for the pair 2.5). Of course, the relative dimensions of the inductances and capacitors of the different cells of the low-pass filter are determined as a function of the relative impedances of the filter and of the elements connected to its input and its output, the impedance matching being able to be taken into account. charge by the first and last cells, or be progressive and affect neighboring cells. Where appropriate, the shapes and dimensions of the conductors connecting the filter cells to the terminals 15 and 16 are such that these conductors provide part of the impedance matching. In the example shown in FIG. 2, the inductor 30.1 is not connected directly to the input terminal E, but to the line L12 of the band-pass filter, almost in the middle, but it is understood that this connection could be performed differently (inductor 30.1 connected directly to the terminal E or to another place of the line L12). Of course, not only all the elements of each bar 2.1 to 2.5 are superconducting material, but also the links between bars, all of the circuits shown in Figure 1 being brought to a temperature below the critical temperature of the superconducting material.

Le dispositif séparateur décrit ici présente les avantages suivants :

  • grâce au fait que tous ses éléments conducteurs sont en matériau supraconducteur, les pertes d'insertion qu'il produit sont très réduites grâce à la faible résistance de surface de ce matériau ;
  • grâce à ces pertes d'insertion réduites, on peut brancher le séparateur en tête, immédiatement derrière l'antenne. Ce séparateur est alors suivi d'amplificateurs, ce qui supprime ou diminue très fortement les harmoniques qui, autrement, seraient produites par ces amplificateurs ;
  • on réduit la distorsion d'intermodulation des étages hétérodynes ;
  • on augmente la largeur de bande instantanée ;
  • on augmente la raideur des flancs de la caractéristique atténuation/fréquence des filtres passe-bas et passe-bande, car on peut augmenter le nombre de cellules de chaque filtre grâce à leur très faible résistance ;
  • on supprime pratiquement tout chevauchement entre bandes contiguës grâce au fait que les circuits des filtres formés sur les barrettes (2.1 à 2.5) peuvent avoir des dimensions très précises et grâce au fait que les fréquences sont traitées dans l'ordre décroissant de leurs valeurs ;
  • les trous entre bandes contiguës peuvent être supprimés par l'utilisation de deux séparateurs à bandes décalées.
The separator device described here has the following advantages:
  • thanks to the fact that all its conducting elements are in superconducting material, the insertion losses that it produces are very small thanks to the low surface resistance of this material;
  • thanks to these reduced insertion losses, you can connect the separator at the head, immediately behind the antenna. This separator is then followed by amplifiers, which eliminates or greatly reduces the harmonics that would otherwise be produced by these amplifiers;
  • the intermodulation distortion of the heterodyne stages is reduced;
  • we increase the instantaneous bandwidth;
  • the stiffness of the flanks of the attenuation / frequency characteristic of the low-pass and band-pass filters is increased, since the number of cells of each filter can be increased by virtue of their very low resistance;
  • virtually eliminating any overlap between adjacent bands by the fact that the filter circuits formed on the bars (2.1 to 2.5) can have very precise dimensions and because the frequencies are processed in descending order of their values;
  • the holes between adjacent strips can be eliminated by the use of two offset band separators.

En outre, grâce au refroidissement des circuits supraconducteurs à une température bien précise, on élimine pratiquement toute dérive de phase et on élimine la nécessité de calibrages fréquents des récepteurs.In addition, by cooling the superconducting circuits to a specific temperature, virtually eliminating phase drift and eliminate the need for frequent calibration of the receivers.

Claims (2)

  1. Splitter device for wideband microwave receivers, characterized in that it comprises a set of pairs of band-pass and low-pass filters (2.1 to 2.5), and in that, in each pair of filters relative to a frequency band Fbn-Fhn to be split from a set of bands, the band-pass filter has a bandwidth between Fbn and Fhn (with Fbn < Fhn), whereas the low-pass filter has a cut-off frequency located at Fhn-1, all the filters being made of a superconductive material, cooled in operation to a temperature below the critical temperature of this material, each pair of filters being produced on one and the same individual strip (21) and having a common input (E) to which are directly linked the low-pass filter and the band-pass filter of this same strip, and in that the split band output (S) is that of the band-pass filter, and that the output (S1) to the next pair (6, 8, 10, 12) or to a termination (14) is that of the low-pass filter.
  2. Splitter device according to Claim 1, characterized in that the pairs of filters are disposed, from the input of the splitter, in descending order of the frequency bands to be split (channel 5 to channel 1).
EP03795990A 2002-11-08 2003-11-03 Wide band microwave band separating device Expired - Lifetime EP1568098B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214049 2002-11-08
FR0214049A FR2847079B1 (en) 2002-11-08 2002-11-08 SEPARATOR DEVICE FOR BROADBAND HYPERFREQUENCY BANDS
PCT/EP2003/050780 WO2004042863A1 (en) 2002-11-08 2003-11-03 Wide band microwave band separating device

Publications (2)

Publication Number Publication Date
EP1568098A1 EP1568098A1 (en) 2005-08-31
EP1568098B1 true EP1568098B1 (en) 2007-01-24

Family

ID=32116501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03795990A Expired - Lifetime EP1568098B1 (en) 2002-11-08 2003-11-03 Wide band microwave band separating device

Country Status (7)

Country Link
EP (1) EP1568098B1 (en)
AT (1) ATE352879T1 (en)
AU (1) AU2003298265A1 (en)
DE (1) DE60311520T2 (en)
ES (1) ES2280834T3 (en)
FR (1) FR2847079B1 (en)
WO (1) WO2004042863A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838675A (en) * 1996-07-03 1998-11-17 The United States Of America As Represented By The Secretary Of The Navy Channelized receiver-front-end protection circuit which demultiplexes broadband signals into a plurality of different microwave signals in respective contiguous frequency channels, phase adjusts and multiplexes channels
US6108569A (en) * 1998-05-15 2000-08-22 E. I. Du Pont De Nemours And Company High temperature superconductor mini-filters and mini-multiplexers with self-resonant spiral resonators

Also Published As

Publication number Publication date
ATE352879T1 (en) 2007-02-15
DE60311520T2 (en) 2007-11-22
WO2004042863A1 (en) 2004-05-21
ES2280834T3 (en) 2007-09-16
FR2847079A1 (en) 2004-05-14
FR2847079B1 (en) 2005-06-17
AU2003298265A1 (en) 2004-06-07
EP1568098A1 (en) 2005-08-31
DE60311520D1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
EP2184803B1 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
JPH0812961B2 (en) Parallel multi-stage bandpass filter
EP1601101B1 (en) Balun transformer and low pass filter
FR2938379A1 (en) DIFFERENTIAL FILTERING DEVICE WITH COPLANAR COUPLES AND FILTERING ANTENNA PROVIDED WITH SUCH A DEVICE
FR2905208A1 (en) Filter for portable communication device, has lamb wave resonators comprising respective electrodes placed on opposite surfaces of two parts of resonant layer, where resonators are acoustically coupled by periodic network
FR2467488A1 (en) THREE-WAY MICROWAVE COMBINATOR / DIVIDER DEVICE ADAPTED FOR EXTERNAL ISOLATION RESISTORS
EP0193162A1 (en) Microwave bandpass filter
EP0852846B1 (en) Surface acoustic wave filter using the coupling of three acoustic channels
WO2002071610A1 (en) Surface acoustic wave filter
FR2862158A1 (en) BALUN DISTRIBUTES TO NON-UNITARY IMPEDANCE REPORT
EP2385625A1 (en) Combiner having acoustic transducers
EP0057112B1 (en) Electrical filter, self-correcting in propagation time
EP1568098B1 (en) Wide band microwave band separating device
EP0526589B1 (en) Surface wave low loss filter
CA2027885C (en) Filter cell and filter therefor
EP2147478B1 (en) Microstrip technology hyperfrequency signal coupler
EP0862813A1 (en) Differential-driven surface acoustic wave transducer
EP0373028B1 (en) Passive band-pass filter
EP0649571A1 (en) Pass-band filter with coupled resonators
WO2004042862A1 (en) Wide band microwave passband filter
FR2818051A1 (en) OPTIMIZED SYMMETRY SURFACE ACOUSTIC WAVE FLITERS
EP1067617B1 (en) Bandpass filter
EP4395063A1 (en) Dual band iff/ads-b receive chain filter
FR2628571A1 (en) MICRO-BAND TECHNOLOGY HYPERFREQUENCY CUTTER FILTER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60311520

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070425

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280834

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

BERE Be: lapsed

Owner name: THALES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171031

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171201

Year of fee payment: 15

Ref country code: SE

Payment date: 20171113

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60311520

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201026

Year of fee payment: 18

Ref country code: IT

Payment date: 20201027

Year of fee payment: 18

Ref country code: GB

Payment date: 20201021

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427