EP0931886B1 - A mineral fiber-insulated plate - Google Patents
A mineral fiber-insulated plate Download PDFInfo
- Publication number
- EP0931886B1 EP0931886B1 EP99106353A EP99106353A EP0931886B1 EP 0931886 B1 EP0931886 B1 EP 0931886B1 EP 99106353 A EP99106353 A EP 99106353A EP 99106353 A EP99106353 A EP 99106353A EP 0931886 B1 EP0931886 B1 EP 0931886B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mineral fiber
- web
- mineral
- insulating web
- fiber web
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 188
- 239000011707 mineral Substances 0.000 title claims abstract description 188
- 239000002557 mineral fiber Substances 0.000 claims abstract description 78
- 239000002344 surface layer Substances 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 42
- 230000001815 facial effect Effects 0.000 claims abstract description 5
- 239000007767 bonding agent Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 abstract description 6
- 238000007906 compression Methods 0.000 description 38
- 230000006835 compression Effects 0.000 description 35
- 238000004519 manufacturing process Methods 0.000 description 30
- 239000011888 foil Substances 0.000 description 27
- 239000000835 fiber Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000012815 thermoplastic material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/732—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
- D04H1/4226—Glass fibres characterised by the apparatus for manufacturing the glass fleece
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/593—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
- D04H1/645—Impregnation followed by a solidification process
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/736—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/74—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7654—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
- E04B1/7658—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
- E04B1/7662—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/10—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
- E04C2/16—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7683—Fibrous blankets or panels characterised by the orientation of the fibres
Definitions
- the present invention generally relates to the technical field of mineral fiber-insulating plates.
- Mineral fibers generally comprise fibers such as rockwool fibers, glass fibers, etc. More precisely, the present invention relates to novel mineral fiber-insulating plates.
- the mineral fiber-insulating plates according to the present invention exhibit advantageous characteristics as to mechanical performance, such as modulus of elasticity and strength, low weight and good thermal-insulating property.
- Mineral fiber-insulating webs are normally hitherto produced as homogeneous webs, i.e. webs in which the mineral fibers of which the mineral fiber-insulating web is composed, are generally orientated in a single predominant orientation which is mostly determined by the orientation of the production line on which the mineral fiber-insulating web is produced and transmitted during the process of producing the mineral fiber-insulating web.
- the product made from a homogeneous mineral fiber-insulating web exhibits characteristics which are determined by the integrity of the mineral fiber-insulating web and which are predominantly determined by the binding of the mineral fibers within the mineral fiber-insulating plate produced from the mineral fiber-insulating web, and further predominantly determined by the area weight and density of the mineral fibers of the mineral fiber-insulating plate.
- a method of producing an insulating mineral fiber plate composed of interconnected rod-shaped mineral fiber elements includes cutting a continuous mineral fiber web in the longitudinal direction thereof in order to form lamellae, cutting the lamellae into desired lengths, turning the lamellae 90° about the longitudinal axis and bonding the lamellae together for forming the plate.
- the method also includes a step of curing the continuous mineral fiber web, or alternatively the plate composed of the individual lengths of lamellae bonded together for the formation of the plate.
- a method of producing a fibrous sheet structure including filaments or fibers of a polymeric material such as polyethylene trephtalate or polyhexamethyleaditamide includes producing the polymeric material filaments or fibers by means of a carting machine from a supply of filaments or fibers constituted by a porous resilient batt of filaments or fibers, collecting the polymeric material filaments or fibers on a belt for the formation of a continuous web of polymeric material filaments or fibers, compressing the web, cutting the web into a series of parallel fiber strips including polymeric material filaments or fibers and turning the fiber strips 90° about the longitudinal axis and adjoining the strips together as the strips are caused to effect unification solely through the release of a compression effect which has been applied to the strips during the process of turning the strips.
- the web produced in accordance with the technique described in the above US patent is suitable for manufacturing fabrics such as carpets, blankets, bed spreads, bathrobes etc.
- a particular advantage of the present invention relates to the novel mineral fiber-insulating plate according to the present invention which as compared to prior art mineral fiber-insulating plates contains less mineral fibers and is consequently less costly than the prior art mineral fiber-insulating plates, still exhibiting advantages as compared to the prior art mineral fiber-insulating plates relating to mechanical performance and thermal-insulating properties.
- a particular feature of the present invention relates to the fact that the novel mineral fiber-insulating plate according to the present invention is produceable from less mineral fibers or less material as compared to the prior art mineral fiber-insulating plate still providing the same properties as the prior art mineral fiber-insulating plate regarding mechanical performance and thermal-insulating properties, thus, providing a more lightweight and more compact mineral fiber-insulating plate product as compared to the prior art mineral fiber-insulating plate product reducing transport, storage and handling costs.
- the mineral fiber-insulating plate according to the present invention preferably comprises opposite surface layers of similar structure sandwiching the central body in the integral structure of the mineral fiber-insulating plate.
- a first step of producing a mineral fiber-insulating web involves the formation of mineral fibers from a mineral fiber forming melt which is produced in a furnace 30 and which is supplied from a spout 32 of the furnace 30 to a total of four rapidly rotating spinning-wheels 34 to which the mineral fiber forming melt is supplied as a mineral fiber forming melt stream 36.
- a cooling gas stream is simultaneously supplied to the rapidly rotating spinning-wheels 34 in the axial direction thereof causing the formation of individual mineral fibers which are expelled or sprayed from the rapidly rotating spinning-wheels 34 as indicated by the reference numeral 38.
- the mineral fiber spray 38 is collected on a continuously operated first conveyer belt 42 forming a primary mineral fiber-insulating web 40.
- a heat-curable bonding agent is also added to the primary mineral fiber-insulating web 40 either directly to the primary mineral fiber-insulating web 40 or at the stage of expelling the mineral fibers from the spinning-wheels 34, i.e. at the stage of forming the individual mineral fibers.
- the first conveyer belt 42 is, as is evident from Fig. 1 , composed of two conveyer belt sections. A first conveyer belt section which is sloping relative to the horizontal direction and relative to a second substantially horizontal conveyer belt section.
- the first section constitutes a collector section
- the second section constitutes a transport section by means of which the primary mineral fiber-insulating web 40 is transferred to a second and a third continuously operated conveyer belt designated the reference numeral 44 and 46, respectively, which are operated in synchronism with the first conveyer belt 42 sandwiching the primary mineral fiber-insulating web 40 between two adjacent surfaces of the second and third conveyer belts 44 and 46, respectively.
- the second and third conveyer belts 44 and 46 communicate with a fourth conveyer belt 48 which constitutes a collector conveyer belt on which a secondary mineral fiber-insulating web 50 is collected as the second and third conveyer belts 44 and 46, respectively, are swung across the upper surface of the fourth conveyer belt 48 in the transversal direction relative to the fourth conveyer belt 48.
- the secondary mineral fiber-insulating web 50 is consequently produced by arranging the primary mineral fiber-insulating web 40 in overlapping relation generally in the transversal direction of the fourth conveyer belt 48.
- the secondary mineral fiber-insulating web 50 By producing the secondary mineral fiber-insulating web 50 from the primary mineral fiber-insulating web 40 as disclosed in Fig. 1 , a more homogeneous secondary mineral fiber-insulating web 50 is produced as compared to the less homogeneous primary mineral fiber-insulating web.
- the overall orientation of the mineral fibers of the primary mineral fiber-insulating web 40 is parallel with the longitudinal direction of the web 40 and the direction of transportation of the first conveyer belt 42. Contrary to the primary mineral fiber-insulating web 40 the overall orientation of the mineral fibers of the secondary mineral fiber-insulating web 50 is substantially perpendicular and transversal relative to the longitudinal direction of the secondary mineral fiber-insulating web 50 and the direction of transportation of the fourth conveyer belt 48.
- a station for compacting and homogenizing an input mineral fiber-insulating web 50' which station serves the purpose of compacting and homogenizing the input mineral fiber-insulating web 50' for producing an output mineral fiber-insulating web 50'', which output mineral fiber-insulating web 50'' is more compact and more homogeneous as compared to the input mineral fiber-insulating web 50'.
- the input mineral fiber-insulating web 50' may constitute the secondary mineral fiber-insulating web 50 produced in the station shown in Fig. 1 .
- the compacting station comprises two sections.
- the first section comprises two conveyer belts 52" and 54", which are arranged at the upper side surface and the lower side surface, respectively, of the mineral fiber web 50'.
- the first section basically constitutes a section in which the mineral fiber web 50' input to the section is exposed to a height compression, causing a reduction of the overall height of the mineral fiber web and a compacting of the mineral fiber web.
- the conveyer belts 52" and 54" are consequently arranged in a manner, in which they slope from an input end at the left-hand side of Fig. 2 , at which input end the mineral fiber web 50' is input to the first section, towards an output end, from which the height-compressed mineral fiber web is delivered to the second section of the compacting station.
- the second section of the compacting station comprises three sets of rollers 56' and 58', 56" and 58', and 56''' and 58'''.
- the rollers 56', 56" and 56''' are arranged at the upper side surface of the mineral fiber web, whereas the rollers 58', 58'' and 58''' are arranged at the lower side surface of the mineral fiber web.
- the second section of the compacting station provides a longitudinal compression of the mineral fiber web, which longitudinal compression produces a homogenization of the mineral fiber web, as the mineral fibers of the mineral fiber web are caused to be rearranged as compared to the initial structure into a more homogeneous structure.
- the three sets of rollers 56' and 58', 56'' and 58", and 56''' and 58'' of the second section are rotated at the same rotational speed, which is, however, lower than the rotational speed of the conveyer belts 52" and 54" of the first section, causing the longitudinal compression of the mineral fiber web.
- the height-compressed and longitudinally compressed mineral fiber web is output from the compacting station shown in Fig. 2 , designated the reference numeral 50".
- the combined height-and-longitudinal-compression compacting station shown in Fig. 2 may be modified by the omission of one of the two sections, i.e. the first section constituting the height-compression section, or alternatively the second section constituting the longitudinal-compression section.
- a compacting section performing a single compacting or compression operation is provided, such as a height-compressing station or alternatively a longitudinally-compressing station.
- the height-compressing section has been described including conveyer belts
- the longitudinally-compressing section has been described including rollers
- both sections may be implemented by means of belts or rollers.
- the height-compressing section may be implemented by means of rollers
- the longitudinally-compressing section may be implemented by means of conveyer belts.
- the mineral fiber-insulating web 50'' may constitute the output mineral fiber-insulating web 50'' shown in Fig. 2 , or alternatively the mineral fiber-insulating web 50 produced in the station shown in Fig. 1 .
- the mineral fiber-insulating web 50" is brought into contact with a pressing roller 51, by means of which a continuous foil 99 of a thermoplastic material is applied to the upper side surface of the mineral fiber-insulating web 50''.
- the continuous foil of the thermoplastic material is supplied from a roll 98.
- the mineral fiber-insulating web 50" and the continuous foil 67 applied thereto are forced through a corrugated gate 60' which gate comprises two oppositely arranged, corrugated guide plates 64' and 66' and two oppositely arranged end walls, one of which is designated the reference numeral 62'.
- the foil 99 has to be of an elasticity allowing that the foil 99 and the mineral fiber-insulating web 50'' are folded.
- the end walls of the corrugated gate 60' and the corrugations of the corrugated gate plates 64' and 66' taper from an input end of the corrugated gate 60' to an output end thereof.
- the mineral fiber-insulating web 50'' and the foil 99 applied thereto are forced through the corrugated gate 60', the mineral fiber-insulating web is folded in its longitudinal direction providing a corrugated and longitudinally folded mineral fiber-insulating web 50'''.
- FIG. 4 an alternative technique of producing the corrugated and longitudinally folded mineral fiber-insulating web 50''' from the plane mineral fiber-insulating web 50'' is disclosed.
- the technique disclosed in Fig. 4 differs from the technique described above with reference to Fig. 3 in that a gate 60'' is used, which gate 60'' differs from the corrugated gate 60'' shown in Fig. 3 in that the gate 60'' comprises plane oppositely arranged walls one of which is designated the reference numeral 64'' and curved end walls one of which is designated the reference numeral 62".
- a further alternative technique of producing a longitudinally folded mineral fiber-insulating web 50''' from the plane mineral fiber-insulating web 50" is shown.
- the corrugated and longitudinally folded mineral fiber-insulating web 50''' is in accordance with the technique shown in Fig. 5 produced by means of a roller assembly 60''' comprising plane end walls 62''' serving the same purpose as the plane end walls 62' and curved end walls 62'' shown in Figs. 3 and 4 , respectively, viz. the purpose of guiding the outer edges of the plane mineral fiber-insulating web 50'' to the corrugated and longitudinally folded configuration of the mineral fiber-insulating web 50'''.
- the roller assembly 60''' further comprises a total of eight sets of rollers, each set of rollers containing two rollers arranged at opposite sides of the mineral fiber-insulating web.
- two rollers are designated the reference numeral 68.
- the sets of rollers define a tapered configuration tapering from an input end of the roller assembly 60''' to an output end thereof from which output end the corrugated and longitudinally folded mineral fiber-insulating web 50''' is supplied.
- the tapered configuration serves the purpose of assisting the plane mineral fiber-insulating web 50'' to corrugate and longitudinally fold into the configuration of the folded mineral fiber-insulating web 50''' shown in Fig. 5 .
- a station 60'''' is employed, which station constitutes a combined height/longitudinally-compressing station and a transversally-folding station.
- the station 60'''' comprises a total of six sets of rollers, three sets of which are constituted by the three sets of rollers 56', 58'; 56", 58"; and 56''', 58''' discussed above with reference to Fig. 2 .
- the station 60'''' shown in Fig. 6 further comprises three sets of rollers, a first set of which is constituted by two rollers 152' and 154', a second set of which is constituted by two rollers 152" and 154'', and third set of which is constituted by two rollers 152"' and 154'''.
- the rollers 152', 152'' and 152''' are arranged at the upper side surface of the mineral fiber-insulating web 50'' like the rollers 56', 56'' and 56'''.
- the three rollers 154', 154'' and 154''' are arranged at the lower side surface of the mineral fiber-insulating web 50'' like the rollers 58', 58" and 58'''.
- the three sets of rollers 152', 154'; 152", 154"; and 152''', 154''' serve the same purpose as the belt assemblies 52'', 54'' discussed above with reference to Fig. 2 , viz. the purpose of height compressing the mineral fiber-insulating web 50" input to the station 60"".
- the three sets of height-compressing rollers 152', 154'; 152", 154''; and 152'''', 154''' are like the above-described belt assemblies 52'', 54'' operated at a rotational speed identical to the velocity of the mineral fiber-insulating web 50'' input to the height-compressing section of the station 60''''.
- the three sets of rollers constituting the longitudinally-compressing section i.e. the rollers 56', 58'; 56", 58"; and 56''', 58'', are operated at a reduced rotational speed determining the longitudinal compression ratio.
- crankshaft assemblies For generating the longitudinal folding of the mineral fiber-insulating web 50" input to the station 60"", shown in Fig. 6 , four crankshaft assemblies designated the reference numerals 160', 160'', 160''', and 160''' are provided.
- the crankshaft assemblies are of identical structures, and in the below description a single crankshaft assembly, the crankshaft assembly 160'', is described, as the crankshaft assemblies 160', 160''' and 160'''' are identical to the crankshaft assembly 160'' and comprise elements identical to the elements of the crankshaft assembly 160", however, designated the same reference numerals added a single, a double and a triple mark, respectively.
- the crankshaft assembly 160'' includes a motor 162'', which drives a gear assembly 164'', from which an output shaft 166'' extends.
- a total of six gearwheels 168'' of identical configurations are mounted on the output shaft 166''.
- Each of the gearwheels 168'' meshes with a corresponding gearwheel 170''.
- Each of the gearwheels 170'' constitutes a drivewheel of a crankshaft lever system further comprising an idler wheel 172'' and a crankshaft lever 174''.
- crankshaft levers 174'' are arranged so as to be lifted from a retracted position to an elevated position between two adjacent rollers at the righ-hand, lower side of the mineral fiber-insulating web 50" input to the station 60"" and are adapted to cooperate with crankshaft levers of the crankshaft lever system 160' positioned at the right-hand, upper side of the mineral fiber-insulating web 50" input to the station 60''''.
- crankshaft levers of the crankshaft lever systems 160''' and 160'''', arranged at the left-hand, upper and lower side, respectively, of the mineral fiber-insulating web 50'' input to the station 60" " are adapted to cooperated in a manner to be described below.
- a first set of crankshaft levers 174', 174", 174''', 174"" of the crankshaft lever systems 160', 160", 160''' and 160'''' are positioned between the first and second sets of rollers 152', 154' and 152'', 154''.
- a second set of crankshaft levers are positioned between the second and third sets of rollers 152'', 154'' and 152"', 154"'.
- crankshaft levers of each of the total of six crankshaft lever sets are of identical widths.
- the first crankshaft lever is the widest crankshaft lever, and the width of the crankshaft lever within each crankshaft lever system is reduced from the first crankshaft lever to the sixth crankshaft lever positioned behind the sixth set of rollers 56''', 58'''.
- crankshaft levers of a specific crankshaft set are rotated in synchronism with the remaining three crankshaft levers of the crankshaft lever set in question.
- the crankshaft levers of all six sets of crankshaft levers are moreover operated in synchronism and in synchronism with the velocity of the mineral fiber-insulating web 50'' input to the station 60''''.
- the widest or first set of crankshaft levers is adapted to initiate the folding of the mineral fiber-insulating web 50'', as the crankshaft levers 174'' and 174" " of the crankshaft lever systems 160'' and 160''', respectively, are raised from positions below the lower side surface of the mineral fiber-insulating web 50'' and are brought into contact with the lower side surface of the mineral fiber-insulating web 50'', and as the crankshaft levers 174' and 174''' of the crankshaft lever systems 160' and 160''', respectively, are simultaneously lowered from positions above the upper side surface of the mineral fiber-insulating web 50'' and brought into contact with the upper side surface of the mineral fiber-insulating web 50''.
- crankshaft levers of the first set of crankshaft levers to be moved towards the center of the mineral fiber-insulating web 50'', producing a central fold of the mineral fiber-insulating web 50''.
- crankshaft levers of the first set of crankshaft levers reach the central position, the crankshaft levers of the crankshaft lever systems 160' and 160''' are raised, whereas the crankshaft levers of the crankshaft lever systems 160'' and 160" " are lowered and consequently brought out of contact with the upper and lower side surface, respectively, of the mineral fiber-insulating web 50''.
- the next or second set of crankshaft levers generates a second and a third fold of the mineral fiber-insulating web 50'', which second or third fold is positioned at opposite sides of the first fold, whereupon the third, the fourth, the fifth, and the sixth sets of crankshaft levers produce additional folds of the mineral fiber-insulating web, producing an overall, longitudinal folding of the mineral fiber-insulating web.
- the width of the crankshaft levers of each set of crankshaft levers, the gear ratio of the gear assemblies 164', 164'', 164''' and 164" ", the gear ratio of the gearwheels 168 and 170, and the velocity of the mineral fiber-insulating web 50'' input to the station 60'''' are adapted to one another and further to the rotational speed of the height compression and the longitudinally-compressing sections of the station for producing the longitudinally-folded, and height- and longitudinally-compressed mineral fiber-insulating web 50'''.
- the integration of the height-compressing section, the longitudinally-compressing section and the longitudinally-folding section into a single station, as described above with reference to Fig. 6 is, by no means, mandatory to the operation of the longitudinally-folding crankshaft systems described above with reference to Fig. 6 .
- the height-compressing section, the longitudinally-compressing section and the longitudinally-folding section may be separated, however, the integration of all three functions reduces the overall size of the production plant.
- the folding of the mineral fiber web as discussed above with reference to Figs. 4, 5 and 6 provides a transversal compacting and compression of the web, further providing a homogenization of the web as compared to the unfolded input web.
- a vertical sectional view of the corrugated and longitudinally folded mineral fiber-insulated web 50''' is shown.
- the corrugated and longitudinally folded mineral fiber-insulating web 50''' comprises a central core or body 28 and two oppositely arranged surface layers 24 and 26, which surface layers 24 and 26 are separated from the central core or body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' along imaginary lines of separation 20 and 22, respectively.
- the surface layers 24 and 26 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' are composed of segments of the folded mineral fiber-insulating web which segments contain mineral fibers which are orientated substantially transversally relative to the longitudinal direction of the corrugated and longitudinally folded mineral fiber-insulating web 50'''.
- the corrugated and longitudinally folded mineral fiber-insulating web 50''' is produced from the secondary mineral fiber-insulating web 50 by folding the secondary mineral fiber-insulating web 50, optionally after compacting the secondary mineral fiber-insulating web 50, as will be described below with reference to Fig. 8 , and the overall orientation of the mineral fibers of the secondary mineral fiber-insulating web 50 is consequently maintained within the segments of the corrugated and longitudinally folded mineral fiber-insulating web 50''' which segments together constitute the surface layers 24 and 26.
- the central core or body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' is composed of segments of the folded mineral fiber-insulating web 50''' which segments are folded perpendicular to the segments of the surface layers 24 and 26 of the mineral fiber-insulating web 50'''.
- the mineral fibers of the central core of body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' are consequently orientated substantially perpendicular to the longitudinal direction as well as the transversal direction of the corrugated and longitudinally folded mineral fiber-insulating web 50'''.
- the corrugated and longitudinally folded mineral fiber-insulating web 50''' shown in Fig. 9 and produced in accordance with the techniques discussed above with reference to Figs. 3, 4, 5 and 6 is further processed in a station illustrated in Fig. 7 , in which station the surface layer 24 is separated from the central core or body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' along the imaginary line of separation 20, shown in Fig. 9 .
- the separation of the surface layer 24 from the remaining part of the mineral fiber-insulating web is accomplished by means of a cutting tool 72 as the remaining part of the mineral fiber-insulating web is supported and transported by means of a conveyer belt 70.
- the cutting tool 72 may be constituted by a stationary cutting tool or knife or alternatively be constituted by a transversely reciprocating cutting tool.
- the surface layer 24 separated from the mineral fiber-insulating web is derived from the path of travel of the remaining part of the mineral fiber-insulating web by means of a conveyer belt 74 and is transferred from the conveyer belt 74 to three sets of rollers comprising a first set of rollers 76' and 78', a second set of rollers 76" and 78", and a third set of rollers 76''' and 78'', which three set of rollers together constitute a compacting or compressing section similar to the second section of the corresponding station described above with reference to Fig. 2 .
- a transversally-compressing station is shown, which is designated the reference numeral 80 in its entirety.
- a transversally compressed and compacted central core or body 28' is supplied from the transversally-compressing station 80.
- the core or body 28 is transmitted through the transversally-compressing station 80 and transformed into the transversally compressed central core or body 28', the core or body is supported on rollers constituted by an input roller 87 and an output roller 88.
- the central core or body 28 input to the transversally-compressing station 80 is preferably constituted by the above-described central core or body separated from the mineral fiber-insulating web 50", as described above with reference to Fig, 7 , the mineral fiber-insulating web 50" may alternatively be processed in the station 80 shown in Fig. 8 .
- the foil has to be of a structure compatible with the transversal compression of the web and foil assembly.
- the foil applied to the upper side surface of the mineral fiber-insulating web 50'', as shown in Fig. 3 has to be compressable and adaptable to the reduced width of the transversally compressed central core or body 28' or the transversally compressed mineral fiber-insulating web output from the transversally-compressing station 80.
- the compacted surface layer 24 is returned to the remaining part of the mineral fiber-insulating web or the central core or body, which has preferably been transversally compressed as described above with reference to Fig. 8 , and adjoined in facial contact with the upper surface of the central core or body 28, as shown in Fig. 9 .
- a set of rollers comprising a roller 79' and a roller 79" arranged at the upper and lower side surface of the surface layer 24, respectively, constitutes a set of rollers by means of which a surface foil 99' supplied from a roll 98' is applied to the upper side surface of the compacted surface layer 24.
- the surface layer 24 which constitutes an integral mineral fiber-insulating web of higher compactness as compared to the central core or body 28, is shifted towards the upper side surface of the central core or body 28 by means of two rollers 77' and 77''.
- the roller 77" is positioned below the surface layer 24 and constitutes a turning roller, whereas the roller 77', which is positioned above the upper side surface of the surface layer 24, serves the purpose of pressing the compacted surface layer 24 into facial contact with the upper side surface of the central core or body 28, which is supported and transported by means of the conveyer belt 70 also shown in Fig. 7 .
- a mineral fiber-insulating web assembly is provided, which assembly is designated the reference numeral 90 in its entirety.
- a further foil 99'' is shown in dotted line.
- This foil is supplied from a roll 98''.
- the foil 99'' may constitute a continuous foil or alternatively a mesh foil, i.e. a foil similar to the surface foil 99' described above. It is, however, to be emphasized that the foils 99, 99' and 99'' constitute optional features which may be omitted, provided an integral mineral fiber web structure is to be produced. Alternatively, one or more of the above-listed foils, or all foils, may be provided in various embodiments of the mineral fiber-insulating web produced in accordance with the teachings of the present invention.
- the compacted surface layer 24 which is separated from the mineral fiber-insulating web 50''' as shown in Fig. 7 may alternatively be provided from a separate production line, as one of the production stations shown in Fig. 3, 4, 5 and 6 may communicate directly with the production station shown in Fig. 9 , optionally through the production station shown in Fig. 8 , thus, eliminating the production station shown in Fig. 7 .
- the production station shown in Fig. 7 is adapted to separate two surface layers from the central core or body 28 for producing two separated surface layers separated from opposite side surfaces of the central core or body 28, which surface layers are processed in accordance with the technique described above with reference to Fig.
- the mineral fiber-insulating web assembly 90 is moved through a curing station constituting a curing oven or curing furnace comprising oppositely arranged curing oven sections 92 and 94, which generate heat for heating the mineral fiber-insulating web assembly 50 to an elevated temperature so as to cause the heat-curable bonding agent of the mineral fiber-insulating web assembly to cure and cause the mineral fibers of the central core or the body of the assembly and the mineral fibers of the compacted surface layer or surface layers to be bonded together so as to form an integral bonded mineral fiber-insulating web which is cut into plate-like segments by means of a knife 96.
- a single plate-like segment 10'' is shown comprising a central core 12 and a top layer 14.
- the top layer 14 is made from the compacted surface layer 24, whereas the core 12 is made from the central core or body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' shown in Fig. 9 .
- a fragmentary and perspective view of a first embodiment of a plate segment of a mineral fiber-insulating web according to the present invention is shown, designated the reference numeral 10 in its entirety.
- the plate segment 10 comprises the central core 12 and the top layer 14 and further a bottom layer 16 made from a surface layer of the mineral fiber-insulating web 50".
- the reference numeral 18 designates a segment of the core 12 of the plate segment 10 which segment 18 is made from the central core or body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''', which central core or body has preferably been transversally compressed as described above with reference to Fig. 8 .
- a fragmentary and perspective view of a second embodiment of a plate segment of a mineral fiber-insulating web according to the present invention is shown, designated the reference numeral 10' in its entirety.
- the plate segment 10' comprises the central core 12, the top layer 14 and the bottom layer 16.
- a top surface covering 15 is provided, which is constituted by the foil 99' described above with reference to Fig. 9 .
- the top surface covering 15 may constitute a web of a plastics material, a woven or non-woven plastic foil, or alternatively a covering made from a non-plastics material, such as a paper material serving design and architectural purposes exclusively.
- the top surface layer 15 may alternatively be applied to the mineral fiber-insulating web after the curing of the heat-curable bonding agent, i.e. after the exposure of the mineral fiber-insulating web 90 to heat generated by the oven sections 92 and 94 shown in Fig. 10 .
- the method comprises steps similar to the steps described above with reference to Figs. 1, 2 , 6, 7 , 8, 9 and 10 .
- the production output of the plant is 5000 kg/h.
- the area weight of the primary web produced in the station disclosed in Fig. 1 is 0.4 kg/m 2 , and the width of the primary web is 3600 mm.
- the density of the central core or body 28 is 20 kg/m 3 .
- the rates of longitudinal compression produced in two separate stations similar to the station disclosed in Fig. 2 are 1:1 and 1:2, respectively, and the rate of transversal compression produced in the station disclosed in Fig. 8 is 1:2.
- the final plate comprises a single surface layer of an area weight of 1 kg/m 2 .
- the rate of longitudinal compression of the surface layer is 1:2.
- the thickness of the surface layer 10.00 mm, and the density of the surface layer is 100 kg/m 3 .
- the width of the mineral fiber-insulating web produced in Fig. 1 is 1800 mm.
- Fig. 14 a diagramme is shown, illustrating the correspondence between the parameters listed in Table A.
- the reference signs used in Fig. 14 refer to the parameters listed in Table A.
- Fig. 15 a diagramme is shown, illustrating the correspondence between the parameters listed in Table B.
- the reference signs used in Fig. 15 refer to the parameters listed in Table B.
- the method comprises steps similar to the steps described above with reference to Figs. 1, 2 , 6, 7 , 8, 9 and 10 .
- the production output of the plant is 5000 kg/h.
- the area weight of the primary web produced in the station disclosed in Fig. 1 is 0.6 kg/m 2 , and the width of the primary web is 3600 mm.
- the density of the central core or body 28 is 110 kg/m 3 .
- the rates of longitudinal compression produced in two separate stations similar to the station disclosed in Fig. 2 are 1:3 and 1:2, respectively, and the rate of transversal compression produced in the station disclosed in Fig. 8 is 1:2.
- the final plate comprises a single surface layer of an area weight of 3.57 kg/m 2 .
- the rate of longitudinal compression of the surface layer is 1:2.
- the thickness of the surface layer is 17.00 mm, and the density of the surface layer is 210 kg/m 3 .
- the width of mineral fiber-insulating web produced in Fig. 1 is 1800 mm.
- Fig. 16 a diagramme similar to the diagramme of Fig. 14 is shown, illustrating the correspondance between the parameters listed above in table C.
- Fig. 17 a diagramme similar to the diagramme of Fig. 15 is shown, illustrating the correspondance between the parameters listed above in table D.
- Table E Conventional mineral fiber-insulating plates Mineral fiber-insulating plates according to the present invention, not being exposed to longitudinal/transversal compression Mineral fiber-insulating plates according to the present invention being exposed to longitudinal/transversal compression Heat-insulating plate of a density of 30 kg/m 3 Pressure strength: 2 kPa - - - 7 kPa - - - 9 kPa Modulus of elasticity: 15 kPa - - - 125 kPa - - - 150 kPa roofing plate of a density of 150 kg/m 3 Pressure strength: 70 kPa - - - 180 kPa - - - 210 kPa Modulus of elasticity: 600 kPa - - - 3300 kPa - - - 4000 kPa
- the mineral fiber-insulating plates according to the present invention clearly demonstrate increased pressure strength and modulus of elasticity as compared to a conventional heat-insulating plate.
- the mechanical performance of the mineral fiber-insulating plates according to the present invention is, however, further increased by exposing the mineral-insulating web, from which the insulating plates are produces, to longitudinal and transversal compression as discussed above with reference to Fig. 2 and Fig. 8 .
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
- Laminated Bodies (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Glass Compositions (AREA)
- Building Environments (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Abstract
Description
- The present invention generally relates to the technical field of mineral fiber-insulating plates. Mineral fibers generally comprise fibers such as rockwool fibers, glass fibers, etc. More precisely, the present invention relates to novel mineral fiber-insulating plates. The mineral fiber-insulating plates according to the present invention exhibit advantageous characteristics as to mechanical performance, such as modulus of elasticity and strength, low weight and good thermal-insulating property.
- Mineral fiber-insulating webs are normally hitherto produced as homogeneous webs, i.e. webs in which the mineral fibers of which the mineral fiber-insulating web is composed, are generally orientated in a single predominant orientation which is mostly determined by the orientation of the production line on which the mineral fiber-insulating web is produced and transmitted during the process of producing the mineral fiber-insulating web. The product made from a homogeneous mineral fiber-insulating web exhibits characteristics which are determined by the integrity of the mineral fiber-insulating web and which are predominantly determined by the binding of the mineral fibers within the mineral fiber-insulating plate produced from the mineral fiber-insulating web, and further predominantly determined by the area weight and density of the mineral fibers of the mineral fiber-insulating plate.
- The advantageous characteristics of mineral fiber-insulating plates of a different structure has to some extent already been realized as techniques for the production of mineral fiber-insulating plates in which the mineral fibers are orientated in an overall orientation different from the orientation determined by the production line, has been devised, vide International Patent Application, International Application No.
PCT/DK91/00383 WO92/10602 US patent No. 4,950,355 , Swedish patent No.441,764 US patent No. 2,546,230 andUS patent No. 3,493,452 . Reference is made to the above patent applications and patents.US patent No. 2,546,230 relates to products made from continuous glass filaments and to the production of such products. The products are composed of a plurality of layers, each formed of continuous glass filaments, which assume substantially corrugated or undulatory configurations. - From the above published international patent application, International Publication No.
WO92/ 10602 lamellae 90° about the longitudinal axis and bonding the lamellae together for forming the plate. The method also includes a step of curing the continuous mineral fiber web, or alternatively the plate composed of the individual lengths of lamellae bonded together for the formation of the plate. - From Swedish patent No.
441,764 - From
US patent No. 2,546,230 , a technique of producing mineral fiber boards or plates composed of rod-shaped elements are known. Thus, the technique described inUS patent No. 2,546,230 is very much similar to the techniques known from the above-mentioned international patent application and the above-mentioned Swedish patent and involves a separate step of bonding the rod-shaped lamellae together by means of an appropriate bonding agent. - From
US patent No. 3,493,452 , a method of producing a fibrous sheet structure including filaments or fibers of a polymeric material such as polyethylene trephtalate or polyhexamethyleaditamide is known. The method includes producing the polymeric material filaments or fibers by means of a carting machine from a supply of filaments or fibers constituted by a porous resilient batt of filaments or fibers, collecting the polymeric material filaments or fibers on a belt for the formation of a continuous web of polymeric material filaments or fibers, compressing the web, cutting the web into a series of parallel fiber strips including polymeric material filaments or fibers and turning thefiber strips 90° about the longitudinal axis and adjoining the strips together as the strips are caused to effect unification solely through the release of a compression effect which has been applied to the strips during the process of turning the strips. The web produced in accordance with the technique described in the above US patent is suitable for manufacturing fabrics such as carpets, blankets, bed spreads, bathrobes etc. - A particular advantage of the present invention relates to the novel mineral fiber-insulating plate according to the present invention which as compared to prior art mineral fiber-insulating plates contains less mineral fibers and is consequently less costly than the prior art mineral fiber-insulating plates, still exhibiting advantages as compared to the prior art mineral fiber-insulating plates relating to mechanical performance and thermal-insulating properties.
- A particular feature of the present invention relates to the fact that the novel mineral fiber-insulating plate according to the present invention is produceable from less mineral fibers or less material as compared to the prior art mineral fiber-insulating plate still providing the same properties as the prior art mineral fiber-insulating plate regarding mechanical performance and thermal-insulating properties, thus, providing a more lightweight and more compact mineral fiber-insulating plate product as compared to the prior art mineral fiber-insulating plate product reducing transport, storage and handling costs.
- The above advantage and the above features together with numerous other advantages and features is obtained by means of a mineral fiber-insulating plate according to the present invention as defined in
claim 1. - The mineral fiber-insulating plate according to the present invention preferably comprises opposite surface layers of similar structure sandwiching the central body in the integral structure of the mineral fiber-insulating plate.
- The present invention will now be further described with reference to the drawings, in which
-
Fig. 1 is a schematic and perspective view illustrating a first production step of producing a mineral fiber-insulating web from a mineral fiber forming melt, -
Fig. 2 is a schematic and perspective view illustrating a production step of compacting a mineral fiber-insulating web, -
Figs. 3, 4, 5 and6 are schematic and perspective views illustrating four alternative techniques of folding a mineral fiber-insulating web parallel with the longitudinal direction of the mineral fiber-insulating web, -
Fig. 7 is a schematic and perspective view illustrating a production step of separating a surface layer of the folded mineral fiber-insulating web produced in accordance with the techniques disclosed inFigs. 3-6 , and a production step of compacting the surface layer, -
Fig. 8 is a schematic and perspective view illustrating a production step of transversely compressing a mineral fiber-insulating web produced in the production step shown inFig. 7 , -
Fig. 9 is a schematic and perspective view illustrating the production step of adjoining a surface layer, preferably a compacted surface layer to a mineral fiber-insulating web, or preferably a remaining part of a mineral fiber-insulating web produced in accordance with the techniques disclosed inFigs. 3-6 , and from which a surface layer has been separated in accordance with the technique disclosed inFig. 7 , -
Fig. 10 is a schematic and perspective view illustrating a production step of curing a mineral fiber-insulating web and a production step of separating the cured mineral fiber-insulating web into plate segments, -
Fig. 11 is a schematic, sectional and perspective view illustrating the folded mineral fiber-insulating web produced in accordance with the techniques disclosed inFigs. 3-6 , -
Fig. 12 is a schematic and perspective view illustrating a first embodiment of a mineral fiber-insulating plate segment produced in accordance with the techniques disclosed inFigs. 1-10 , -
Fig. 13 is a schematic and perspective view illustrating a second embodiment of a mineral fiber-insulating plate segment produced in accordance with the techniques disclosed inFigs. 1-10 , -
Figs. 14 and 15 are diagrammatic views illustrating production parameters of an online production plant producing general building-insulating plates from a mineral fiber-insulating web produced in accordance with the teachings of the present invention, and -
Figs. 16 and 17 are diagrammatic views similar to the views ofFigs. 14 and 15 , respectively, illustrating production parameters of an online production plant producing mineral fiber heat-insulating roofing plates from a mineral fiber-insulating web produced in accordance with the teachings of the present invention. - In
Fig. 1 , a first step of producing a mineral fiber-insulating web is disclosed. The first step involve the formation of mineral fibers from a mineral fiber forming melt which is produced in afurnace 30 and which is supplied from aspout 32 of thefurnace 30 to a total of four rapidly rotating spinning-wheels 34 to which the mineral fiber forming melt is supplied as a mineral fiber formingmelt stream 36. As the mineral fiber formingmelt stream 36 is supplied to the spinning-wheels 34 in a radial direction relative thereto, a cooling gas stream is simultaneously supplied to the rapidly rotating spinning-wheels 34 in the axial direction thereof causing the formation of individual mineral fibers which are expelled or sprayed from the rapidly rotating spinning-wheels 34 as indicated by thereference numeral 38. Themineral fiber spray 38 is collected on a continuously operatedfirst conveyer belt 42 forming a primary mineral fiber-insulatingweb 40. A heat-curable bonding agent is also added to the primary mineral fiber-insulatingweb 40 either directly to the primary mineral fiber-insulatingweb 40 or at the stage of expelling the mineral fibers from the spinning-wheels 34, i.e. at the stage of forming the individual mineral fibers. Thefirst conveyer belt 42 is, as is evident fromFig. 1 , composed of two conveyer belt sections. A first conveyer belt section which is sloping relative to the horizontal direction and relative to a second substantially horizontal conveyer belt section. The first section constitutes a collector section, whereas the second section constitutes a transport section by means of which the primary mineral fiber-insulatingweb 40 is transferred to a second and a third continuously operated conveyer belt designated thereference numeral 44 and 46, respectively, which are operated in synchronism with thefirst conveyer belt 42 sandwiching the primary mineral fiber-insulatingweb 40 between two adjacent surfaces of the second andthird conveyer belts 44 and 46, respectively. - The second and
third conveyer belts 44 and 46, respectively, communicate with afourth conveyer belt 48 which constitutes a collector conveyer belt on which a secondary mineral fiber-insulatingweb 50 is collected as the second andthird conveyer belts 44 and 46, respectively, are swung across the upper surface of thefourth conveyer belt 48 in the transversal direction relative to thefourth conveyer belt 48. The secondary mineral fiber-insulatingweb 50 is consequently produced by arranging the primary mineral fiber-insulatingweb 40 in overlapping relation generally in the transversal direction of thefourth conveyer belt 48. - By producing the secondary mineral fiber-insulating
web 50 from the primary mineral fiber-insulatingweb 40 as disclosed inFig. 1 , a more homogeneous secondary mineral fiber-insulatingweb 50 is produced as compared to the less homogeneous primary mineral fiber-insulating web. - It is to be realized that the overall orientation of the mineral fibers of the primary mineral fiber-insulating
web 40 is parallel with the longitudinal direction of theweb 40 and the direction of transportation of thefirst conveyer belt 42. Contrary to the primary mineral fiber-insulatingweb 40 the overall orientation of the mineral fibers of the secondary mineral fiber-insulatingweb 50 is substantially perpendicular and transversal relative to the longitudinal direction of the secondary mineral fiber-insulating web 50 and the direction of transportation of thefourth conveyer belt 48. - In
Fig. 2 , a station for compacting and homogenizing an input mineral fiber-insulating web 50' is shown, which station serves the purpose of compacting and homogenizing the input mineral fiber-insulating web 50' for producing an output mineral fiber-insulating web 50'', which output mineral fiber-insulating web 50'' is more compact and more homogeneous as compared to the input mineral fiber-insulating web 50'. The input mineral fiber-insulating web 50' may constitute the secondary mineral fiber-insulatingweb 50 produced in the station shown inFig. 1 . - The compacting station comprises two sections. The first section comprises two conveyer belts 52" and 54", which are arranged at the upper side surface and the lower side surface, respectively, of the mineral fiber web 50'. The first section basically constitutes a section in which the mineral fiber web 50' input to the section is exposed to a height compression, causing a reduction of the overall height of the mineral fiber web and a compacting of the mineral fiber web. The conveyer belts 52" and 54" are consequently arranged in a manner, in which they slope from an input end at the left-hand side of
Fig. 2 , at which input end the mineral fiber web 50' is input to the first section, towards an output end, from which the height-compressed mineral fiber web is delivered to the second section of the compacting station. - The second section of the compacting station comprises three sets of rollers 56' and 58', 56" and 58', and 56''' and 58'''. The rollers 56', 56" and 56''' are arranged at the upper side surface of the mineral fiber web, whereas the rollers 58', 58'' and 58''' are arranged at the lower side surface of the mineral fiber web. The second section of the compacting station provides a longitudinal compression of the mineral fiber web, which longitudinal compression produces a homogenization of the mineral fiber web, as the mineral fibers of the mineral fiber web are caused to be rearranged as compared to the initial structure into a more homogeneous structure. The three sets of rollers 56' and 58', 56'' and 58", and 56''' and 58''' of the second section are rotated at the same rotational speed, which is, however, lower than the rotational speed of the conveyer belts 52" and 54" of the first section, causing the longitudinal compression of the mineral fiber web. The height-compressed and longitudinally compressed mineral fiber web is output from the compacting station shown in
Fig. 2 , designated thereference numeral 50". - It is to be realized that the combined height-and-longitudinal-compression compacting station shown in
Fig. 2 may be modified by the omission of one of the two sections, i.e. the first section constituting the height-compression section, or alternatively the second section constituting the longitudinal-compression section. By the omission of one of the two sections of the compacting station shown inFig. 2 , a compacting section performing a single compacting or compression operation is provided, such as a height-compressing station or alternatively a longitudinally-compressing station. Although the height-compressing section has been described including conveyer belts, and the longitudinally-compressing section has been described including rollers, both sections may be implemented by means of belts or rollers. Also, the height-compressing section may be implemented by means of rollers, and the longitudinally-compressing section may be implemented by means of conveyer belts. - In
Figs. 3, 4, 5 and6 , four alternative techniques of folding a mineral fiber-insulating web in the longitudinal direction of the mineral fiber-insulating web are disclosed. InFigs. 3, 4, 5 and6 , the mineral fiber-insulating web 50'' may constitute the output mineral fiber-insulating web 50'' shown inFig. 2 , or alternatively the mineral fiber-insulatingweb 50 produced in the station shown inFig. 1 . - In
Fig. 3 , the mineral fiber-insulatingweb 50" is brought into contact with apressing roller 51, by means of which acontinuous foil 99 of a thermoplastic material is applied to the upper side surface of the mineral fiber-insulating web 50''. The continuous foil of the thermoplastic material is supplied from aroll 98. After thecontinuous foil 99 has been applied to the upper side surface of the mineral fiber-insulatingweb 50", the mineral fiber-insulatingweb 50" and the continuous foil 67 applied thereto are forced through a corrugated gate 60' which gate comprises two oppositely arranged, corrugated guide plates 64' and 66' and two oppositely arranged end walls, one of which is designated the reference numeral 62'. As will be readily understood, thefoil 99 has to be of an elasticity allowing that thefoil 99 and the mineral fiber-insulating web 50'' are folded. The end walls of the corrugated gate 60' and the corrugations of the corrugated gate plates 64' and 66' taper from an input end of the corrugated gate 60' to an output end thereof. As the mineral fiber-insulating web 50'' and thefoil 99 applied thereto are forced through the corrugated gate 60', the mineral fiber-insulating web is folded in its longitudinal direction providing a corrugated and longitudinally folded mineral fiber-insulating web 50'''. - In
Fig. 4 , an alternative technique of producing the corrugated and longitudinally folded mineral fiber-insulating web 50''' from the plane mineral fiber-insulating web 50'' is disclosed. The technique disclosed inFig. 4 differs from the technique described above with reference toFig. 3 in that a gate 60'' is used, which gate 60'' differs from the corrugated gate 60'' shown inFig. 3 in that the gate 60'' comprises plane oppositely arranged walls one of which is designated the reference numeral 64'' and curved end walls one of which is designated thereference numeral 62". - In
Fig. 5 , a further alternative technique of producing a longitudinally folded mineral fiber-insulating web 50''' from the plane mineral fiber-insulatingweb 50" is shown. The corrugated and longitudinally folded mineral fiber-insulating web 50''' is in accordance with the technique shown inFig. 5 produced by means of a roller assembly 60''' comprising plane end walls 62''' serving the same purpose as the plane end walls 62' and curved end walls 62'' shown inFigs. 3 and 4 , respectively, viz. the purpose of guiding the outer edges of the plane mineral fiber-insulating web 50'' to the corrugated and longitudinally folded configuration of the mineral fiber-insulating web 50'''. The roller assembly 60''' further comprises a total of eight sets of rollers, each set of rollers containing two rollers arranged at opposite sides of the mineral fiber-insulating web. InFig. 5 , two rollers are designated thereference numeral 68. The sets of rollers define a tapered configuration tapering from an input end of the roller assembly 60''' to an output end thereof from which output end the corrugated and longitudinally folded mineral fiber-insulating web 50''' is supplied. The tapered configuration serves the purpose of assisting the plane mineral fiber-insulating web 50'' to corrugate and longitudinally fold into the configuration of the folded mineral fiber-insulating web 50''' shown inFig. 5 . - In
Fig. 6 , a further alternative technique of producing a longitudinally folded mineral fiber-insulating web 50''' is shown. According to the technique disclosed inFig. 6 , a station 60'''' is employed, which station constitutes a combined height/longitudinally-compressing station and a transversally-folding station. Thus, the station 60'''' comprises a total of six sets of rollers, three sets of which are constituted by the three sets of rollers 56', 58'; 56", 58"; and 56''', 58''' discussed above with reference toFig. 2 . - The station 60'''' shown in
Fig. 6 further comprises three sets of rollers, a first set of which is constituted by two rollers 152' and 154', a second set of which is constituted by tworollers 152" and 154'', and third set of which is constituted by tworollers 152"' and 154'''. The rollers 152', 152'' and 152''' are arranged at the upper side surface of the mineral fiber-insulating web 50'' like the rollers 56', 56'' and 56'''. The three rollers 154', 154'' and 154''' are arranged at the lower side surface of the mineral fiber-insulating web 50'' like therollers 58', 58" and 58'''. The three sets of rollers 152', 154'; 152", 154"; and 152''', 154''' serve the same purpose as the belt assemblies 52'', 54'' discussed above with reference toFig. 2 , viz. the purpose of height compressing the mineral fiber-insulatingweb 50" input to thestation 60"". - The three sets of height-compressing rollers 152', 154'; 152", 154''; and 152''', 154''' are like the above-described belt assemblies 52'', 54'' operated at a rotational speed identical to the velocity of the mineral fiber-insulating web 50'' input to the height-compressing section of the station 60''''. The three sets of rollers constituting the longitudinally-compressing section, i.e. the rollers 56', 58'; 56", 58"; and 56''', 58''', are operated at a reduced rotational speed determining the longitudinal compression ratio.
- For generating the longitudinal folding of the mineral fiber-insulating
web 50" input to thestation 60"", shown inFig. 6 , four crankshaft assemblies designated the reference numerals 160', 160'', 160''', and 160'''' are provided. The crankshaft assemblies are of identical structures, and in the below description a single crankshaft assembly, the crankshaft assembly 160'', is described, as the crankshaft assemblies 160', 160''' and 160'''' are identical to the crankshaft assembly 160'' and comprise elements identical to the elements of thecrankshaft assembly 160", however, designated the same reference numerals added a single, a double and a triple mark, respectively. - The crankshaft assembly 160'' includes a motor 162'', which drives a gear assembly 164'', from which an output shaft 166'' extends. A total of six gearwheels 168'' of identical configurations are mounted on the output shaft 166''. Each of the gearwheels 168'' meshes with a corresponding gearwheel 170''. Each of the gearwheels 170'' constitutes a drivewheel of a crankshaft lever system further comprising an idler wheel 172'' and a crankshaft lever 174''. The crankshaft levers 174'' are arranged so as to be lifted from a retracted position to an elevated position between two adjacent rollers at the righ-hand, lower side of the mineral fiber-insulating
web 50" input to thestation 60"" and are adapted to cooperate with crankshaft levers of the crankshaft lever system 160' positioned at the right-hand, upper side of the mineral fiber-insulatingweb 50" input to the station 60''''. - Similarly, the crankshaft levers of the crankshaft lever systems 160''' and 160'''', arranged at the left-hand, upper and lower side, respectively, of the mineral fiber-insulating web 50'' input to the
station 60" ", are adapted to cooperated in a manner to be described below. - As is evident from
Fig. 6 , a first set ofcrankshaft levers 174', 174", 174''', 174"" of thecrankshaft lever systems 160', 160", 160''' and 160'''' are positioned between the first and second sets of rollers 152', 154' and 152'', 154''. Similarly, a second set of crankshaft levers are positioned between the second and third sets of rollers 152'', 154'' and 152"', 154"'. - The crankshaft levers of each of the total of six crankshaft lever sets are of identical widths. Within each of the crankshaft lever systems 160', 160'', 160''' and 160'''', the first crankshaft lever is the widest crankshaft lever, and the width of the crankshaft lever within each crankshaft lever system is reduced from the first crankshaft lever to the sixth crankshaft lever positioned behind the sixth set of rollers 56''', 58'''.
- By means of the motors of the crankshaft assemblies 160', 160'', 160''' and 160'''', the crankshaft levers of a specific crankshaft set are rotated in synchronism with the remaining three crankshaft levers of the crankshaft lever set in question. The crankshaft levers of all six sets of crankshaft levers are moreover operated in synchronism and in synchronism with the velocity of the mineral fiber-insulating web 50'' input to the station 60''''. The widest or first set of crankshaft levers is adapted to initiate the folding of the mineral fiber-insulating web 50'', as the crankshaft levers 174'' and 174" " of the crankshaft lever systems 160'' and 160'''', respectively, are raised from positions below the lower side surface of the mineral fiber-insulating web 50'' and are brought into contact with the lower side surface of the mineral fiber-insulating web 50'', and as the crankshaft levers 174' and 174''' of the crankshaft lever systems 160' and 160''', respectively, are simultaneously lowered from positions above the upper side surface of the mineral fiber-insulating web 50'' and brought into contact with the upper side surface of the mineral fiber-insulating web 50''.
- Further rotation of the output shafts 166', 166'', 166''' and 166'''' causes the crankshaft levers of the first set of crankshaft levers to be moved towards the center of the mineral fiber-insulating web 50'', producing a central fold of the mineral fiber-insulating web 50''. As the crankshaft levers of the first set of crankshaft levers reach the central position, the crankshaft levers of the crankshaft lever systems 160' and 160''' are raised, whereas the crankshaft levers of the crankshaft lever systems 160'' and 160" " are lowered and consequently brought out of contact with the upper and lower side surface, respectively, of the mineral fiber-insulating web 50''.
- As the mineral fiber-insulating web 50'' is moved further through the station 60'''', the next or second set of crankshaft levers generates a second and a third fold of the mineral fiber-insulating web 50'', which second or third fold is positioned at opposite sides of the first fold, whereupon the third, the fourth, the fifth, and the sixth sets of crankshaft levers produce additional folds of the mineral fiber-insulating web, producing an overall, longitudinal folding of the mineral fiber-insulating web.
- The width of the crankshaft levers of each set of crankshaft levers, the gear ratio of the gear assemblies 164', 164'', 164''' and 164" ", the gear ratio of the
gearwheels - The integration of the height-compressing section, the longitudinally-compressing section and the longitudinally-folding section into a single station, as described above with reference to
Fig. 6 , is, by no means, mandatory to the operation of the longitudinally-folding crankshaft systems described above with reference toFig. 6 . Thus, the height-compressing section, the longitudinally-compressing section and the longitudinally-folding section may be separated, however, the integration of all three functions reduces the overall size of the production plant. Furthermore, it is to be realized that the folding of the mineral fiber web as discussed above with reference toFigs. 4, 5 and6 provides a transversal compacting and compression of the web, further providing a homogenization of the web as compared to the unfolded input web. - In
Fig. 11 , a vertical sectional view of the corrugated and longitudinally folded mineral fiber-insulated web 50''' is shown. The corrugated and longitudinally folded mineral fiber-insulating web 50''' comprises a central core orbody 28 and two oppositely arranged surface layers 24 and 26, which surface layers 24 and 26 are separated from the central core orbody 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' along imaginary lines ofseparation web 50 by folding the secondary mineral fiber-insulatingweb 50, optionally after compacting the secondary mineral fiber-insulatingweb 50, as will be described below with reference toFig. 8 , and the overall orientation of the mineral fibers of the secondary mineral fiber-insulatingweb 50 is consequently maintained within the segments of the corrugated and longitudinally folded mineral fiber-insulating web 50''' which segments together constitute the surface layers 24 and 26. - The central core or
body 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' is composed of segments of the folded mineral fiber-insulating web 50''' which segments are folded perpendicular to the segments of the surface layers 24 and 26 of the mineral fiber-insulating web 50'''. The mineral fibers of the central core ofbody 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' are consequently orientated substantially perpendicular to the longitudinal direction as well as the transversal direction of the corrugated and longitudinally folded mineral fiber-insulating web 50'''. - The corrugated and longitudinally folded mineral fiber-insulating web 50''' shown in
Fig. 9 and produced in accordance with the techniques discussed above with reference toFigs. 3, 4, 5 and6 is further processed in a station illustrated inFig. 7 , in which station thesurface layer 24 is separated from the central core orbody 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' along the imaginary line ofseparation 20, shown inFig. 9 . The separation of thesurface layer 24 from the remaining part of the mineral fiber-insulating web is accomplished by means of acutting tool 72 as the remaining part of the mineral fiber-insulating web is supported and transported by means of aconveyer belt 70. The cuttingtool 72 may be constituted by a stationary cutting tool or knife or alternatively be constituted by a transversely reciprocating cutting tool. Thesurface layer 24 separated from the mineral fiber-insulating web is derived from the path of travel of the remaining part of the mineral fiber-insulating web by means of aconveyer belt 74 and is transferred from theconveyer belt 74 to three sets of rollers comprising a first set of rollers 76' and 78', a second set ofrollers 76" and 78", and a third set of rollers 76''' and 78''', which three set of rollers together constitute a compacting or compressing section similar to the second section of the corresponding station described above with reference toFig. 2 . - In
Fig. 8 , a transversally-compressing station is shown, which is designated thereference numeral 80 in its entirety. In thestation 80, the central core orbody 28 or alternatively the corrugated and longitudinally folded mineral fiber-insulating web 50''', produced in one of the stations described above with reference toFigs. 3, 4, 5 and6 , is brought into contact with twoconveyer belts rollers rollers body 28. Theconveyer belts rollers - From the transversally-compressing
station 80, a transversally compressed and compacted central core or body 28' is supplied. As the central core orbody 28 is transmitted through the transversally-compressingstation 80 and transformed into the transversally compressed central core or body 28', the core or body is supported on rollers constituted by aninput roller 87 and anoutput roller 88. - Although the central core or
body 28 input to the transversally-compressingstation 80 is preferably constituted by the above-described central core or body separated from the mineral fiber-insulatingweb 50", as described above with reference toFig, 7 , the mineral fiber-insulatingweb 50" may alternatively be processed in thestation 80 shown inFig. 8 . - Provided the central core or
body 28 or the mineral fiber-insulating web 50''' to be transversally compressed within thestation 80 is provided with a top surface layer, such as thefoil 99 described above with reference toFig. 3 , the foil has to be of a structure compatible with the transversal compression of the web and foil assembly. Thus, the foil applied to the upper side surface of the mineral fiber-insulating web 50'', as shown inFig. 3 , has to be compressable and adaptable to the reduced width of the transversally compressed central core or body 28' or the transversally compressed mineral fiber-insulating web output from the transversally-compressingstation 80. - As the compacting of the
separate surface layer 24 has been accomplished, as described above with reference toFig. 7 , the compactedsurface layer 24 is returned to the remaining part of the mineral fiber-insulating web or the central core or body, which has preferably been transversally compressed as described above with reference toFig. 8 , and adjoined in facial contact with the upper surface of the central core orbody 28, as shown inFig. 9 . - In
Fig. 9 , a set of rollers comprising a roller 79' and aroller 79" arranged at the upper and lower side surface of thesurface layer 24, respectively, constitutes a set of rollers by means of which a surface foil 99' supplied from a roll 98' is applied to the upper side surface of the compactedsurface layer 24. From the rollers 79' and 79'', thesurface layer 24 which constitutes an integral mineral fiber-insulating web of higher compactness as compared to the central core orbody 28, is shifted towards the upper side surface of the central core orbody 28 by means of two rollers 77' and 77''. Theroller 77" is positioned below thesurface layer 24 and constitutes a turning roller, whereas the roller 77', which is positioned above the upper side surface of thesurface layer 24, serves the purpose of pressing thecompacted surface layer 24 into facial contact with the upper side surface of the central core orbody 28, which is supported and transported by means of theconveyer belt 70 also shown inFig. 7 . After the compactedsurface layer 24 has been arranged in facial contact with the upper side surface of the central core orbody 28, a mineral fiber-insulating web assembly is provided, which assembly is designated thereference numeral 90 in its entirety. - In
Fig. 9 , a further foil 99'' is shown in dotted line. This foil is supplied from a roll 98''. The foil 99'' may constitute a continuous foil or alternatively a mesh foil, i.e. a foil similar to the surface foil 99' described above. It is, however, to be emphasized that thefoils 99, 99' and 99'' constitute optional features which may be omitted, provided an integral mineral fiber web structure is to be produced. Alternatively, one or more of the above-listed foils, or all foils, may be provided in various embodiments of the mineral fiber-insulating web produced in accordance with the teachings of the present invention. - It is to be realized that the compacted
surface layer 24 which is separated from the mineral fiber-insulating web 50''' as shown inFig. 7 , may alternatively be provided from a separate production line, as one of the production stations shown inFig. 3, 4, 5 and6 may communicate directly with the production station shown inFig. 9 , optionally through the production station shown inFig. 8 , thus, eliminating the production station shown inFig. 7 . Preferably, the production station shown inFig. 7 is adapted to separate two surface layers from the central core orbody 28 for producing two separated surface layers separated from opposite side surfaces of the central core orbody 28, which surface layers are processed in accordance with the technique described above with reference toFig. 7 for the formation of two high compactness surface layers which, in accordance with the technique described above with reference toFig. 9 , are adjoined with the central core orbody 28 at opposite side surfaces thereof, producing a sandwiching of the central core orbody 28, which has preferably been transversally compressed as described above with reference toFig. 8 , between two opposite surface layers similar to thesurface layer 24 shown inFig. 9 . - In
Fig. 10 , the mineral fiber-insulatingweb assembly 90 is moved through a curing station constituting a curing oven or curing furnace comprising oppositely arranged curingoven sections web assembly 50 to an elevated temperature so as to cause the heat-curable bonding agent of the mineral fiber-insulating web assembly to cure and cause the mineral fibers of the central core or the body of the assembly and the mineral fibers of the compacted surface layer or surface layers to be bonded together so as to form an integral bonded mineral fiber-insulating web which is cut into plate-like segments by means of aknife 96. Provided thefoil 99 and optionally thecontinuous foils 99' and 99" are provided, the thermoplastic material of thefoils 99, 99' and 99'' is also melted, providing an additional bonding of the mineral fibers of the mineral fiber-insulating web. InFig. 10 , a single plate-like segment 10'' is shown comprising acentral core 12 and atop layer 14. Thetop layer 14 is made from the compactedsurface layer 24, whereas thecore 12 is made from the central core orbody 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''' shown inFig. 9 . - In
Fig. 12 , a fragmentary and perspective view of a first embodiment of a plate segment of a mineral fiber-insulating web according to the present invention is shown, designated thereference numeral 10 in its entirety. Theplate segment 10 comprises thecentral core 12 and thetop layer 14 and further abottom layer 16 made from a surface layer of the mineral fiber-insulatingweb 50". Thereference numeral 18 designates a segment of thecore 12 of theplate segment 10 whichsegment 18 is made from the central core orbody 28 of the corrugated and longitudinally folded mineral fiber-insulating web 50''', which central core or body has preferably been transversally compressed as described above with reference toFig. 8 . - In
Fig. 13 , a fragmentary and perspective view of a second embodiment of a plate segment of a mineral fiber-insulating web according to the present invention is shown, designated the reference numeral 10' in its entirety. Like theplate segment 10, described above with reference toFig. 12 , the plate segment 10' comprises thecentral core 12, thetop layer 14 and thebottom layer 16. Moreover, a top surface covering 15 is provided, which is constituted by the foil 99' described above with reference toFig. 9 . The top surface covering 15 may constitute a web of a plastics material, a woven or non-woven plastic foil, or alternatively a covering made from a non-plastics material, such as a paper material serving design and architectural purposes exclusively. Thetop surface layer 15 may alternatively be applied to the mineral fiber-insulating web after the curing of the heat-curable bonding agent, i.e. after the exposure of the mineral fiber-insulatingweb 90 to heat generated by theoven sections Fig. 10 . - A heat-insulating plate of a structure similar to the plate shown in
Fig. 12 , made from a mineral fiber-insulating web produced in accordance with the method as described above with reference toFigs. 1-10 , is produced in accordance with the specifications listed below: - The method comprises steps similar to the steps described above with reference to
Figs. 1, 2 ,6, 7 ,8, 9 and 10 . The production output of the plant is 5000 kg/h. The area weight of the primary web produced in the station disclosed inFig. 1 is 0.4 kg/m2, and the width of the primary web is 3600 mm. The density of the central core orbody 28 is 20 kg/m3. The rates of longitudinal compression produced in two separate stations similar to the station disclosed inFig. 2 are 1:1 and 1:2, respectively, and the rate of transversal compression produced in the station disclosed inFig. 8 is 1:2. The final plate comprises a single surface layer of an area weight of 1 kg/m2. The rate of longitudinal compression of the surface layer is 1:2. The thickness of the surface layer 10.00 mm, and the density of the surface layer is 100 kg/m3. The width of the mineral fiber-insulating web produced inFig. 1 is 1800 mm. - The production parameters used are listed in tables A and B below:
Table A Total thickness A B C D E F mm m/min x 10 m/min m/min m/min m/min m/ min 50 11.57 51.44 51.44 51.44 15.72 25.72 75 11.57 40.26 40.26 40.26 20.13 20.13 100 11.57 33.07 33.07 33.07 16.53 16.53 125 11.57 28.06 28.06 28.06 14.03 14.03 150 11.57 24.37 24.37 24.37 12.18 12.18 175 11.57 21.53 21.53 21.53 10.77 10.77 200 11.57 19.29 19.29 19.29 9.65 9.65 225 11.57 17.47 17.47 17.47 8.74 8.74 250 11.57 15.96 15.96 15.96 7.98 7.98 275 11.57 14.70 14.70 14.70 7.35 7.35 A = Velocity of belt 42 of spinning chamber
B = Velocity ofbelt 48
C = Velocity ofbelt 70 after first longitudinal compression (Fig. 2 )
D = Velocity ofbelt 70 after transversal compression (Fig. 8 )
E = Velocity ofbelt 70 after second longitudinal compression (Fig. 2 )
F = Velocity ofbelt 70 before curing oven (Fig. 5 )Table B Total thickness G H I J K L mm kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 kg/ m 250 0.45 0.45 0.90 0.40 0.80 1.80 75 0.58 0.58 1.15 0.65 1.30 2.30 100 0.70 0.70 1.40 0.90 1.80 2.80 125 0.83 0.83 1.65 1.15 2.30 3.30 150 0.95 0.95 1.90 1.40 2.80 3.80 175 1.08 1.08 2.15 1.65 3.30 4.30 200 1.20 1.20 2.40 1.90 3.80 4.80 225 1.33 1.33 2.65 2.15 4.30 5.30 250 1.45 1.45 2.90 2.40 4.80 5.80 275 1.58 1.58 3.15 2.65 5.30 6.30 G = Area weight of mineral fiber-insulating web on belt 42
H = Area weight of mineral fiber-insulating web after first longitudinal compression (Fig. 2 )
I = Area weight of mineral fiber-insulating web after transversal compression (Fig. 8 )
J = Area weight of mineral fiber-insulating web before second longitudinal compression (Fig. 2 )
K = Area weight of mineral fiber-insulating web aber second longitudinal compression (Fig. 2 )
L = Area weight of mineral fiber-insulating web before curing oven - In
Fig. 14 , a diagramme is shown, illustrating the correspondence between the parameters listed in Table A. The reference signs used inFig. 14 refer to the parameters listed in Table A. - In
Fig. 15 , a diagramme is shown, illustrating the correspondence between the parameters listed in Table B. The reference signs used inFig. 15 refer to the parameters listed in Table B. - A composite roofing plate of a structure similar to the plate shown in
Fig. 12 , made from a mineral fiber-insulating web produced in accordance with the method as described above with reference toFigs. 1-10 , is produced in accordance with the specifications listed below: - The method comprises steps similar to the steps described above with reference to
Figs. 1, 2 ,6, 7 ,8, 9 and 10 . The production output of the plant is 5000 kg/h. The area weight of the primary web produced in the station disclosed inFig. 1 is 0.6 kg/m2, and the width of the primary web is 3600 mm. The density of the central core orbody 28 is 110 kg/m3. The rates of longitudinal compression produced in two separate stations similar to the station disclosed inFig. 2 are 1:3 and 1:2, respectively, and the rate of transversal compression produced in the station disclosed inFig. 8 is 1:2. The final plate comprises a single surface layer of an area weight of 3.57 kg/m2. The rate of longitudinal compression of the surface layer is 1:2. The thickness of the surface layer is 17.00 mm, and the density of the surface layer is 210 kg/m3. The width of mineral fiber-insulating web produced inFig. 1 is 1800 mm. - The production parameters used are listed in tables C and D below:
Table C Total thickness A B C D E F mm m/min x 10 m/min m/min m/min m/min m/ min 50 7.72 38.58 12.86 12.86 6.43 6.43 75 11.57 27.92 9.31 9.31 4.65 4.65 100 11.57 21.87 7.29 7.29 3.65 3.65 125 11.57 17.98 5.99 5.99 3.00 3.00 150 11.57 15.26 5.09 5.09 2.54 2.54 175 11.57 13.26 4.42 4.42 2.21 2.21 200 11.57 11.72 3.91 3.91 1.95 1.95 225 11.57 10.50 3.50 3.50 1.75 1.75 250 11.57 9.51 3.17 3.17 1.59 1.59 275 11.57 8.69 2.90 2.90 1.45 1.45 A = Velocity of belt 42 of spinning chamber
B = Velocity ofbelt 48
C = Velocity ofbelt 70 after first longitudinal compression (Fig. 2 )
D = Velocity ofbelt 70 after transversal compression (Fig. 8 )
E = Velocity ofbelt 70 after second longitudinal compression (Fig. 2 )
F = Velocity ofbelt 70 before curing oven (Fig. 5 )Table D Total thickness G H I J K L mm kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 kg/ m 250 0.60 1.80 3.60 1.82 3.63 7.20 75 0.83 2.49 4.98 3.19 6.38 9.95 100 1.06 3.18 6.35 4.57 9.13 12.70 125 1.29 3.86 7.73 5.94 11.88 15.45 150 1.52 4.55 9.10 7.32 14.63 18.20 175 1.75 5.24 10.48 8.69 17.38 20.95 200 1.98 5.93 11.85 10.07 20.13 23.70 225 2.20 6.61 13.23 11.44 22.88 26.45 250 2.43 7.30 14.60 12.82 25.63 29.20 275 2.66 7.99 15.98 14.19 28.38 31.95 G = Area weight of mineral fiber-insulating web on belt 42
H = Area weight of mineral fiber-insulating web after first
longitudinal compression (Fig. 2 )
I = Area weight of mineral fiber-insulating web after transversal compression (Fig. 8 )
J = Area weight of mineral fiber-insulating web before second longitudinal compression (Fig. 2 )
K = Area weight of mineral fiber-insulating web aber second longitudinal compression (Fig. 2 )
L = Area weight of mineral fiber-insulating web before curing oven - In
Fig. 16 , a diagramme similar to the diagramme ofFig. 14 is shown, illustrating the correspondance between the parameters listed above in table C. - In
Fig. 17 , a diagramme similar to the diagramme ofFig. 15 is shown, illustrating the correspondance between the parameters listed above in table D. - The importance of exposing the mineral fiber-insulating web to a longitudinal and transversal compression is illustrated in the data in table E given below:
Table E Conventional mineral fiber-insulating plates Mineral fiber-insulating plates according to the present invention, not being exposed to longitudinal/transversal compression Mineral fiber-insulating plates according to the present invention being exposed to longitudinal/transversal compression Heat-insulating plate of a density of 30 kg/m3 Pressure strength: 2 kPa - - - 7 kPa - - - 9 kPa Modulus of elasticity: 15 kPa - - - 125 kPa - - - 150 kPa Roofing plate of a density of 150 kg/m3 Pressure strength: 70 kPa - - - 180 kPa - - - 210 kPa Modulus of elasticity: 600 kPa - - - 3300 kPa - - - 4000 kPa - The mineral fiber-insulating plates according to the present invention clearly demonstrate increased pressure strength and modulus of elasticity as compared to a conventional heat-insulating plate. The mechanical performance of the mineral fiber-insulating plates according to the present invention, is, however, further increased by exposing the mineral-insulating web, from which the insulating plates are produces, to longitudinal and transversal compression as discussed above with reference to
Fig. 2 andFig. 8 .
Claims (2)
- A mineral fiber-insulating plate (10, 10', 10'') defining a plane and comprising:a central body (12) containing mineral fibers,a surface layer (14, 16) containing mineral fibers, said central body (12) and said surface layer (14, 16) being adjoined in facial contact with one another,said mineral fibers of said central body (12) being arranged generally perpendicularly to said plane and said surface layer,said surface layer (14,16) being of a higher compactness as compared to said central body (12),CHARACTERIZED in that
said mineral fibers of said surface layer (14, 16) are arranged generally in a direction parallel with said plane,
said mineral fibers of said central body (12) and said mineral fibers of said surface layer (14, 16) being bonded together
to form an integral mineral fibre-insulating plate solely through cured bonding agents cured in a single curing process and initially present in uncured, non-woven mineral fiber webs from which said central body (12) and said surface layer (14, 16) are produced. - The mineral fiber-insulating plate according to claim 1, comprising opposite surface layers (14, 16) of similar structure, sandwiching said central body (12) in said integral mineral fibre-insulating plate.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK9336A DK3693D0 (en) | 1993-01-14 | 1993-01-14 | A METHOD OF PRODUCING A MINERAL FIBER INSULATING WEB, A PLANT FOR PRODUCING A MINERAL FIBER WEB, AND A MINERAL FIBER INSULATED PLATE |
DK3693 | 1993-01-14 | ||
EP94904593A EP0678137B1 (en) | 1993-01-14 | 1994-01-14 | A method of producing a mineral fiber-insulating web and a plant for producing a mineral fiber web |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94904593A Division EP0678137B1 (en) | 1993-01-14 | 1994-01-14 | A method of producing a mineral fiber-insulating web and a plant for producing a mineral fiber web |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0931886A2 EP0931886A2 (en) | 1999-07-28 |
EP0931886A3 EP0931886A3 (en) | 1999-09-01 |
EP0931886B1 true EP0931886B1 (en) | 2009-01-07 |
Family
ID=8089020
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99106353A Revoked EP0931886B1 (en) | 1993-01-14 | 1994-01-14 | A mineral fiber-insulated plate |
EP94904593A Expired - Lifetime EP0678137B1 (en) | 1993-01-14 | 1994-01-14 | A method of producing a mineral fiber-insulating web and a plant for producing a mineral fiber web |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94904593A Expired - Lifetime EP0678137B1 (en) | 1993-01-14 | 1994-01-14 | A method of producing a mineral fiber-insulating web and a plant for producing a mineral fiber web |
Country Status (14)
Country | Link |
---|---|
EP (2) | EP0931886B1 (en) |
AT (2) | ATE420254T1 (en) |
AU (1) | AU5858094A (en) |
BG (1) | BG99828A (en) |
CA (1) | CA2153671A1 (en) |
CZ (1) | CZ179595A3 (en) |
DE (2) | DE69435181D1 (en) |
DK (2) | DK3693D0 (en) |
ES (1) | ES2319701T3 (en) |
HU (1) | HUT74138A (en) |
PL (1) | PL309850A1 (en) |
RO (1) | RO112771B1 (en) |
SK (1) | SK89795A3 (en) |
WO (1) | WO1994016163A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1266991B1 (en) †| 1994-01-28 | 2012-10-10 | Rockwool International A/S | A mineral fiber plate and a tubular insulating element |
ATE222628T1 (en) * | 1997-06-13 | 2002-09-15 | Rockwool Ltd | FIRE PROTECTION CLOSURES FOR BUILDINGS |
DE19734532C2 (en) * | 1997-07-31 | 2002-06-13 | Thueringer Daemmstoffwerke Gmb | insulating element |
DK1152095T3 (en) * | 1997-07-31 | 2004-03-15 | Thueringer Daemmstoffwerke Gmb | Coated mineral wool insulating element |
GB9717484D0 (en) | 1997-08-18 | 1997-10-22 | Rockwool Int | Roof and wall cladding |
EP0939173B2 (en) * | 1998-02-28 | 2010-10-27 | Deutsche Rockwool Mineralwoll GmbH & Co. OHG | Process for making an insulation board from mineral fibres and insulation board |
DE29808924U1 (en) * | 1998-05-16 | 1998-09-03 | Deutsche Rockwool Mineralwoll-Gmbh, 45966 Gladbeck | Thermal insulation element |
DE19834963A1 (en) * | 1998-08-03 | 2000-02-17 | Pfleiderer Daemmstofftechnik G | Device and method for producing mineral wool fleece |
DE10248326C5 (en) * | 2002-07-19 | 2014-06-12 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Insulating layer of mineral fibers |
DE10257977A1 (en) * | 2002-12-12 | 2004-07-01 | Rheinhold & Mahla Ag | Space limiting panel |
DE10338001C5 (en) * | 2003-08-19 | 2013-06-27 | Knauf Insulation Gmbh | Method for producing an insulating element and insulating element |
WO2008155401A1 (en) * | 2007-06-20 | 2008-12-24 | Rockwool International A/S | Mineral fibre product |
GB201223352D0 (en) * | 2012-12-24 | 2013-02-06 | Knauf Insulation Doo | Mineral wool insulation |
US20150211186A1 (en) * | 2014-01-30 | 2015-07-30 | The Procter & Gamble Company | Absorbent sanitary paper product |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2546230A (en) * | 1947-10-10 | 1951-03-27 | Johns Manville | Glass product and method of making the same |
US3493452A (en) * | 1965-05-17 | 1970-02-03 | Du Pont | Apparatus and continuous process for producing fibrous sheet structures |
SE441764B (en) * | 1982-10-11 | 1985-11-04 | Gullfiber Ab | Insulation sheet and method of producing similar |
DE3701592A1 (en) * | 1987-01-21 | 1988-08-04 | Rockwool Mineralwolle | METHOD FOR CONTINUOUSLY PRODUCING A FIBER INSULATION SHEET AND DEVICE FOR IMPLEMENTING THE METHOD |
DK165926B (en) * | 1990-12-07 | 1993-02-08 | Rockwool Int | PROCEDURE FOR THE MANUFACTURE OF INSULATION PLATES COMPOSED BY INVOLVED CONNECTED STABLE MINERAL FIBER ELEMENTS |
-
1993
- 1993-01-14 DK DK9336A patent/DK3693D0/en not_active Application Discontinuation
-
1994
- 1994-01-14 EP EP99106353A patent/EP0931886B1/en not_active Revoked
- 1994-01-14 SK SK897-95A patent/SK89795A3/en unknown
- 1994-01-14 DE DE69435181T patent/DE69435181D1/en not_active Expired - Lifetime
- 1994-01-14 CA CA002153671A patent/CA2153671A1/en not_active Abandoned
- 1994-01-14 AT AT99106353T patent/ATE420254T1/en active
- 1994-01-14 DE DE69421267T patent/DE69421267T2/en not_active Expired - Fee Related
- 1994-01-14 PL PL94309850A patent/PL309850A1/en unknown
- 1994-01-14 EP EP94904593A patent/EP0678137B1/en not_active Expired - Lifetime
- 1994-01-14 WO PCT/DK1994/000028 patent/WO1994016163A1/en not_active Application Discontinuation
- 1994-01-14 ES ES99106353T patent/ES2319701T3/en not_active Expired - Lifetime
- 1994-01-14 RO RO95-01306A patent/RO112771B1/en unknown
- 1994-01-14 HU HU9502121A patent/HUT74138A/en unknown
- 1994-01-14 CZ CZ951795A patent/CZ179595A3/en unknown
- 1994-01-14 AT AT94904593T patent/ATE185863T1/en not_active IP Right Cessation
- 1994-01-14 AU AU58580/94A patent/AU5858094A/en not_active Abandoned
- 1994-01-14 DK DK99106353T patent/DK0931886T3/en active
-
1995
- 1995-07-31 BG BG99828A patent/BG99828A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE69435181D1 (en) | 2009-02-26 |
ATE185863T1 (en) | 1999-11-15 |
AU5858094A (en) | 1994-08-15 |
DE69421267T2 (en) | 2000-02-10 |
BG99828A (en) | 1996-03-29 |
EP0931886A2 (en) | 1999-07-28 |
CZ179595A3 (en) | 1996-03-13 |
PL309850A1 (en) | 1995-11-13 |
HUT74138A (en) | 1996-11-28 |
CA2153671A1 (en) | 1994-07-21 |
ATE420254T1 (en) | 2009-01-15 |
RO112771B1 (en) | 1997-12-30 |
SK89795A3 (en) | 1995-11-08 |
WO1994016163A1 (en) | 1994-07-21 |
DK3693D0 (en) | 1993-01-14 |
DK0931886T3 (en) | 2009-04-14 |
DE69421267D1 (en) | 1999-11-25 |
EP0931886A3 (en) | 1999-09-01 |
EP0678137B1 (en) | 1999-10-20 |
HU9502121D0 (en) | 1995-09-28 |
ES2319701T3 (en) | 2009-05-11 |
EP0678137A1 (en) | 1995-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0688384B2 (en) | A method of producing a mineral fiber-insulating web | |
DE69530181T3 (en) | Process for producing a mineral fiber web | |
EP0931886B1 (en) | A mineral fiber-insulated plate | |
EP0560878B1 (en) | Method of manufacturing insulating boards composed of interconnected rod-shaped mineral fibre elements | |
DE3701592C2 (en) | ||
EP0678138B1 (en) | A method of producing a mineral fiber-insulating web and a plant for producing a mineral fiber web | |
EP0451186B1 (en) | Method and apparatus for the manufacture of mineral wool plates | |
EP1106743B1 (en) | Process and device for manufacturing a fibrous insulation web | |
SK89895A3 (en) | Method and production of insulating web, device for production of insulating web from mineral fibers and mineral fiber insulating plate | |
WO1998028233A1 (en) | A method of producing a mineral fiber web, a plant for producing a mineral fiber web, and a mineral fiber-insulating plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19990329 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 678137 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE DK ES FR GB IT NL SE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE DK ES FR GB IT NL SE |
|
R17P | Request for examination filed (corrected) |
Effective date: 19990325 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOLTZE, ERIK Inventor name: BRANDT, KIM |
|
17Q | First examination report despatched |
Effective date: 20030804 |
|
17Q | First examination report despatched |
Effective date: 20030804 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0678137 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE DK ES FR GB IT NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69435181 Country of ref document: DE Date of ref document: 20090226 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2319701 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: KNAUF INSULATION SA Effective date: 20091007 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: KNAUF INSULATION SA |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: KNAUF INSULATION TECHNOLOGY SPRL Effective date: 20091007 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120118 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130204 Year of fee payment: 20 Ref country code: SE Payment date: 20130114 Year of fee payment: 20 Ref country code: DK Payment date: 20130110 Year of fee payment: 20 Ref country code: GB Payment date: 20130109 Year of fee payment: 20 Ref country code: DE Payment date: 20130109 Year of fee payment: 20 Ref country code: ES Payment date: 20130207 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20130110 Year of fee payment: 20 Ref country code: BE Payment date: 20130114 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20121231 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69435181 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69435181 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20140114 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140114 |
|
BE20 | Be: patent expired |
Owner name: ROCKWOOL INTERNATIONAL A/S Effective date: 20140114 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140113 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 420254 Country of ref document: AT Kind code of ref document: T Effective date: 20140114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140113 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140115 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140925 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 69435181 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 69435181 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140115 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20141111 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 69435181 Country of ref document: DE Effective date: 20150507 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 420254 Country of ref document: AT Kind code of ref document: T Effective date: 20141111 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |