EP0809001A1 - Exhaust manifold - Google Patents
Exhaust manifold Download PDFInfo
- Publication number
- EP0809001A1 EP0809001A1 EP97810309A EP97810309A EP0809001A1 EP 0809001 A1 EP0809001 A1 EP 0809001A1 EP 97810309 A EP97810309 A EP 97810309A EP 97810309 A EP97810309 A EP 97810309A EP 0809001 A1 EP0809001 A1 EP 0809001A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- exhaust gas
- inlet
- axis
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003197 catalytic effect Effects 0.000 claims abstract description 22
- 238000009826 distribution Methods 0.000 claims abstract description 10
- 230000007423 decrease Effects 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 144
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 230000001154 acute effect Effects 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011149 active material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 103
- 230000007704 transition Effects 0.000 description 36
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2842—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2882—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
Definitions
- the invention relates to an exhaust manifold.
- the exhaust manifold can form part of an exhaust system for an internal combustion engine of a motor vehicle.
- the internal combustion engine consists, for example, of a gasoline engine and has, for example, several cylindrical combustion chambers in which a piston which can be moved back and forth is arranged.
- the engine could instead be designed as a rotary piston engine and have a combustion chamber containing rotary pistons. Each combustion chamber is connected to an exhaust gas outlet of the internal combustion engine.
- An exhaust manifold known from DE 295 05 660 U has a plurality of individual lines formed from straight connections, the inlets of which can be connected to the exhaust gas outlets of the internal combustion engine and the ends of which face away from the inlets open into a horizontal manifold which is perpendicular to their axes.
- Each nozzle contains unspecified catalyst.
- the cross-sectional areas of the catalyst means present in the connectors or individual lines are apparently at most approximately the same size as the cross-sectional areas of the inlet openings of the connectors.
- the catalyst means therefore cause a large flow resistance and a large pressure drop or back pressure, which reduces the useful output of the engine.
- the manifold also contains catalyst agents, which increase the flow resistance and the back pressure.
- FIGS. 7 to 10 of FR 2 179 689 A show exhaust manifolds with a plurality of lines which are connected to exhaust gas outlets of an internal combustion engine and contain catalytic agents.
- the catalyst means of these exhaust manifolds also have only small cross-sectional areas transverse to the direction of flow of the exhaust gases flowing through them, or require several sharp deflections of the exhaust gas and the passage of the exhaust gas through cavities with small cross-sectional areas.
- the catalyst means and / or the gas flow from and to the catalyst means therefore also cause high flow resistances and back pressures in these known exhaust manifolds, and in particular in the variant according to FIGS. 9, 10 inhomogeneous flow distributions in the catalyst means.
- DE 42 36 893 A discloses an exhaust pipe connected to an exhaust gas outlet of an internal combustion engine.
- a curved portion of this contains catalyst media with a stack of plates.
- These catalyst means have the disadvantages that their cross-sectional areas are at most approximately equal to that of the passage of the remaining tube and that their exhaust gas passages are of different lengths depending on the radius of curvature, so that the exhaust gas is cleaned to different degrees in the different passages. Furthermore, the production of such catalyst agents is difficult and expensive.
- US 5 330 728 A discloses catalysts, the housing of which has an inlet, a catalyst section containing catalyst agent and an outlet.
- the inlet and the outlet are staggered and parallel to each other Axes, while the axis of the catalyst section and the passages of the catalyst means are inclined to these axes.
- the exhaust gas inlet surface and the exhaust gas outlet surface of the catalyst means are flat and parallel to the axes of the inlet and outlet.
- the exhaust gas is strongly deflected immediately after the catalyst means, the housing on one side of the exhaust gas exit surface of the catalyst means having a wall directly adjoining it, which forms a rather acute angle with the exhaust gas exit surface.
- a pressure drop arises over the exhaust gas outlet surface, which influences and makes the exhaust gas flow in the catalyst means inhomogeneous. This worsens the efficiency of the catalyst agents.
- the invention has for its object to provide an exhaust manifold that avoids disadvantages of the known exhaust manifold.
- the catalyst means with the lowest possible increase in flow resistance and back pressure, enable good cleaning of the exhaust gas, that the exhaust gas flow in the catalyst means is distributed as evenly as possible, that the supply of the exhaust gas to the catalyst means and the discharge of the exhaust gas in cause only the lowest possible flow resistance to the discharge section of the lines directly adjoining the catalyst means and that the space required for the exhaust manifold with catalyst means is only slightly increased and the installation of the exhaust manifold is made as difficult as possible.
- each line of the exhaust manifold provided for connection to the internal combustion engine contains catalyst means.
- the catalyst means can therefore be arranged so close to the engine that the exhaust gas is cooled only slightly during a cold start between the internal combustion engine and the catalyst means and the catalyst means are heated up to a temperature in a short heating-up time in a short heating-up time, which is an efficient, catalytic treatment of the Exhaust gas allows.
- the catalyst means arranged in the various lines of the exhaust manifold can have relatively large cross-sectional areas across their exhaust gas passages, which are preferably significantly larger than the areas of the inlet openings of the lines. Furthermore, the exhaust gas passed through its lines when the exhaust manifold is used can be distributed to the exhaust gas inlet surfaces of the catalyst means and in the discharge space directly adjoining the exhaust gas outlet surfaces of the catalyst means can be directed away from the catalyst means in such a way that the flow distribution in the catalyst means the entire cross-sectional area having exhaust gas passages becomes very uniform. This enables optimal use of all of the catalyst agents and a high degree of efficiency.
- the exhaust gas can be distributed to the exhaust gas inlet surface of the catalyst means and directed away from them in such a way that only a slight counterpressure arises.
- the exhaust manifold can be easily installed in a small space Motor vehicles, in particular motor vehicles and especially passenger cars are installed.
- the internal combustion engine 1 shown in FIG. 1 is installed in a motor vehicle - for example in a passenger car and consists of a gasoline engine.
- the internal combustion engine 1 is drawn in a top view and has an engine housing 2 and at least two and, for example, four cylinders.
- the cylinders delimit combustion chambers 3 and each contain a piston which can be moved back and forth.
- Each combustion chamber 3 is connected to an exhaust gas outlet 4.
- the four exhaust outlets have circular openings, for example in one common flat, and approximately vertical connection surface 5 of the motor housing 2.
- the motor vehicle has an exhaust manifold 11, which is shown schematically in FIG. 1 partly in plan view, partly in development and partly also in FIGS. 2 to 4.
- the exhaust manifold 11 has at least two, namely four individual lines 12 with a metallic, rigid wall, for example made of stainless steel.
- Each individual line 12 has a tightly connected to one of the exhaust gas outlets 4 of the engine, approximately horizontal, first leg 13 with an inlet 15 and an exhaust gas distributor 16.
- the first leg 12 is connected to the first leg by an angle with it second leg 17 extending downward.
- This has a catalyst section 18, a discharge section 19, a transition section 20 and a connecting section 21 in the direction running away from the first leg.
- the second leg 17 is connected to the main section 23 of the single line 12 in the connecting section 21. This has an exit 24.
- the exhaust manifold 11 is provided, for example, at the inlets 15 with a metallic, generally stainless steel, generally flat connection plate 26, which has a hole for each line 12 and is inseparably connected, for example welded, to the initial sections of all four inlets 15 is.
- the connection plate 26 rests on the connection surface 5 of the motor housing 2 and is detachably fastened to the motor housing with fastening means, for example screws or the like.
- the exhaust manifold 11 also has a collecting and connecting device 28. This is composed, for example, of three Y-shaped connecting elements and has four inputs, each of which is connected to an output 23 of a single line 12.
- the collecting and connecting device 28 also has an outlet which forms the outlet 28 of the entire exhaust manifold 11 which is common to all individual lines 12 and is connected to an exhaust pipe 29.
- Each inlet 15 has a straight, approximately horizontal inlet axis 31 and, at its start connected to the motor housing 2, a circular inlet opening 32 that is rotationally symmetrical with the inlet axis which lies in an approximately vertical plane, for example.
- the transition section 20 defines a transition axis 36 intersecting the axis 33.
- the inlet 15 has a short cylindrical and / or conical jacket or wall section at its beginning and is successively quadrangular in the direction running away from the inlet opening.
- the wall of the exhaust gas distributor 16 has a lateral wall section on both sides, which is approximately flat and parallel to a plane running through the axes 31, 33.
- the distributor 16 also has a flat top wall section that is perpendicular to the latter plane and, for example, approximately parallel to the inlet axis 31.
- the distributor 16 is open at the bottom and has a quadrangular, namely rectangular, edge lying in a plane inclined to the inlet axis.
- the catalyst section 18 and the discharge section 19 together consist of a tube section or jacket which is essentially quadrangular in cross section, namely rectangular, parallel to the axis 33.
- the rectangle formed by this in cross section has two longer sides of the rectangle which are parallel to the plane running through the axes 31, 33. At both ends, the catalyst section and the shroud forming jacket have edges lying at right angles to the axis 33.
- Transition section 20 is rectangular at its upper end, namely rectangular, gradually becomes circular in cross section at the bottom and is connected at its lower end to the short, for example cylindrical connecting section 21 which is circular in cross section.
- the main sections 23 of the lines 12 adjoining the connecting sections 21 consist of tubes which are circular in cross section and bent in their longitudinal directions.
- the two legs 13, 17 are formed approximately or exactly the same for all lines 12, for example, while the main sections 23 are different, but are curved such that all lines 12 are approximately the same length.
- the catalyst section 18 of each individual line 12 contains catalyst means 41 for the catalytic treatment of the exhaust gas flowing through the line 12 in question.
- the catalyst means 41 present in a catalyst section have at least one catalyst body 42 and, for example, two catalyst bodies 42 arranged one behind the other in the flow direction of the exhaust gas. These are, for example, of the same design and cuboid.
- One of the catalytic converter bodies 42 is drawn separately in FIG. 5 and has a square-shaped, namely rectangular, sleeve 45 with two flat, parallel first walls 46 and two flat, parallel, second walls 47.
- the sleeve 45 contains a package 48 of alternating successive first, flat sheet metal elements and second, corrugated sheet metal elements.
- the sheet metal elements are square in plan view.
- the first, flat sheet metal elements are parallel to the second walls 47.
- the shafts of the second sheet metal elements are parallel and to the axis of the sleeve 35.
- the successive sheet metal elements touch one another at the wave apexes of the second sheet metal elements.
- Each edge of the sheet metal elements parallel to the waves abuts one of the first walls 46 and is firmly connected to the relevant wall 46 at least in one edge section and, for example, in two edge sections spaced apart from one another by a weld connection indicated in FIG. 5 and designated by 49.
- the edges of the sheet metal elements that are perpendicular to the shafts are at least approximately flush with the edges of the walls of the sleeve and form a flat end surface at both ends of the sleeve, which serves as an exhaust gas inlet surface or exhaust gas outlet surface.
- the sheet metal elements have a core made of steel and coatings, which have porous metal oxide and catalytically active material, namely platinum and rhodium.
- the successive sheet metal elements together, in pairs, delimit exhaust gas passages 50, which run from the exhaust gas inlet surface to the exhaust gas outlet surface.
- the thickness of the metallic cores of the sheet metal elements is preferably at most 0.1 mm and, for example, approximately 0.05 mm.
- the thickness of a sheet metal element with coatings facing away from each other is then at most 0.3 mm and, for example, approximately 0.1 mm to 0.15 mm.
- the wave height measured for one and the same area from wave crest to wave crest of a corrugated sheet metal element provided with coatings is expediently at most 1.5 mm, preferably at most 1 mm, preferably at least 0.1 mm and for example approximately 0.3 mm to 0.8 mm.
- the wavelength can be approximately 1 mm to 2 mm, for example.
- a package of sheet metal elements in a cross section perpendicular to the shafts and the exhaust gas passages preferably has at least 150 passages per cm 2 and, for example, approximately 180 to 200 passages per cm 2 .
- the sleeves 45 of the catalyst body 42 sit snugly or with at most little play in the catalyst section 18 of each line 12 and are fixed to the wall of the catalyst section connected, for example welded.
- 3 at the upper end of the upper catalytic converter body 42 forms the exhaust gas entry area 51 of the entire catalytic means 41.
- the inlet surface 51, the outlet surface 55 and the mutually facing end surfaces of the two catalyst bodies are perpendicular to the catalyst and discharge axis 33.
- the exhaust gas inlet surface 51 is approximately flush with the upper end of the second leg 17.
- Each line 12 has a passage 55 which apart from the area occupied by the catalyst means consists of free cavities.
- a narrow gap 57 is present between the two catalyst bodies of each line 12.
- the exhaust gas passages 50 of the two catalyst bodies run essentially parallel to the axis 33 from the inlet surface 51 to the outlet surface 53, wherein they are divided by the intermediate space 57 between the two catalyst bodies.
- the section of the passage 55 which directly adjoins the exit surface 53 and is enclosed in cross section by the discharge section 19 of the leg 17 is referred to as the discharge chamber 58.
- the passage section contained in the transition section 20 is referred to as the transition space 59.
- the inlet axis 31 intersects the catalyst and discharge axis 33 at an angle ⁇ of 45 ° to 135 ° and preferably approximately 60 ° to 120 °.
- angle ⁇ between a section of the inlet axis 31 lying within the inlet and a portion of the catalyst axis lying within the catalyst section is measured.
- the second leg 17 is inclined downward, for example, from the inlet opening 32, so that the angle ⁇ , when measured on the lower, inner side of the apex formed by the two axes 31, 33, is an obtuse angle and more than 90 ° is.
- the exhaust gas inlet surface 51 of the catalyst means which is perpendicular to the axis 33, accordingly forms an acute angle ⁇ with the inlet axis 31, which is at most approximately 45 °.
- the exhaust gas distribution space 56 has a cross-sectional area measured perpendicular to the inlet axis 31, which decreases away from the inlet opening 32 along the inlet axis 31 at least approximately and, for example, exactly linearly with the distance from the inlet opening and at the edge of the inlet surface 51 that is most distant from the inlet opening becomes almost zero.
- the circular inlet opening 32 has a diameter d.
- the approximately horizontal inlet 15 of each line 12 can be made short, so that the exhaust gas inlet surfaces 51 of the catalyst means are relatively close to the inlet opening 32 of the line concerned.
- the position of the exhaust gas inlet surface 51 of the catalytic means 41 closest to the inlet opening 32 - i.e. in deer Fig. 3, the lower edge of the exhaust gas inlet surface - is measured from the flat mouth surface of the inlet parallel to the inlet axis at a distance that is, for example, at most equal to twice the diameter d of the inlet opening or even only at most equal to this diameter d and preferably at most 5 cm and for example only about 1 cm to 3 cm.
- the catalyst body 43 forms a rectangle in a cross section perpendicular to the axis 33 and the exhaust gas passages 50 and has the parallel to the longer side of the rectangle Cross-sectional dimension or length a parallel to the shorter side of the rectangle, the cross-sectional dimension or width b and the maximum cross-sectional dimension c measured diagonally to the said rectangle.
- a catalyst body 42 has the dimension or height h parallel to the axis 33 and to the exhaust gas passages 50.
- the section of the passage 55 of a line 12 delimited by the catalytic converter section 18 forms a cross-section in the form of a rectangle, the longer side of which is parallel to a plane running through the axes 31 and 33 and has a length approximately equal to the dimension a of that with at most a small clearance in Leg 17 arranged catalyst body or slightly larger than a.
- the dimension a is larger, namely at least 30%, preferably at least 50% or even at least 100% larger than the diameter d of the inlet opening 32.
- the diameter d and the dimension a are, for example, approximately 25 mm to 35 mm and 60 mm to 80 mm.
- the cross-sectional dimension or width b of the catalytic converter body and the cross-sectional dimension of the passage section delimited by the axes 31, 33 which is approximately the same or at least slightly larger and perpendicular to the plane, is, for example, approximately the same size as the diameter d or at most slightly smaller than this , but could possibly be significantly larger than the diameter d.
- the rectangular cross-sectional area of the catalyst bodies 42 which is rectangular to the catalyst axis 33 and to the exhaust gas passages 50, is larger, namely at least 30%, preferably at least 50% and, for example, at least 100% larger than the circular area of the inlet opening 32.
- the catalytic converter section 18 and the diverting section 19 consist of a jacket which is parallel to the straight catalytic converter and diverting axis 33, they naturally have walls which are flush with one another. Furthermore, the Discharge chamber 58 has the same cross-sectional shape and the same cross-sectional dimensions as the interior of the catalyst section 18.
- the dimension e, measured parallel to the axis 33, of the discharge section 58 and the discharge chamber 58 present therein is at least 10% and, for example, approximately or at least 20% of the maximum, diagonal cross-sectional dimension c and of course at least 10% and preferably at least 20% of the cross-sectional dimension a of the catalyst body.
- the wall of the transition section 20 forms the transition from the discharge section 19 which is rectangular in cross section to the connecting section 21 which is circular in cross section, the inside diameter of which is approximately equal to the diameter d of the inlet opening 32, for example.
- the transition axis 36 forms an angle ⁇ with the catalyst and discharge axis 33. This is measured between a section of the axis 33 lying within the leg 17 and a section of the axis 36 lying within the transition section 20 and is preferably 135 ° to 225 ° and, for example, 150 ° to 210 °.
- the wall of the transition section 20 may in some places be parallel to the transition axis 36, but is inclined to the transition axis 36 at least in certain peripheral regions.
- the angle between the wall of the transition section 20 and the transition axis 36 can, for example, be at most 45 ° or even only at most 30 ° around the entire transition section at any point on its wall.
- the wall of the transition section 20 can also form an angle, at least in places, with the catalyst and discharge axis 33, which, however, can likewise be at most 45 ° everywhere. Accordingly, the wall of the transition section 20 forms an angle of at least 45 ° with the exhaust gas outlet surface 53 at all wall locations.
- the axial dimension or height h of the catalyst body can of course be determined such that adequate, catalytic cleaning of the exhaust gas is achieved.
- the dimension or height h is, for example, in the range from 2 cm to 5 cm.
- the main sections 23 are substantially longer than the inlets 15 and the catalyst sections 18.
- the lengths of the individual lines 12 are matched to the intended speed range and the other properties of the internal combustion engine 1 such that the exhaust gas emissions emitted by one of the combustion chambers 3 during operation of the engine in spite of the high pressure peaks at the inlets 15 of the exhaust manifold 11, they have no effect on the function of the other combustion chambers, which impairs the engine performance.
- Each individual line 17 can be at least 0.5 m or at least 1 m long, for example.
- the length of the exhaust gas flow path from an inlet opening 32 to the common outlet 28 of the exhaust manifold is then, for example, in the range from 0.7 m to 1.5 m.
- the formation of the catalyst body 42 from flat and corrugated sheet metal elements enables - as already described - a high number of exhaust gas passages 50 per unit of the cross-sectional area of the sheet metal element packages and catalyst bodies. Accordingly, the surfaces delimiting the exhaust gas passages together form a large surface, effective for the catalytic exhaust gas treatment, per unit volume of the sheet metal element packs and catalyst bodies.
- the catalyst means therefore require little space and can be easily installed in the latter close to the inlet openings 32 of the lines 12. Furthermore, catalyst means 41 - based on the amount of exhaust gas supplied per unit of time - can be produced and installed inexpensively.
- the large cross-sectional areas of the catalyst means, the routing of the exhaust gas before and after the catalyst means and the uniform distribution of the exhaust gas over the entire cross-sectional area of the catalyst means contribute to a small flow resistance, so that the catalyst means and the guidance of the exhaust gas immediately upstream and downstream thereof increase the back pressure generated by the exhaust gas relatively little compared to an exhaust manifold without catalyst.
- the line 111 has a first, approximately horizontal leg 113 with an inlet 115 and an exhaust gas distributor 116. This is followed by a second leg 117, which projects downward away from the latter. This has a catalyst section 118, a discharge section 119, a transition section 120 and a connecting section 121 in the direction running away from the first leg 113.
- the inlet 115 defines an approximately horizontal inlet axis 131 and has a circular inlet opening 132.
- the walls of the inlet 115 and the exhaust manifold 116 are of a similar design to the lines 12 shown in FIGS. 1 to 4.
- the catalyst section 118 and the discharge section 119 have a common, straight catalyst and discharge axis 133 and together consist of a straight, parallel to this, rectangular cross-section tube or Coat.
- the transition section defines a transition axis 136 and connects the lower end of the rectangular leg 117 to the cross-sectionally circular, for example cylindrical, connecting section 121. This has, for example, an axis parallel to the axis 133 but offset on its side facing away from the inlet opening 132.
- the catalyst section 118 contains catalyst means 141, which, however, have only a single catalyst body 142. This has exhaust gas passages 150 parallel to the axis 133, an exhaust gas inlet surface 151 and an exhaust gas outlet surface 153.
- the catalyst body 142 is again cuboid, forms a rectangle in a cross section perpendicular to the axis 133 and to the passages 150, and has a parallel to the longer one 6, and a maximum cross-sectional dimension c, not visible in FIG. 6, measured diagonally to the rectangle.
- the diverting section 119 contains a diverting space 158 directly adjacent to the exit surface 153 and the deflecting section 120 contains a diverting space 159.
- the catalyst and discharge axis 133 forms an angle ⁇ with the inlet axis 131.
- the exhaust gas entry surface 151 forms an angle ⁇ with the inlet axis 131.
- the angles .alpha. And .beta. Lie in the same ranges as in the case of the lines 12.
- the dimension e, measured parallel to the catalyst and discharge axis 133, of the discharge section 119 and the discharge space 158 is at least approximately 30% for the line 112 partially shown in FIG example even at least 40% of the cross-sectional dimension a and also at least 25% or even at least 30% of the maximum diagonal cross-sectional dimension c of the catalyst body 142.
- the transition section 120 has a wall on the right-hand side of FIG.
- the single line 212 of an exhaust manifold 211 shown in FIG. 7 has a first, approximately horizontal leg 213 with an inlet 215 and a second, downwardly projecting leg 217 with a rectangular, namely rectangular catalyst section 218 with a cross-section - And transition section 219, which is connected at its lower end with a circular cross-section connecting portion 221.
- the inlet and the catalytic converter section define an inlet axis 231 and a catalytic converter axis 233, respectively.
- the discharge and transition section 219 defines a discharge and transition axis 234 which is aligned with the catalyst axis 233 or forms an angle ⁇ .
- the catalyst section 218 contains catalyst means 241, which consist, for example, of a single, rectangular catalyst body, contain exhaust gas passages 250 and have an exhaust gas inlet surface 251 and an exhaust gas outlet surface 252.
- the discharge and transition section 219 encloses in cross section a discharge and transition space 258 adjoining the exhaust gas outlet surface 253, which has the dimension e measured on the axis 234 and parallel to it.
- the discharge space 258 adjoining the exhaust gas exit surface 253 simultaneously forms the transition space and makes the transition from the rectangular exit surface 253 to the circular passage section of the connecting section 221.
- the wall of the discharge and transition section 219 accordingly forms an angle with the wall at least in places Catalyst axis 233. These angles should preferably be at most 45 °, preferably at most 30 °, better at most 25 ° and even better at most 20 ° everywhere and in particular at each circumferential point of the edge of the exhaust gas outlet surface 253.
- the wall of the discharge and transition section 219 then also forms, at least in places, angles that deviate from 90 ° with the exhaust gas outlet surface 253.
- the dimension e of the discharge and transition space 258 in the line 212 is, for example, at least equal to the cross-sectional dimension a and also at least equal to the maximum, diagonal cross-sectional dimension c of the catalyst means.
- the angle ⁇ is measured in the same way as was explained previously for the angles ⁇ and ⁇ and preferably deviates from an elongated angle - ie 180 ° - from and at most 45 °, for example at most 30 °, better at most 25 ° and even better at most 20 ° is thus preferably 135 ° to 225 °, for example 150 ° to 210 °, better 155 ° to 205 ° and even better 160 ° to 200 °.
- the line 312 has a first approximately horizontal leg 313 with an inlet 315 and an exhaust manifold 316 and a second leg 317 projecting downward from the first leg 313.
- This has a catalyst section 318, a discharge section 319, a transition section 320 and one Connection section 321.
- the inlet has an approximately horizontal inlet axis 331.
- the catalyst section and the discharge section have a common catalyst and discharge axis 333.
- the catalyst section contains catalyst means 341, the at least one catalyst body 342 with exhaust gas passages 350, an exhaust gas inlet surface 351 and one Have exhaust gas exit surface 353.
- the catalyst and discharge axis 333 forms an angle ⁇ with the inlet axis 331, which is approximately or exactly 90 ° in this line.
- the exhaust gas entry surface 351 is accordingly approximately parallel to the inlet axis 331.
- the wall of the exhaust gas distributor 316 opposite the entry surface 351 is approximately flat and is inclined downwards away from the inlet against the entry surface 351.
- the exhaust gas distribution space 356 has a cross-sectional area in a cross section perpendicular to the inlet axis, which in turn decreases linearly away from the inlet.
- the second leg 317 is otherwise configured, for example, similarly to the line shown in FIG. 6.
- Exhaust manifolds shown in FIGS. 6 to 8 can - unless previously written otherwise - be designed similarly to the exhaust manifold first described with reference to FIGS. 1 to 5 and have similar properties to this.
- the internal combustion engine 1 and the exhaust systems can still be changed in various ways.
- features of various described exemplary embodiments can be combined with one another.
- the angle ⁇ is preferably an obtuse or right angle, but can possibly also be an acute angle and, as already mentioned, can be in the range from 45 ° to 135 °.
- the catalyst means can possibly have a square cross-sectional area and, for example, have at least one cube-shaped catalyst body.
- connection plate 26 can be replaced, for example, by separate ring flanges, each of which is attached to one of the lines.
- each catalyst body can have two or more sleeves, each of which contains a packet of sheet metal elements. The sleeves belonging to the same catalyst body can then rest against one another with walls facing one another and be welded to one another or rigidly connected to one another in some other way.
- the engine can also have fewer or more than four cylinders and a corresponding number of exhaust gas outlets.
- the number of individual lines of the exhaust manifold can accordingly be more or less than four.
- an exhaust system can be provided with two exhaust manifolds, each of which has inputs connected to a group of the engine's exhaust ports and an outlet connected to an exhaust pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Silencers (AREA)
Abstract
Description
Die Erfindung betrifft einen Auspuffkrümmer.The invention relates to an exhaust manifold.
Der Auspuffkrümmer kann einen Teil einer Abgasanlage für einen Verbrennungsmotor eines Kraftfahrzeugs bilden. Der Verbrennungsmotor besteht zum Beispiel aus einem Benzinmotor und besitzt zum Beispiel mehrere zylindrische Brennkammern, in denen ein hin und her verschiebbarer Kolben angeordnet ist. Der Motor könnte jedoch eventuell statt dessen als Kreiskolbenmotor ausgebildet sein und einen Drehkolben enthaltende Brennkammern aufweisen. Jede Brennkammer ist mit einem Abgasausgang des Verbrennungsmotors verbunden.The exhaust manifold can form part of an exhaust system for an internal combustion engine of a motor vehicle. The internal combustion engine consists, for example, of a gasoline engine and has, for example, several cylindrical combustion chambers in which a piston which can be moved back and forth is arranged. However, the engine could instead be designed as a rotary piston engine and have a combustion chamber containing rotary pistons. Each combustion chamber is connected to an exhaust gas outlet of the internal combustion engine.
Ein aus der DE 295 05 660 U bekannter Auspuffkrümmer hat mehrere aus geraden Stutzen gebildete Einzel-Leitungen, deren Einlässe mit den Abgasausgängen des Verbrennungsmotors verbindbar sind und deren den Einlässen abgewandten Enden in ein zu ihren Achsen rechtwinkliges, horizontales Sammelrohr münden. Jeder Stutzen enthält nicht näher beschriebene Katalysatormittel. Die Querschnittsflächen der in den Stutzen bzw. Einzel-Leitungen vorhandenen Katalysatormittel sind offenbar höchstens ungefähr gleich gross wie die Querschnittsflächen der Einlassöffnungen der Stutzen. Die Katalysatormittel verursachen daher einen grossen Strömungswiderstand sowie einen grossen Druckabfall bzw. Gegendruck, der die Nutzleistung des Motors reduziert. Zudem enthält das Sammelrohr auch Katalysatormittel, welche den Strömungswiderstand und den Gegendruck noch vergrössern. Da die Abgasaussgänge der Motoren meistens ungefähr horizontale Achsen haben und oft ziemlich weit oben am Motor sowie relativ hoch über dem Fahrzeugboden angeordnet sind, ist es zudem häufig aus Platzgründen unzweckmässig, die Abgasausgänge des Motors durch gerade Stutzen mit einem horizontalen Sammelrohr zu verbinden.An exhaust manifold known from DE 295 05 660 U has a plurality of individual lines formed from straight connections, the inlets of which can be connected to the exhaust gas outlets of the internal combustion engine and the ends of which face away from the inlets open into a horizontal manifold which is perpendicular to their axes. Each nozzle contains unspecified catalyst. The cross-sectional areas of the catalyst means present in the connectors or individual lines are apparently at most approximately the same size as the cross-sectional areas of the inlet openings of the connectors. The catalyst means therefore cause a large flow resistance and a large pressure drop or back pressure, which reduces the useful output of the engine. In addition, the manifold also contains catalyst agents, which increase the flow resistance and the back pressure. Since the exhaust gas outlets of the engines mostly have roughly horizontal axes and are often located quite high on the engine and relatively high above the vehicle floor, it is often also unsuitable for reasons of space to connect the exhaust gas exits of the engine to a horizontal manifold by means of straight connections.
Die Figuren 7 bis 10 der FR 2 179 689 A zeigen Auspuffkrümmer mit mehreren Leitungen, die mit Abgasausgängen eines Verbrennungsmotors verbunden sind und Katalysatormittel enthalten. Die Katalysatormittel dieser Auspuffkrümmer haben jedoch quer zur Strömungsrichtung der sie durchströmenden Abgase ebenfalls nur kleine Querschnittsflächen oder erfordern mehrere scharfe Umlenkungen des Abgases sowie das Hindurchleiten des Abgases durch Hohlräume mit kleinen Querschnittsflächen. Die Katalysatormittel und/oder die Gasführung von und nach den Katalysatormitteln verursachen daher auch bei diesen bekannten Auspuffkrümmern hohe Strömungswiderstände sowie Gegendrücke und insbesondere bei der Variante gemäss den Figuren 9, 10 inhomogene Strömungsverteilungen in den Katalysatormitteln.FIGS. 7 to 10 of
Aus der DE 42 36 893 A ist ein mit einem Abgasausgang eines Verbrennungsmotors verbundenes Abgasrohr bekannt. Ein gekrümmter Abschnitt von diesem enthält Katalysatormittel mit einem Stapel Platten. Diese Katalysatormittel haben die Nachteile, dass ihre Querschnittsflächen höchstens ungefähr gleich derjenigen des Durchgangs des restlichen Rohrs ist und dass ihre Abgasdurchgänge abhängig vom Krümmungsradius unterschiedlich lang sind, so dass das Abgas in den verschiedenen Durchgängen unterschiedlich stark gereinigt wird. Ferner ist die Herstellung derartiger Katalysatormittel schwierig und aufwendig.
Die US 5 330 728 A offenbar Katalysatoren, deren Gehäuse einen Einlass, einen Katalysatormittel enthaltenden Katalysatorabschnitt und einen Auslass hat. Der Einlass und der Auslass sind gegeneinander versetzt und haben zueinander parallele Achsen, während die Achse des Katalysatorabschnitts und die Durchgänge der Katalysatormittel zu diesen Achsen geneigt sind. Die Abgas-Eintrittsfläche und die Abgas-Austrittsfläche der Katalysatormittel sind eben und parallel zu den Achsen des Ein- und Auslasses. Diese Katalysatoren sind anscheinend zur Anordnung unterhalb des Fahrzeugbodens und nicht zur Anordnung in den Einzel-Leitungen eines Auspuffkrümmers vorgesehen. Es wäre aus Platzgründen auch nicht zweckmässig, derartige Katalysatoren in einen Auspuffkrümmer einzubauen. Zudem wird das Abgas unmittelbar nach den Katalysatormitteln stark umgelenkt, wobei das Gehäuse auf einer Seite der Abgas-Austrittsfläche der Katalysatormittel eine unmittelbar an diese anschliessende Wand hat, die mit der Abgasaustrittsfläche einen ziemlich spitzen Winkel bildet. Beim Betrieb entsteht daher über der Abgas-Austrittsfläche ein Druckgefälle, das die Abgasströmung in den Katalysatormitteln beeinflusst und inhomogen macht. Dies verschlechtert den Wirkungsgrad der Katalysatormittel.US 5 330 728 A discloses catalysts, the housing of which has an inlet, a catalyst section containing catalyst agent and an outlet. The inlet and the outlet are staggered and parallel to each other Axes, while the axis of the catalyst section and the passages of the catalyst means are inclined to these axes. The exhaust gas inlet surface and the exhaust gas outlet surface of the catalyst means are flat and parallel to the axes of the inlet and outlet. These catalytic converters are apparently intended to be arranged below the vehicle floor and not to be arranged in the individual lines of an exhaust manifold. For reasons of space, it would also not be expedient to install such catalysts in an exhaust manifold. In addition, the exhaust gas is strongly deflected immediately after the catalyst means, the housing on one side of the exhaust gas exit surface of the catalyst means having a wall directly adjoining it, which forms a rather acute angle with the exhaust gas exit surface. During operation, therefore, a pressure drop arises over the exhaust gas outlet surface, which influences and makes the exhaust gas flow in the catalyst means inhomogeneous. This worsens the efficiency of the catalyst agents.
Der Erfindung liegt die Aufgabe zugrunde, einen Auspuffkrümmer zu schaffen, der Nachteile der bekannten Aupuffkrümmer vermeidet. Dabei soll insbesondere ermöglicht werden, dass die Katalysatormittel bei möglichst geringer Vergrösserung des Strömungswiderstandes und Gegendrucks eine gute Reinigung des Abgases ermöglichen, dass die Abgasströmung in den Katalysatormitteln möglichst gleichmässig verteilt ist, dass auch die Zuleitung des Abgases zu den Katalysatormitteln und die Ableitung des Abgases in dem unmittelbar an die der Katalysatormittel anschliessenden Ableitabschnitt der Leitungen nur möglichst geringe Strömungswiderstände verursachen und das die Ausrüstung des Auspuffkrümmers mit Katalysatormittel dessen Platzbedarf nur wenig vergrössert und die Einbaubarkeit des Auspuffkrümmers möglichst wenig erschwert.The invention has for its object to provide an exhaust manifold that avoids disadvantages of the known exhaust manifold. In particular, it should be made possible that the catalyst means, with the lowest possible increase in flow resistance and back pressure, enable good cleaning of the exhaust gas, that the exhaust gas flow in the catalyst means is distributed as evenly as possible, that the supply of the exhaust gas to the catalyst means and the discharge of the exhaust gas in cause only the lowest possible flow resistance to the discharge section of the lines directly adjoining the catalyst means and that the space required for the exhaust manifold with catalyst means is only slightly increased and the installation of the exhaust manifold is made as difficult as possible.
Diese Aufgabe wird erfindungsgemäss durch einen Auspuffkrümmer mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention by an exhaust manifold with the features of
Vorteilhafte Ausgestaltungen des Auspuffkrümmers gehen aus den abhängigen Ansprüchen hervor.Advantageous embodiments of the exhaust manifold emerge from the dependent claims.
Gemäss der Erfindung enthält jede zum Verbinden mit dem Verbrennungsmotor vorgesehene Leitung des Auspuffkrümmers Katalysatormittel. Die Katalysatormittel können daher so nahe beim Motor angeordnet sein, dass das Abgas bei einem Kaltstart zwischen dem Verbrennungsmotor und den Katalysatormitteln nur wenig abgekühlt wird und die Katalysatormittel bei einem Kaltstart in einer kurzen Aufheizzeit auf eine Temperatur aufgeheizt werden, die eine effiziente, katalytische Behandlung des Abgases ermöglicht.According to the invention, each line of the exhaust manifold provided for connection to the internal combustion engine contains catalyst means. The catalyst means can therefore be arranged so close to the engine that the exhaust gas is cooled only slightly during a cold start between the internal combustion engine and the catalyst means and the catalyst means are heated up to a temperature in a short heating-up time in a short heating-up time, which is an efficient, catalytic treatment of the Exhaust gas allows.
Die in den verschiedenen Leitungen des Auspuffkrümmers angeordneten Katalysatormittel können quer zu ihren Abgas-Durchgängen relativ grosse Querschnittsflächen haben, die vorzugsweise deutlich grösser als die Flächen der Einlassöffnungen der Leitungen sind. Ferner kann das bei der Benutzung des Auspuffkrümmers durch dessen Leitungen hindurch geleitete Abgas derart auf die Abgas-Eintrittsflächen der Katalysatormittel verteilt und in den unmittelbar an die Abgas-Austrittsflächen der Katalysatormittel anschliessenden Ableitraum derart von den Katalysatormitteln weggeleitet werden, dass die Strömungsverteilung in den Katalysatormitteln über die ganze, Abgas-Durchgänge aufweisende Querschnittsfläche von diesem sehr gleichmässig wird. Dies ermöglicht eine optimale Ausnutzung der ganzen Katalysatormittel und einen hohen Wirkungsgrad von diesen. Ferner kann das Abgas derart auf die Abgas-Eintrittsfläche der Katalysatormittel verteilt und von diesen weggeleitet werden, dass nur ein geringer Gegendruck entsteht. Zudem kann der Auspuffkrümmer mit geringem Platzbedarf problemlos in Kraftfahrzeuge, insbesondere Kraftwagen und vor allem Personenkraftwagen eingebaut werden.The catalyst means arranged in the various lines of the exhaust manifold can have relatively large cross-sectional areas across their exhaust gas passages, which are preferably significantly larger than the areas of the inlet openings of the lines. Furthermore, the exhaust gas passed through its lines when the exhaust manifold is used can be distributed to the exhaust gas inlet surfaces of the catalyst means and in the discharge space directly adjoining the exhaust gas outlet surfaces of the catalyst means can be directed away from the catalyst means in such a way that the flow distribution in the catalyst means the entire cross-sectional area having exhaust gas passages becomes very uniform. This enables optimal use of all of the catalyst agents and a high degree of efficiency. Furthermore, the exhaust gas can be distributed to the exhaust gas inlet surface of the catalyst means and directed away from them in such a way that only a slight counterpressure arises. In addition, the exhaust manifold can be easily installed in a small space Motor vehicles, in particular motor vehicles and especially passenger cars are installed.
Der Erfindungsgegenstand wird anschliessend anhand in der Zeichnung dargestellter Ausführungsbeispiele erläutert. In der Zeichnung zeigt
- Fig. 1 eine schematische Darstellung eines Verbrennungsmotors und eines Auspuffkrümmers,
- Fig. 2 eine vereinfachte Schrägansicht von einem Teil des Auspuffkrümmers,
- Fig. 3 einen Schnitt durch einen Teil von einer der Einzel-Leitungen des Auspuffkrümmers und die in der Einzel-Leitung angeordneten Katalysatormittel,
- Fig. 4 einen Querschnitt durch eine Einzel-Leitung entlang der Linie IV - IV der Fig. 3,
- Fig. 5 eine Schrägansicht von einem Katalysatorkörper der Katalysatormittel und
- die Figuren 6 bis 8 zur Fig. 3 analoge Schnitte durch Einzel-Leitungen von anderen Auspuffkrümmern.
- 1 is a schematic representation of an internal combustion engine and an exhaust manifold,
- 2 is a simplified oblique view of part of the exhaust manifold,
- 3 shows a section through part of one of the individual lines of the exhaust manifold and the catalyst means arranged in the single line,
- 4 shows a cross section through a single line along the line IV-IV of FIG. 3,
- Fig. 5 is an oblique view of a catalyst body of the catalyst means and
- Figures 6 to 8 to Fig. 3 analog sections through individual lines from other exhaust manifolds.
Der in der Fig. 1 ersichtliche Verbrennungsmotor 1 ist in ein Kraftfahrzeug - beispielsweise in einem Personenkraftwagen eingebaut und besteht aus einem Benzinmotor. Der Verbrennungsmotor 1 ist in Draufsicht gezeichnet und besitzt ein Motorgehäuse 2 sowie mindestens zwei und zum Beispiel vier Zylinder. Die Zylinder begrenzen Brennkammern 3 und enthalten je einen hin und her verschiebbaren Kolben. Jede Brennkammer 3 ist mit einem Abgasausgang 4 verbunden. Die vier Abgasausgänge haben kreisförmige Öffnungen, die beispielsweise in einer gemeinsamen ebenen, und ungefähr vertikalen Anschlussfläche 5 des Motorgehäuses 2 liegen. Das Kraftfahrzeug besitzt einen Auspuffkrümmer 11, der in Fig. 1 schematisch teils in Draufsicht, teils in Abwicklung dargestellt und zum Teil auch in den Figuren 2 bis 4 ersichtlich ist.The
Der Auspuffkrümmer 11 besitzt mindestens zwei, nämlich vier Einzel-Leitungen 12 mit einer metallischen, beispielsweise aus rostfreiem Stahl bestehenden, starren Wandung. Jede Einzel-Leitung 12 hat einen dicht mit einem der Abgasausgänge 4 des Motors verbunden, ungefähr horizontalen, ersten Schenkel 13 mit einem Einlass 15 und einem Abgas-Verteiler 16. An den ersten Schenkel 12 schliesst ein mit diesem einen Winkel bildenden, vom ersten Schenkel weg nach unten verlaufender, zweiter Schenkel 17 an. Dieser hat in vom ersten Schenkel weg verlaufender Richtung der Reihe nach einen Katalysatorabschnitt 18, einen Ableitabschnitt 19, einen Übergangsabschnitt 20 und einen Verbindungsabschnitt 21. Der zweite Schenkel 17 ist beim Verbindungsabschnitt 21 mit dem Hauptabschnitt 23 der Einzel-Leitung 12 verbunden. Diese hat einen Ausgang 24.The
Der Auspuffkrümmer 11 ist bei den Einlässen 15 zum Beispiel mit einer metallischen, etwa aus rostfreiem Stahl bestehenden, im allgemeinen ebenen Anschlussplatte 26 versehen, die für jede Leitung 12 ein Loch hat und unlösbar mit den Anfangsabschnitten von allen vier Einlässen 15 verbunden, zum Beispiel verschweisst ist. Die Anschlussplatte 26 liegt an der Anschlussfläche 5 des Motorgehäuses 2 an, und ist mit Befestigungsmitteln, beispielsweise Schrauben oder dergleichen, lösbar am Motorgehäuse befestigt. Der Auspuffkrümmer 11 besitzt ferner eine Sammmel- und Verbindungsvorrichtung 28. Diese ist beispielsweise aus drei Y-förmigen Verbindungselementen zusammengesetzt und hat vier Eingänge, von denen jeder mit einem Ausgang 23 einer Einzel-Leitung 12 verbunden ist. Die Sammel- und Verbindungsvorrichtung 28 hat ferner einen Ausgang, der den für alle Einzel-Leitungen 12 gemeinsamen Ausgang 28 des ganzen Auspuffkrümmers 11 bildet und mit einem Auspuffrohr 29 verbunden ist.The
Jeder Einlasse 15 hat eine gerade, ungefähr horizontale Einlassachse 31 und an seinem mit dem Motorgehäuse 2 verbundenen Anfang eine zur Einlassachse rotationssymmetrische, kreisförmige Einlassöffnung 32. Der Katalysatorabschnitt 18 und der Ableitabschnitt 19 haben eine gemeinsame, gerade die Einlassachse 13 schneidende Katalysator- und Ableitachse 33, die beispielsweise in einer ungefähr vertikalen Ebene liegt. Der Übergangsabschnitt 20 definiert eine die Achse 33 schneidende Übergangsachse 36. Der Einlass 15 hat an seinem Anfang einen kurzen zylindrischen und/oder konischen Mantel- oder Wandungsabschnitt und wird in von der Einlassöffnung weg verlaufender Richtung sukzessive viereckförmig. Die Wandung des Abgas-Verteilers 16 hat auf beiden Seiten einen seitlichen Wandabschnitt, der ungefähr eben und parallel zu einer durch die Achsen 31, 33 verlaufende Ebene ist. Der Verteiler 16 hat ferner einen ebenen, zur letztgenannten Ebene rechtwinkligen und beispielsweise ungefähr zur Einlassachse 31 parallelen Deckwandabschnitt. Der Verteiler 16 ist unten offen und hat einen in einer zur Einlassachse geneigten Ebene liegenden, viereckförmigen, nämlich rechteckförmigen Rand. Der Katalysatorabschnitt 18 und der Ableitabschnitt 19 bestehen zusammen aus einem im Querschnitt im wesentlichen viereckförmigen, nämlich rechteckförmigen, zur Achse 33 parallelen Rohrstück bzw. Mantel. Das von diesem im Querschnitt gebildete Rechteck hat zwei längere Rechteckseiten, die zu der durch die Achsen 31, 33 verlaufenden Ebene parallel sind. Der Katalysatorabschnitt sowie Ableitabschnitt bildende Mantel hat an beiden Enden in zur Achse 33 rechtwinkligen Ebenen liegende Ränder. Der Übergangsabschnitt 20 ist an seinem oberen Ende viereck-, nämlich rechteckförmig, wird nach unten sukzessive im Querschnitt kreisförmig und hängt an seinem unteren Ende mit den kurzen, im Querschnitt kreisförmigen, beispielsweise zylindrischen Verbindungsabschnitt 21 zusammen. Die an die Verbindungsabschnitte 21 anschliessenden Hauptabschnitte 23 der Leitungen 12 bestehen aus im Querschnitt kreisförmigen, in ihren Längsrichtungen gebogenen Rohren. Die beiden Schenkel 13, 17 sind beispielsweise bei allen Leitungen 12 ungefähr oder genau gleich ausgebildet, während die Hauptabschnitte 23 unterschiedlich, aber derart gebogen sind, dass alle Leitungen 12 ungefähr gleich lang sind.Each
Der Katalysatorabschnitt 18 jeder Einzel-Leitung 12 enthält Katalysatormittel 41 zur katalystischen Behandlung des durch die betreffende Leitung 12 hindurch strömenden Abgases. Die in einem Katalysatorabschnitt vorhandenen Katalysatormittel 41 weisen mindestens einen Katalysatorkörper 42 und beispielsweise zwei in der Strömungsrichtung des Abgases hintereinander angeordnete Katalysatorkörper 42 auf. Diese sind beispielsweise gleich ausgebildet und quaderförmig. Einer der Katalysatorkörper 42 ist separat in der Fig. 5 gezeichnet und besitzt eine im Querschnitt viereckförmige, nämlich rechteckförmige Hülse 45 mit zwei ebenen, zueinander parallelen, ersten Wänden 46 und zwei ebenen, zueinander parallelen, zweiten Wänden 47. Die Hülse 45 enthält ein Paket 48 von abwechselnd aufeinanderfolgenden ersten, ebenen Blechelementen und zweiten, gewellten Blechelementen. Die Blechelemente sind in der Draufsicht viereckförmig. Die ersten, ebenen Blechelemente sind parallel zu den zweiten Wänden 47. Die Wellen der zweiten Blechelemente sind parallel und zur Achse der Hülse 35. Die aufeinanderfolgenden Blechelemente berühren einander bei den Wellenscheiteln der zweiten Blechelemente. Jeder zu den Wellen parallele Rand der Blechelemente stösst an eine der ersten Wände 46 an und ist mindestens bei einem Randabschnitt und beispielsweise bei zwei voneinander in Abstand stehenden Randabschnitten durch eine in der Fig. 5 angedeutete sowie mit 49 bezeichnete Schweissverbindung fest mit der betreffenden Wand 46 verbunden. Die zu den Wellen rechtwinkligen Ränder der Blechelemente sind mindestens annähernd bündig mit den Rändern der Wände der Hülse und bilden an den beiden Enden der Hülse eine ebene Endfläche, die als Abgas-Eintrittsfläche oder Abgas-Austrittsfläche dient. Die Blechelemente besitzen einen Kern aus Stahl und Überzüge, welche poröses Metalloxid und katalytisch aktives Material, nämIich Platin und Rhodium aufweisen. Die aufeinanderfolgenden Blechelemente begrenzen paarweise zusammen Abgas-Durchgänge 50, die von der Abgas-Eintrittsfläche zur Abgas-Austrittsfläche verlaufen.The
Die Dicke der metallischen Kerne der Blechelemente beträgt vorzugsweise höchstens 0,1 mm und zum Beispiel ungefähr 0,05 mm. Die Dicke eines bei beiden einander abgewandten Flächen Überzüge aufweisenden Blechelements beträgt dann höchstens 0,3 mm und zum Beispiel ungefähr 0,1 mm bis 0,15 mm. Die bei ein und derselben Fläche von Wellenscheitel zu Wellenscheitel eines gewellten, mit Überzügen versehenen Blechelements gemessene Wellehöhe beträgt zweckmässigerweise höchstens 1,5 mm, vorzugsweise höchstens 1 mm, vorzugsweise mindestens 0,1 mm und zum Beispiel ungefähr 0,3 mm bis 0,8 mm. Die Wellenlänge kann beispielsweise ungefähr 1 mm bis 2 mm betragen. Ein Paket von Blechelementen hat in einem zu den Wellen sowie zu den Abgas-Durchgängen rechtwinkligen Querschnitt vorzugsweise mindestens 150 Durchgänge pro cm2 und zum Beispiel ungefähr 180 bis 200 Durchgänge pro cm2.The thickness of the metallic cores of the sheet metal elements is preferably at most 0.1 mm and, for example, approximately 0.05 mm. The thickness of a sheet metal element with coatings facing away from each other is then at most 0.3 mm and, for example, approximately 0.1 mm to 0.15 mm. The wave height measured for one and the same area from wave crest to wave crest of a corrugated sheet metal element provided with coatings is expediently at most 1.5 mm, preferably at most 1 mm, preferably at least 0.1 mm and for example approximately 0.3 mm to 0.8 mm. The wavelength can be approximately 1 mm to 2 mm, for example. A package of sheet metal elements in a cross section perpendicular to the shafts and the exhaust gas passages preferably has at least 150 passages per cm 2 and, for example, approximately 180 to 200 passages per cm 2 .
Die Hülsen 45 der Katalysatorkörper 42 sitzen satt oder mit höchstens kleinem Spiel im Katalysatorabschnitt 18 jeder Leitung 12 und sind fest mit der Wandung des Katalysatorabschnitts verbunden, beispielsweise verschweisst. Die sich in der Fig. 3 am oberen Ende des oberen Katalysatorkörpers 42 befindende Abgas-Eintrittsfläche von diesem bildet die Abgas-Eintrittsfläche 51 der ganzen Katalysatormittel 41. Die sich am unteren Ende des unteren Katalysatorkörpers 42 befindende Abgas-Austrittsfläche 53 der ganzen Katalysatormittel 41. Die Eintrittsfläche 51, die Austrittsfläche 55 und die einander zugewandten Endflächen der beiden Katalysatorkörper sind senkrecht zur Katalysator- und Ableitachse 33. Die Abgas-Eintrittsfläche 51 ist ungefähr bündig mit dem oberen Ende des zweiten Schenkels 17. Jede Leitung 12 hat einen Durchgang 55, der abgesehen von dem durch die Katalysatormittel eingenommenen Bereich aus freien Hohlräumen besteht. Der im Querschnitt teils von der Wandung des Abgas-Verteilers 16 und auf der sich in der Fig. 3 unten befindenden Seite durch die Abgas-Eintrittsfläche 51 begrenzte Längsabschnitt des Durchgangs der Leitung 12 wird im folgenden als Abgas-Verteilungsraum 56 bezeichnet. Zwischen den beiden Katalysatorkörpern jeder Leitung 12 ist ein schmaler Zwischenraum 57 vorhanden. Die Abgas-Durchgänge 50 der beiden Katalysatorkörper verlaufen im wesentlichen parallel zur Achse 33 von der Eintrittsfläche 51 zur Austrittsfläche 53, wobei sie durch den Zwischenraum 57 zwischen den beiden Katalysatorkörpern unterteilt werden. Der unmittelbar an die Austrittsfläche 53 anschliessende, im Querschnitt vom Ableitabschnitt 19 des Schenkels 17 umschlossene Abschnitt des Durchgangs 55 wird als Ableitraum 58 bezeichnet. Ferner wird der im Übergangsabschnitt 20 enthaltene Durchgangsabschnitt als Übergangsraum 59 bezeichnet.The
Die Einlassachse 31 schneidet die Katalysator- und Ableitachse 33 unter einem Winkel α von 45° bis 135° und vorzugsweise ungefähr 60° bis 120°. Zur Klarstellung sei angemerkt, dass der Winkel α zwischen einem innerhalb des Einlasses liegenden Abschnitt der Einlassachse 31 und einem innerhalb des Katalysatorabschnitts liegenden Abschnitt der Katalysatorachse gemessen wird. Der zweite Schenkel 17 ist beispielsweise nach unten von der Einlassöffnung 32 weggeneigt, so dass der Winkel α, wenn man ihn auf der unteren, inneren Seite des von den beiden Achsen 31, 33 gebildeten Scheitels misst, ein stumpfer Winkel ist und mehr als 90° beträgt. Die zur Achse 33 rechtwinklige Abgas-Eintrittsfläche 51 der Katalysatormittel bildet dementsprechend mit der Einlassachse 31 einen spitzen Winkel β, der höchstens etwa 45° beträgt. Der Abgas-Verteilungsraum 56 hat eine senkrecht zur Einlassachse 31 gemessene Querschnittsfläche, die von der Einlassöffnung 32 weg entlang der Einlassachse 31 mindestens ungefähr und beispielsweise genau linear mit dem Abstand von der Einlassöffnung abnimmt und bei dem am weitesten von der Einlassöffnung entfernten Rand der Eintrittsfläche 51 annähernd Null wird.The
Die kreisförmige Einlassöffnung 32 hat einen Durchmesser d. Der ungefähr horizontale Einlass 15 jeder Leitung 12 kann kurz ausgebildet werden, so dass sich die Abgas-Eintrittsflächen 51 der Katalysatormittel relativ nahe bei der Einlassöffnung 32 der betreffenden Leitung befinden. Die am nächsten bei der Einlassöffnung 32 angeordnete Stelle der Abgas-Eintrittsfläche 51 der Katalysatormittel 41 - d.h. in deer Fig. 3 der untere Rand der Abgas-Eintrittsfläche - steht von der ebenen Mündungsfläche des Einlasses parallel zur Einlassachse gemessen in einer Entfernung, die beispielsweise höchstens gleich dem 2-fachen Durchmesser d der Einlassöffnung oder sogar nur höchstens gleich diesem Durchmesser d ist und vorzugsweise höchstens 5 cm und zum Beispiel nur ungefähr 1 cm bis 3 cm beträgt.The circular inlet opening 32 has a diameter d. The approximately
Der Katalysatorkörper 43 bildet in einem zur Achse 33 und zu den Abgas-Durchgängen 50 rechtwinkligen Querschnitt ein Rechteck und hat parallel zur längeren Rechteckseite die Querschnittsabmessung oder Länge a parallel zur kürzeren Rechteckseite die Querschnittsabmessung oder Breite b sowie die diagonal zum genannten Rechteck gemessene maximale Querschnittsabmessung c. Ein Katalysatorkörper 42 hat parallel zur Achse 33 und zu den Abgas-Durchgängen 50 die Abmessung oder Höhe h. Der vom Katalysatorabschnitt 18 begrenzte Abschnitt des Durchgangs 55 einer Leitung 12 bildet im Querschnitt ein Rechteck, dessen längere Seite parallel zu einer durch die Achsen 31 und 33 verlaufenden Ebene ist und ungefähr eine Länge hat, die gleich der Abmessung a der mit höchstens kleinem Spiel im Schenkel 17 angeordnete Katalysatorkörper oder geringfügig grösser als a ist. Die Abmessung a ist grösser, nämlich mindestens 30%, vorzugsweise mindestens 50% oder sogar mindestens 100% grösser, als der Durchmesser d der Einlassöffnung 32. Der Durchmesser d und die Abmessung a betragen beispielsweise ungefähr 25 mm bis 35 mm bzw. 60 mm bis 80 mm. Die Querschnitts-abmessung oder Breite b der Katalysatorkörper und die ungefähr gleich grosse oder höchstens wenig grössere, rechtwinklig zur Ebene durch die Achsen 31, 33 gemessene Querschnittsabmessung des vom Katalysatorabschnitt begrenzten Durchgangsabschnitts ist beispielsweise ungefähr gleich gross wie der Durchmesser d oder höchstens wenig kleiner als dieser, könnte aber eventuell deutlich grösser als der Durchmesser d sein. Die zur Katalysatorachse 33 sowie zu den Abgas-Durchgängen 50 rechtwinklige, rechteckförmige Querschnittsfläche der Katalysatorkörper 42 ist grösser, nämlich mindestens 30%, vorzugsweise mindestens 50% und beispielsweise mindestens 100% grösser, als die kreisförmige Fläche der Einlassöffnung 32.The catalyst body 43 forms a rectangle in a cross section perpendicular to the
Da der Katalysatorabschnitt 18 und der Ableitabschnitt 19 aus einem zur geraden Katalysator- und Ableitachse 33 parallelen Mantel bestehen, haben sie selbstverständlich gerade miteinander fluchtende Wände. Ferner hat der Ableitraum 58 die gleiche Querschnittsform und die gleichen Querschnittsabmessungen wie der Innenraum des Katalysatorabschnitts 18. Die parallel zur Achse 33 gemessene Abmessung e des Ableitabschnitts 58 und des in diesem vorhandenen Ableitraums 58 beträgt mindestens 10% und sowie zum Beispiel ungefähr oder mindestens 20% der maximalen, diagonalen Querschnittsabmessung c und selbstverständlich auch mindestens 10% und vorzugsweise mindestens 20% der Querschnittsabmessung a der Katalysatorkörper.Since the
Die Wandung des Übergangsabschnitts 20 bildet den Übergang von dem im Querschnitt rechteckförmigen Ableitabschnitt 19 zu dem im Querschnitt kreisförmigen Verbindungsabschnitt 21, dessen Innendurchmesser zum Beispiel ungefähr gleich dem Durchmesser d der Einlassöffnung 32 ist. Die Übergangsachse 36 bildet mit der Katalysator- und Ableitachse 33 einen Winkel γ. Dieser wird zwischen einem innerhalb des Schenkels 17 liegenden Abschnitt der Achse 33 und einem innerhalb des Übergangsabschnitts 20 liegenden Abschnitt der Achse 36 gemessen und beträgt vorzugsweise 135° bis 225° und beispielsweise 150° bis 210°. Die Wandung des Übergangsabschnitts 20 kann eventuell stellenweise parallel zur Übergangsachse 36 sein, ist jedoch mindestens bei gewissen Umfangsbereichen zur Übergangsachse 36 geneigt. Der Winkel zwischen der Wand des Übergangsabschnitts 20 und der Übergangsachse 36 kann jedoch beispielsweise um den ganzen Übergangsabschnitt herum bei jeder Stelle von dessen Wandung höchstens 45° oder sogar nur höchstens 30° betragen. Ferner kann die Wandung des Übergangsabschnitts 20 auch mit der Katalysator- und Ableitachse 33 mindestens stellenweise einen Winkel bilden, der jedoch ebenfalls überall höchstens 45° sein kann. Die Wandung des Übergangsabschnitts 20 bildet dementsprechend bei allen Wandstellen mit der Abgas-Austrittsfläche 53 einen Winkel von mindestens 45°.The wall of the
Die axiale Abmessung bzw. Höhe h der Katalysatorkörper kann selbstverständlich derart festgelegt werden, dass eine ausreichende, katalytische Reinigung des Abgases erzielt wird. Die Abmessung bzw. Höhe h liegt zum Beispiel im Bereich von 2 cm bis 5 cm. Die Hauptabschnitte 23 sind wesentlich länger als die Einlässe 15 und die Katalysatorabschnitte 18. Die Längen der Einzel-Leitungen 12 sind derart auf den vorgesehenen Drehzahlbereich und die sonstigen Eigenschaften des Verbrennungsmotors 1 abgestimmt, dass die beim Betrieb des Motors von einer der Brennkammern 3 abgegebenen Abgasstösse trotz der hohen Druckspitzen bei den Einlässen 15 des Auspuffkrümmers 11 keine die Motorleistung beeinträchtigende Wirkung auf die Funktion der anderen Brennkammern haben. Jede Einzel-Leitung 17 kann beispielsweise mindestens 0,5 m oder mindestens 1 m lang sein. Die Länge des Abgas-Strömungswegs von einer Einlassöffnung 32 zum gemeinsamen Ausgang 28 des Auspuffkrümmers liegt dann beispielsweise im Bereich von 0,7 m bis 1,5 m.The axial dimension or height h of the catalyst body can of course be determined such that adequate, catalytic cleaning of the exhaust gas is achieved. The dimension or height h is, for example, in the range from 2 cm to 5 cm. The
Die Bildung der Katalysatorkörper 42 aus ebenen und gewellten Blechelementen ermöglicht - wie schon beschrieben - eine hohe Anzahl von Abgas-Durchgängen 50 pro Einheit der Querschnittsfläche der Blechelemente-Pakete und Katalysatorkörper. Die die Abgas-Durchgänge begrenzenden Flächen bilden dementsprechend zusammen eine grosse, für die katalytische Abgas-Behandlung wirksame Oberfläche pro Volumeneinheit der Blechelemente-Pakete und Katalysatorkörper. Die Katalysatormittel benötigen daher nur wenig Platz und können problemlos nahe bei den Einlassöffnungen 32 der Leitungen 12 in die letzteren eingebaut werden. Ferner können Katalysatormittel 41 - bezogen auf die Abgasanlage 11 pro Zeiteinheit zugeführte Abgasmenge - kostengünstig hergestellt und eingebaut werden. Das beim Betrieb des Verbrennungsmotors 1 von diesem erzeugte und den Einlässen 15 der verschiedenen Leitungen 12 des Auspuffkrümmers zugeführte Abgas wie im Abgas-Verteilungs-raum 56 jeder Leitung gleichmässig auf die gesamte Abgas-Eintrittsfläche 51 der Katalysatormittel 41 verteilt und strömt dann nacheinander durch die beiden Katalysatorkörper. Da das Abgas nach dem Austritt aus der Abgas-Austrittsfläche 53 der Katalysatormittel zuerst noch ein Stück im wesentlichen parallel zur Katalysatorachse und parallel zu den Abgas-Durchgängen weiterströmt und im Übergangsabschnitt 20 auch nur relativ wenig umgelenkt wird, ergibt sich im Ableitraum 58 über die ganze Abgas-Austrittsfläche 53 ein praktisch konstanter Druck. Dadurch wird sichergestellt, dass die Abgas-Stromdichte in allen Durchgängen der Katalysatormittel praktisch gleich gross ist. Ferner tragen die grossen Querschnittsflächen der Katalysatormittel, die Führungsweisen des Abgases vor sowie nach den Katalysatormitteln und die gleichmässige Verteilung des Abgases über die ganze Querschnittsfläche der Katalysatormittel zu einem kleinen Strömungswiderstand bei, so dass die Katalysatormittel und die Führung des Abgases unmittelbar stromaufwärts sowie stromabwärts von diesem den vom Abgas erzeugten Gegendruck gegenüber einem Auspuffkrümmer ohne Katalysatormittel nur relativ wenig erhöhen.The formation of the
In Fig. 6 ist ein Teil von einer der Einzel-Leitungen 112 eines Auspuffkrümmers 111 ersichtlich. Die Leitung 111 besitzt einen ersten, ungefähr horizontalen Schenkel 113 mit einem Einlass 115 und einem Abgas-Verteiler 116. An diesen schliesst ein zweiter, von diesem weg nach unten ragender Schenkel 117 an. Dieser hat in vom ersten Schenkel 113 weg verlaufender Richtung der Reihe nach einen Katalysatorabschnitt 118, einen Ableitabschnitt 119, einen Übergangsabschnitt 120 und einen Verbindungsabschnitt 121. Der Einlass 115 definiert eine ungefähr horizontale Einlassachse 131 und hat eine kreisförmige Einlassöffnung 132. Die Wandungen des Einlasses 115 und des Abgas-Verteilers 116 sind ähnlich ausgebildet wie bei den in den Figuren 1 bis 4 ersichtlichen Leitungen 12. Der Katalysatorabschnitt 118 und der Ableitabschnitt 119 haben eine gemeinsame, gerade Katalysator- und Ableitachse 133 und bestehen zusammen aus einem geraden, zu dieser parallelen, im Querschnitt rechteckförmigen Rohrstück bzw. Mantel. Der Übergangsabschnitt definiert eine Übergangsachse 136 und verbindet das untere Ende des rechteckförmigen Schenkels 117 mit dem im Querschnitt kreisförmigen, beispielsweise zylindrischen Verbindungsabschnitt 121. Dieser hat beispielsweise eine zur Achse 133 parallele, aber auf deren der Einlassöffnung 132 abgewandten Seite versetzte Achse. Der Katalysatorabschnitt 118 enthält Katalysatormittel 141, die jedoch nur einen einzigen Katalysatorkörper 142 aufweisen. Dieser hat zur Achse 133 parallele Abgas-Durchgänge 150, eine Abgas-Eintrittsfläche 151 und eine Abgas-Austrittsfläche 153. Der Katalysatorkörper 142 ist wiederum quaderförmig, bildet in einem zur Achse 133 und zu den Durchgängen 150 rechtwinkligen Querschnitt ein Rechteck und hat parallel zur längeren Rechteckseite die in Fig. 6 eingezeichnete Querschnittsabmessung a und eine in Fig. 6 nicht sichtbare, diagonal zum Rechteck gemessene, maximale Querschnitts-abmessung c. Der Ableitabschnitt 119 enthält einen unmittelbar an die Austrittsfläche 153 angrenzenden Ableitraum 158 und der Umlenkabschnitt 120 enthält einen Umlenkraum 159.6 shows a part of one of the
Die Katalysator- und Ableitachse 133 bildet mit der Einlassachse 131 einen Winkel α. Die Abgas-Eintrittsfläche 151 bildet mit der Einlassachse 131 einen Winkel β. Die Winkel α und β liegen in den gleichen Bereichen wie bei den Leitungen 12. Die parallel zur Katalysator- und Ableitachse 133 gemessene Abmessung e des Ableitabschnitts 119 und Ableitraums 158 beträgt bei der teilweise in Fig. 6 gezeichneten Leitung 112 mindestens etwa 30% und zum Beispiel sogar mindestens 40% der Querschnittsabmessung a und auch mindestens 25% oder sogar mindestens 30% der maximalen, diagonalen Querschnittsabmessung c des Katalysatorkörpers 142. Der Übergangsabschnitt 120 hat bei diesem Ausführungsbeispiel auf der rechten Seite der Fig. 6 beispielsweise eine Wand, die einen ziemlich grossen Winkel mit der Achse 133 und dementsprechend einen relativ kleinen Winkel mit der Abgas-Austrittsfläche bildet. Ferner weicht auch der von den Achsen 133 und 136 gebildete Winkel relativ stark von 180° ab. Das Abgas wird also im Übergangsraum 159 der in Fig. 6 gezeichneten Leitung stärker umgelenkt als in dem in Fig. 3 ersichtlichen Übergangsraum 59. Wegen der grossen Abmessung e des zur Katalysator- und Ableitachse 133 parallele Wände aufweisenden Ableitabschnitts 119 und des in diesem vorhandenen Ableitraums 158 hat jedoch die Ausbildung des Umlenkabschnitts 120 bei der Leitung gemäss Fig. 6 praktisch keine Rückwirkung auf die Abgasverteilung im Katalysatorkörper 142. Die Abgas-Strömung ist daher im Katalysatorkörper 142 wie in den Katalysatorkörpern 42 einer Leitung 12 praktisch vollkommen gleichmässig über die Querschnittsfläche des Katalysator-körpers verteilt.The catalyst and discharge
Die in Fig. 7 ersichtliche Einzel-Leitung 212 eines Auspuffkrümmers 211 hat einen ersten, ungefähr horizontalen Schenkel 213 mit einem Einlass 215 und einen zweiten, nach unten ragenden Schenkel 217 mit einem im Querschnitt viereckförmigen, nämlich rechteckförmigen Katalysatorabschnitt 218. An diesen schliesst ein Ableit- und Übergangsabschnitt 219 an, der an seinem unteren Ende mit einem im Querschnitt kreisförmigen Verbindungsabschnitt 221 verbunden ist. Der Einlass und der Katalysatorabschnitt definieren eine Einlassachse 231 bzw. eine Katalysatorachse 233. Der Ableit- und Übergangsabschnitt 219 definierten eine Ableit- und Übergangsachse 234, die mit der Katalysatorachse 233 fluchtet oder einen Winkel ϕ bildet. Der Katalysatorabschnitt 218 enthält Katalysatormittel 241, die beispielsweise aus einem einzigen, quaderförmigen Katalysatorkörper bestehen, Abgas-Durchgänge 250 enthalten und eine Abgas-Eintrittsfläche 251 sowie eine Abgas-Austrittsfläche 252 aufweisen. Der Ableit- und Übergangsabschnitt 219 umschliesst im Querschnitt einen an die Abgas-Austrittsfläche 253 angrenzenden Ableit- und Übergangsraum 258, der auf der Achse 234 und parallel zu dieser gemessen die Abmessung e hat.The
Bei der Leitung 212 bildet also der an die Abgas-Austrittsfläche 253 angrenzende Ableitraum 258 gleichzeitig den Übergangsraum und macht den Übergang von der rechteckförmigen Austrittsfläche 253 zum kreisförmigen Durchgangsabschnitt des Verbindungsabschnitts 221. Die Wandung des Ableit- und Übergangsabschnitt 219 bildet dementsprechend mindestens stellenweise Winkel mit der Katalysatorachse 233. Diese Winkel sollen vorzugsweise überall und insbesondere bei jeder Umfangsstelle des Randes der Abgas-Austrittsfläche 253 höchstens 45°, vorzugsweise höchstens 30°, besser höchstens 25° und noch besser höchstens 20° betragen. Die Wandung des Ableit- und Übergangsabschnitts 219 bildet dann auch mindestens stellenweise von 90° abweichende Winkel mit der Abgas-Austrittsfläche 253. Diese Winkel sollen vorzugsweise bei allen Randstellen der Austrittsfläche 253 mindestens 45°, vorzugsweise mindestens 60° und besser mindestens 65° oder mindestens 70° betragen. Die Abmessung e des Ableit- und Übergangsraums 258 ist bei der Leitung 212 zum Beispiel mindestens gleich der Querschnittsabmessung a sowie auch mindestens gleich der maximalen, diagonalen Querschnitts-abmessung c der Katalysatormittel. Der Winkel ϕ wird analog gemessen wie es vorher für die Winkel α und γ erläutert wurde und weicht vorzugsweise höchstens 45°, beispielsweise höchstens 30°, besser höchstens 25° und noch besser höchstens 20° von einem gestreckten Winkel - d.h. 180° - ab und beträgt also vorzugsweise 135° bis 225°, beispielsweise 150° bis 210°, besser 155° bis 205° und noch besser 160° bis 200°.In the case of the
In Fig. 8 ist eine Einzel-Leitung 312 eines Auspuffkrümmers 311 ersichtlich. Die Leitung 312 hat einen ersten ungefähr horizontalen Schenkel 313 mit einem Einlass 315 und einem Abgas-Verteiler 316 und einen vom ersten Schenkel 313 weg nach unten ragenden, zweiten Schenkel 317. Dieser hat einen Katalysatorabschnitt 318, einen Ableitabschnitt 319, einen Übergangsabschnitt 320 und einen Verbindungsabschnitt 321. Der Einlass hat eine ungefähr horizontale Einlassachse 331. Der Katalysatorabschnitt und der Ableitabschnitt haben eine gemeinsame Katalysator- und Ableitachse 333. Der Katalysatorabschnitt enthält Katalysatormittel 341, die mindestens einen Katalysatorkörper 342 mit Abgas-Durchgängen 350, eine Abgas-Eintrittsfläche 351 und eine Abgas-Austrittsfläche 353 aufweisen. Die Wandung des Abgas-Verteilers 316 begrenzt zusammen mit der Eintrittsfläche 351 der Katalysatormittel einen Abgas-Verteilungsraum 356.8 shows a
Die Katalysator- und Ableitachse 333 bildet mit der Einlassachse 331 einen Winkel α, der bei dieser Leitung ungefähr oder genau 90° ist. Die Abgas-Eintrittsfläche 351 ist dementsprechend ungefähr parallel zur Einlassachse 331. Die der Eintrittsfläche 351 gegenüberstehende Wand des Abgas-Verteilers 316 ist ungefähr eben und vom Einlass weg nach unten gegen die Eintrittsfläche 351 geneigt. Der Abgas-Verteilungsraum 356 hat in einem zur Einlassachse rechtwinkligen Querschnitt eine Querschnittsfläche, die vom Einlass weg wiederum linear abnimmt. Der zweite Schenkel 317 ist im übrigen beispielsweise ähnlich ausgebildet wie bei der in Fig. 6 ersichtlichen Leitung.The catalyst and discharge
Die in den Figuren 6 bis 8 gezeichneten Auspuffkrümmer können - soweit vorgängig nichts anderes geschrieben wurde - ähnlich ausgebildet sein wie der zuerst anhand der Figuren 1 bis 5 beschriebene Auspuffkrümmer und ähnliche Eigenschaften wie dieser haben.Exhaust manifolds shown in FIGS. 6 to 8 can - unless previously written otherwise - be designed similarly to the exhaust manifold first described with reference to FIGS. 1 to 5 and have similar properties to this.
Der Verbrennungsmotor 1 und die Abgasanlagen können noch in verschiedener Hinsicht geändert werden. Es können beispielsweise Merkmale von verschiedenen beschriebenen Ausführungsbeispielen miteinander kombiniert werden.The
Der Winkel α ist vorzugsweise ein stumpfer oder rechter Winkel, kann aber eventuell auch ein spitzer Winkel sein und also - wie schon erwähnt - etwa im Bereich von 45° bis 135° liegen. Die Katalysatormittel können eventuell eine quadratische Querschnittsfläche haben und zum Beispiel mindestens einen würfelförmigen Katalysatorkörper aufweisen.The angle α is preferably an obtuse or right angle, but can possibly also be an acute angle and, as already mentioned, can be in the range from 45 ° to 135 °. The catalyst means can possibly have a square cross-sectional area and, for example, have at least one cube-shaped catalyst body.
Die Anschlussplatte 26 kann zum Beispiel durch separate Ringflansche ersetzt werden, von denen jeder an einer der Leitungen befestigt ist. Ferner kann jeder Katalysatorkörper zwei oder mehr Hülsen aufweisen, von denen jede ein Paket Blechelemente enthält. Die zum gleichen Katalysatorkörper gehörenden Hülsen können dann mit einander zugewandten Wänden aneinander anliegen und miteinander verschweisst oder in anderer Weise starr miteinander verbunden sein.The
Der Motor kann zudem weniger oder mehr als vier Zylinder und eine entsprechende Anzahl Abgasausgänge haben. Die Anzahl der Einzel-Leitungen des Auspuffkrümmers kann dann dementsprechend mehr oder weniger als vier sein. Ferner kann man eine Abgasanlage mit zwei Auspuffkrümmern versehen, von denen jeder mit einer Gruppe der Abgasausgänge des Motors verbundene Eingänge und einen mit einem Auspuffrohr verbundenen Ausgang hat.The engine can also have fewer or more than four cylinders and a corresponding number of exhaust gas outlets. The number of individual lines of the exhaust manifold can accordingly be more or less than four. Furthermore, an exhaust system can be provided with two exhaust manifolds, each of which has inputs connected to a group of the engine's exhaust ports and an outlet connected to an exhaust pipe.
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH129996 | 1996-05-23 | ||
CH1299/96 | 1996-05-23 | ||
CH129996 | 1996-05-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0809001A1 true EP0809001A1 (en) | 1997-11-26 |
EP0809001B1 EP0809001B1 (en) | 2003-01-22 |
Family
ID=4207188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810309A Expired - Lifetime EP0809001B1 (en) | 1996-05-23 | 1997-05-20 | Exhaust manifold with catalyst |
Country Status (7)
Country | Link |
---|---|
US (1) | US5881553A (en) |
EP (1) | EP0809001B1 (en) |
JP (1) | JPH1054229A (en) |
KR (1) | KR970075250A (en) |
BR (1) | BR9703308A (en) |
DE (1) | DE59709173D1 (en) |
ES (1) | ES2187743T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688600A2 (en) * | 2005-02-02 | 2006-08-09 | Pankl Emission Control Systems GmbH | Apparatus to purify vehicle exhaust gas |
EP2050936A3 (en) * | 2007-10-15 | 2010-01-20 | International Engine Intellectual Property Company, LLC. | Aftertreatment device |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW396052B (en) * | 1997-11-12 | 2000-07-01 | Babcock Hitachi Kk | Exhaust emission control catalyst element, catalyst structure, production method thereof, exhaust emission control apparatus and exhaust emission control method using the apparatus |
JP3518338B2 (en) * | 1998-05-29 | 2004-04-12 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US6713025B1 (en) | 1999-09-15 | 2004-03-30 | Daimlerchrysler Corporation | Light-off and close coupled catalyst |
JP2001164907A (en) * | 1999-12-10 | 2001-06-19 | Honda Motor Co Ltd | Exhaust heat recovery system of multicylinder internal combustion engine |
US6669912B1 (en) | 2000-02-15 | 2003-12-30 | Senior Investments Ag | Flexible combined vibration decoupling exhaust connector and preliminary catalytic converter construction |
JP2002070532A (en) * | 2000-08-28 | 2002-03-08 | Ibiden Co Ltd | Exhaust emission control device |
JP3521895B2 (en) * | 2000-12-07 | 2004-04-26 | 日産自動車株式会社 | Exhaust manifold of internal combustion engine |
DE10216272B9 (en) * | 2002-04-12 | 2006-05-18 | J. Eberspächer GmbH & Co. KG | Exhaust treatment arrangement for an internal combustion engine |
FR2843776A1 (en) * | 2002-08-23 | 2004-02-27 | Faurecia Sys Echappement | Motor vehicle engine exhaust pollution control unit has lateral orifice bounded at least partially by transverse cover |
DE102004018693B4 (en) * | 2004-04-17 | 2007-09-06 | Daimlerchrysler Ag | exhaust system |
JP2007278101A (en) * | 2006-04-03 | 2007-10-25 | Honda Motor Co Ltd | Exhaust-gas cleaning catalytic converter |
JP2007278100A (en) * | 2006-04-03 | 2007-10-25 | Honda Motor Co Ltd | Exhaust emission control device |
WO2007147119A2 (en) * | 2006-06-16 | 2007-12-21 | Robert Aratari | Combustion generator enhancement device |
KR101000224B1 (en) * | 2008-12-04 | 2010-12-10 | 현대자동차주식회사 | Catalytic apparatus for vehicle |
US8353154B2 (en) * | 2009-09-21 | 2013-01-15 | GM Global Technology Operations LLC | Thermally efficient exhaust treatment system for an internal combustion engine |
US8635861B2 (en) * | 2009-12-23 | 2014-01-28 | Caterpillar Inc. | Exhaust aftertreatment system |
KR101196305B1 (en) * | 2010-05-25 | 2012-11-06 | 우신공업 주식회사 | Exhaust manifold |
US9903251B1 (en) | 2011-11-29 | 2018-02-27 | Brunswick Corporation | Outboard motors and exhaust systems for outboard motors having an exhaust conduit supported inside the V-shape |
US9174818B1 (en) | 2011-11-29 | 2015-11-03 | Brunswick Corporation | Marine engines and exhaust systems for marine engines having a catalyst for treating exhaust |
US9551266B2 (en) * | 2014-05-15 | 2017-01-24 | GM Global Technology Operations LLC | External exhaust guiding flow chambers for multiple catalyst architecture |
JP2017040225A (en) * | 2015-08-20 | 2017-02-23 | 本田技研工業株式会社 | Exhaust emission control device of internal combustion engine |
US9758228B1 (en) | 2016-07-01 | 2017-09-12 | Brunswick Corporation | Exhaust manifolds for outboard marine engines |
US10634029B2 (en) * | 2016-08-23 | 2020-04-28 | General Electric Technology Gmbh | Mobile selective catalyst reduction system |
JP2018076851A (en) * | 2016-11-11 | 2018-05-17 | いすゞ自動車株式会社 | Exhaust system structure for internal combustion engine |
JP2018076853A (en) * | 2016-11-11 | 2018-05-17 | いすゞ自動車株式会社 | Exhaust system structure for internal combustion engine |
JP7035308B2 (en) * | 2016-11-25 | 2022-03-15 | 株式会社Ihi | Pressure vessel |
US10329978B1 (en) | 2018-02-13 | 2019-06-25 | Brunswick Corporation | High temperature exhaust systems for marine propulsion devices |
IT201900006960A1 (en) * | 2019-05-17 | 2020-11-17 | Magneti Marelli Spa | EXHAUST GAS TREATMENT DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
CN114076022B (en) * | 2020-08-21 | 2023-07-14 | 比亚迪股份有限公司 | Variable exhaust pipe fitting, variable exhaust pipe device, engine, and vehicle |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2179689A1 (en) * | 1972-04-13 | 1973-11-23 | Questor Corp | System for treating exhaust gases - with partial oxidn followed by redn followed by complete oxidn |
GB1405068A (en) * | 1972-04-07 | 1975-09-03 | Ford Motor Co | Catalytic converter system for internal combustion engine exhaust gases |
DE2815317A1 (en) * | 1978-04-08 | 1979-10-18 | Volkswagenwerk Ag | Catalytic exhaust gas purifier for IC engine - with shaped thin metal carrier plates held in square stack |
US4887427A (en) * | 1985-10-28 | 1989-12-19 | Nissan Motor Company, Limited | Exhaust particle removing system for an engine |
DE3823550A1 (en) * | 1988-07-12 | 1990-01-18 | Bayerische Motoren Werke Ag | Vehicle exhaust system with a catalytic converter body |
EP0420462A2 (en) * | 1989-09-28 | 1991-04-03 | Rover Group Limited | A catalytic converter |
DE4214340A1 (en) * | 1991-05-09 | 1992-11-12 | Showa Aircraft Ind | Honeycomb structure esp. for exhaust gas catalyst - accommodates differential thermal expansion stresses |
US5187142A (en) * | 1991-09-03 | 1993-02-16 | General Motors Corporation | Catalytic converter metal monolith |
DE4236893A1 (en) * | 1991-11-16 | 1993-05-19 | Volkswagen Ag | Exhaust gas system for internal combustion engines - has exhaust pipes leading from cylinder head exhaust duct and catalytic converter arrangement |
US5212949A (en) * | 1990-05-22 | 1993-05-25 | Sanshin Kogyo Kabushiki Kaisha | Exhaust gas cleaning system for a marine propulsion unit |
DE9313593U1 (en) * | 1993-09-08 | 1993-11-18 | Oberland Mangold GmbH, 82467 Garmisch-Partenkirchen | Catalyst arrangement |
US5330728A (en) * | 1992-11-13 | 1994-07-19 | General Motors Corporation | Catalytic converter with angled inlet face |
DE4317092A1 (en) * | 1993-05-21 | 1994-11-24 | Audi Ag | Arrangement comprising at least one catalytic convertor |
DE29505660U1 (en) * | 1995-04-01 | 1995-06-14 | Gesellschaft für Abgasentgiftungsanlagen mbH, 55262 Heidesheim | Exhaust manifold with integrated catalytic converters |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692497A (en) * | 1971-05-20 | 1972-09-19 | Engelhard Min & Chem | Catalytic exhaust gas treatment apparatus |
ES2050049T3 (en) * | 1989-12-22 | 1994-05-01 | Emitec Emissionstechnologie | EXHAUST GAS DUCT WITH CATALYST SUPPORT BODY ATTACKED BY THE FLOW IN THE FORM OF A PROPELLER. |
US5094074A (en) * | 1990-02-23 | 1992-03-10 | Nissan Motor Co., Ltd. | Catalytic converter with metallic carrier and method for producing same |
JP3221972B2 (en) * | 1993-04-22 | 2001-10-22 | 松下電器産業株式会社 | Catalyst and catalytic combustion device using it |
US5395600A (en) * | 1993-07-13 | 1995-03-07 | W. R. Grace & Co.-Conn. | Corrugated thin metal monolith converter |
DE4408130A1 (en) * | 1994-03-10 | 1995-09-14 | Bayerische Motoren Werke Ag | Device for exhaust gas purification in internal combustion engines |
US5693295A (en) * | 1996-01-16 | 1997-12-02 | General Motors Corporation | Catalytic converter |
-
1997
- 1997-05-20 ES ES97810309T patent/ES2187743T3/en not_active Expired - Lifetime
- 1997-05-20 DE DE59709173T patent/DE59709173D1/en not_active Expired - Lifetime
- 1997-05-20 EP EP97810309A patent/EP0809001B1/en not_active Expired - Lifetime
- 1997-05-21 JP JP9131125A patent/JPH1054229A/en active Pending
- 1997-05-22 KR KR1019970019999A patent/KR970075250A/en not_active Application Discontinuation
- 1997-05-23 US US08/862,525 patent/US5881553A/en not_active Expired - Fee Related
- 1997-05-23 BR BR9703308A patent/BR9703308A/en not_active Application Discontinuation
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1405068A (en) * | 1972-04-07 | 1975-09-03 | Ford Motor Co | Catalytic converter system for internal combustion engine exhaust gases |
FR2179689A1 (en) * | 1972-04-13 | 1973-11-23 | Questor Corp | System for treating exhaust gases - with partial oxidn followed by redn followed by complete oxidn |
DE2815317A1 (en) * | 1978-04-08 | 1979-10-18 | Volkswagenwerk Ag | Catalytic exhaust gas purifier for IC engine - with shaped thin metal carrier plates held in square stack |
US4887427A (en) * | 1985-10-28 | 1989-12-19 | Nissan Motor Company, Limited | Exhaust particle removing system for an engine |
DE3823550A1 (en) * | 1988-07-12 | 1990-01-18 | Bayerische Motoren Werke Ag | Vehicle exhaust system with a catalytic converter body |
EP0420462A2 (en) * | 1989-09-28 | 1991-04-03 | Rover Group Limited | A catalytic converter |
US5212949A (en) * | 1990-05-22 | 1993-05-25 | Sanshin Kogyo Kabushiki Kaisha | Exhaust gas cleaning system for a marine propulsion unit |
DE4214340A1 (en) * | 1991-05-09 | 1992-11-12 | Showa Aircraft Ind | Honeycomb structure esp. for exhaust gas catalyst - accommodates differential thermal expansion stresses |
US5187142A (en) * | 1991-09-03 | 1993-02-16 | General Motors Corporation | Catalytic converter metal monolith |
DE4236893A1 (en) * | 1991-11-16 | 1993-05-19 | Volkswagen Ag | Exhaust gas system for internal combustion engines - has exhaust pipes leading from cylinder head exhaust duct and catalytic converter arrangement |
US5330728A (en) * | 1992-11-13 | 1994-07-19 | General Motors Corporation | Catalytic converter with angled inlet face |
DE4317092A1 (en) * | 1993-05-21 | 1994-11-24 | Audi Ag | Arrangement comprising at least one catalytic convertor |
DE9313593U1 (en) * | 1993-09-08 | 1993-11-18 | Oberland Mangold GmbH, 82467 Garmisch-Partenkirchen | Catalyst arrangement |
DE29505660U1 (en) * | 1995-04-01 | 1995-06-14 | Gesellschaft für Abgasentgiftungsanlagen mbH, 55262 Heidesheim | Exhaust manifold with integrated catalytic converters |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688600A2 (en) * | 2005-02-02 | 2006-08-09 | Pankl Emission Control Systems GmbH | Apparatus to purify vehicle exhaust gas |
EP1688600A3 (en) * | 2005-02-02 | 2008-05-14 | Pankl Emission Control Systems GmbH | Apparatus to purify vehicle exhaust gas |
EP2050936A3 (en) * | 2007-10-15 | 2010-01-20 | International Engine Intellectual Property Company, LLC. | Aftertreatment device |
Also Published As
Publication number | Publication date |
---|---|
DE59709173D1 (en) | 2003-02-27 |
ES2187743T3 (en) | 2003-06-16 |
US5881553A (en) | 1999-03-16 |
BR9703308A (en) | 1998-10-27 |
JPH1054229A (en) | 1998-02-24 |
EP0809001B1 (en) | 2003-01-22 |
KR970075250A (en) | 1997-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0809001B1 (en) | Exhaust manifold with catalyst | |
EP0676535B1 (en) | Catalytic converter for the catalytic treatment of exhaust gases | |
DE19680093B4 (en) | Honeycomb body with flow-through channels of different flow resistance | |
EP1426099B1 (en) | Static mixer and method | |
EP0974804B1 (en) | Heat exchanger, more particularly heat exchanger for exhaust gases | |
DE69003407T2 (en) | Integrated matched intake system. | |
EP1853800B1 (en) | Honeycomb body with fissured front sides | |
EP0484364A1 (en) | Honeycomb body with internal inflow edges, in particular catalyst body for motor vehicles. | |
DE4432972B4 (en) | Heat exchanger with two rows of tubes, especially for motor vehicles | |
DE19701169A1 (en) | Catalytic converter | |
DE3744265C2 (en) | Soot filter for exhaust gas cleaning in motor vehicles | |
WO2005115589A1 (en) | Cleaning insert for exhaust emission control systems in particular for particle filters | |
EP1089819A1 (en) | Monolithic, metallic honeycomb bodies with a number of varying channels | |
DE2913731C2 (en) | Catalytic exhaust gas cleaning device for the internal combustion engine of a motor vehicle | |
DE19523532A1 (en) | Catalytic converter arrangement with two or more-strand exhaust gas routing | |
DE3823550A1 (en) | Vehicle exhaust system with a catalytic converter body | |
DE3317983C1 (en) | Heat exchanger, in particular for heating a passenger compartment of motor vehicles | |
DE2711195A1 (en) | INTAKE MANIFOLD FOR 4- TO 6-CYLINDER IN-LINE COMBUSTION MACHINES | |
DE3317982C1 (en) | Heat exchanger, in particular for heating a passenger compartment of motor vehicles | |
EP1787705A1 (en) | Filtering device, especially for an exhaust gas system of a Diesel internal combustion engine | |
DE931595C (en) | Countercurrent heat exchanger | |
DE2736466C3 (en) | Intake manifold for internal combustion engines | |
EP1486649B1 (en) | Catalyst and process for its production | |
DE4236893A1 (en) | Exhaust gas system for internal combustion engines - has exhaust pipes leading from cylinder head exhaust duct and catalytic converter arrangement | |
DE2922479B2 (en) | Liquid fuel carburetors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19980403 |
|
17Q | First examination report despatched |
Effective date: 20000922 |
|
RTI1 | Title (correction) |
Free format text: EXHAUST MANIFOLD WITH CATALYST |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RTI1 | Title (correction) |
Free format text: EXHAUST MANIFOLD WITH CATALYST |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030122 |
|
REF | Corresponds to: |
Ref document number: 59709173 Country of ref document: DE Date of ref document: 20030227 Kind code of ref document: P |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20030424 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030526 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2187743 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031201 |
|
26N | No opposition filed |
Effective date: 20031023 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040531 |
|
BERE | Be: lapsed |
Owner name: *SCAMBIA INDUSTRIAL DEVELOPMENTS A.G. Effective date: 20040531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050520 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20040521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090520 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100520 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150521 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150521 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: BOSAL EMISSION CONTROL SYSTEMS NV, BE Effective date: 20150908 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59709173 Country of ref document: DE Representative=s name: HABBEL & HABBEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59709173 Country of ref document: DE Owner name: SCAMBIA HOLDINGS CYPRUS LIMITED, CY Free format text: FORMER OWNER: SCAMBIA INDUSTRIAL DEVELOPMENTS AKTIENGESELLSCHAFT, SCHAAN, LI |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59709173 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161201 |