EP0284832A1 - Manufacturing process for an anisotropic magnetic material based on Fe, B and a rare-earth metal - Google Patents
Manufacturing process for an anisotropic magnetic material based on Fe, B and a rare-earth metal Download PDFInfo
- Publication number
- EP0284832A1 EP0284832A1 EP88103535A EP88103535A EP0284832A1 EP 0284832 A1 EP0284832 A1 EP 0284832A1 EP 88103535 A EP88103535 A EP 88103535A EP 88103535 A EP88103535 A EP 88103535A EP 0284832 A1 EP0284832 A1 EP 0284832A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- earth metal
- magnetic
- material system
- crystallization
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
Definitions
- the invention relates to a method for producing an anisotropic magnetic material from a material system with at least the three material components iron (Fe), boron (B) and a rare earth metal (SE), in which method rapid solidification of an alloy melt of the desired composition and subsequently a treatment for generating magnetic anisotropy is carried out.
- Fe iron
- B boron
- SE rare earth metal
- Nd-Fe-B magnetic materials show remanence values and energy densities that are significantly higher than those of the known Sm-Co-based alloys. It is therefore to be expected that they will replace the conventional Sm-Co materials in many applications.
- the excellent magnetic properties of this three-component system are based on the tetragonal intermetallic phase Nd2Fe14B. This is a phase which is sometimes also referred to as the theta phase and has a uniaxial crystal anisotropy, the anisotropy field H A at 300 K being approximately 75 kOe.
- Anisotropic Nd-Fe-B magnetic materials are often produced using powder metallurgy (cf. EP-A-0 126 179). According to this method, an alloy of the desired composition is first ground so far that the powder grains are the size of single-range particles. These powder grains with grain sizes between 2 and 4 ⁇ m are then aligned in a magnetic field, for example pre-compacted by isostatic pressing and then sintered to form a high-density body. With a final heat treatment, the magnetic properties are then optimized.
- isotropic strips of the desired composition are first produced by rapid solidification of an alloy melt. These strips with a fine crystalline structure are then compacted into an isotropic dense body by pressing at temperatures around 700 ° C. A subsequent hot deformation at about 700 ° C by about 50% then leads to an anisotropic texture with the magnetically easy c-direction parallel to the pressing direction (see also "Appl.Phys.Lett.” 46 (8), April 15, 1985, pages 790 and 791).
- the object of the present invention is therefore to further develop the method of the type mentioned at the outset in such a way that it can be used to produce anisotropic magnetic materials with the material components Fe, B and a rare earth metal which have a greater coercive force.
- Nd-Fe-B In the ternary system Nd-Fe-B, methods fail to set a preferred anisotropy by heat treatment of the initially amorphous alloy in the magnetic field at the low Curie temperature T c of approx. 315 ° C. compared to the crystallization temperature T k of approx. 550 ° C.
- T c Curie temperature
- T k crystallization temperature
- co-additives increase the Curie temperature.
- the coercive force deteriorated, so that, for example, an improvement in temperature stability by Co alone is not possible.
- the invention is based on the knowledge that the Nd2 (Fe 1-x Co x ) 14B phase, which forms in the early stages of crystallization of the corresponding amorphous alloy, has a Curie temperature T c comparable to the equilibrium phase. This is not immediately obvious, since in the course of the crystallization (metastable) phases with a different structure and / or a different composition can initially arise, which therefore also have different physical properties than those with regard to the structure and the concentration in the thermodynamic equilibrium present phase.
- Figure 1 shows for the system Nd- (Fe, Co) -B the dependence of the Curie temperature and the crystallization temperature on the Co concentration.
- Nd- (Fe, Co) -B the dependence of the Curie temperature and the crystallization temperature on the Co concentration.
- the coercive field strength and the remanence as a function of the Co concentration are shown in the diagram in FIG.
- the exemplary embodiment is based on a magnetic material of the 4-substance system SE- (Fe, Co) -B, with SE Nd selected as the rare earth metal.
- SE- (Fe, Co) -B SE- (Fe, Co) -B
- SE Nd selected as the rare earth metal.
- Nd1 N (Fe 1-x Co x ) 77B8 with 0.1 ⁇ x ⁇ 0.6, for example the alloy Nd15 (Fe 0.7 Co 0.3 ) 77B8 the starting materials with sufficient Purity in the desired ratio under a Ti-cleaned argon atmosphere was inductively melted into a master alloy. Pyrolytic BN or Al2O3 crucibles are used. Melting in an arc furnace is also possible.
- melt-spinning a process which is known from the production of amorphous metal alloys (cf. for example "Zeitschrift für Metallischen Metallischen” Vol. 69, 1978, Book 4, pages 212 to 220).
- a protective gas such as Argon or under vacuum the master alloy e.g. melted in a quartz crucible at high frequency and then sprayed through a nozzle onto a rapidly rotating copper drum.
- the substrate speed, i.e. the speed of rotation of the copper drum is typically above 30 m / sec. In this way, the required cooling rate of more than 106 K / sec is achieved.
- the amorphous phase is characterized by a diffuse X-ray diffraction diagram and a symmetrical hysteresis loop with coercive field strengths below 100 Oe.
- the intermediate product obtained in tape form is then comminuted into smaller pieces of tape or into powders.
- the particles thus formed are then e.g. in quartz tubes under an argon atmosphere, optionally in the presence of additional getter materials such as e.g. Zr for setting residual oxygen, melted down.
- the intermediate product thus prepared in particle form is then crystallized by means of a suitable heat treatment.
- the temperature is chosen so that it is above the crystallization temperature T k , but below the Curie temperature T c .
- T k crystallization temperature
- T c Curie temperature
- This heat treatment is said to be in a magnetic direct field can be made so as to set the desired magnetic anisotropy.
- a value between 0.5 and 100 kOe is advantageously chosen for the field strength.
- the temperature to be selected must of course also be below the temperature T s at which the uniaxial preferred direction changes to a planar preferred plane (cf. "Journ. Of Magnetism and Magn.Mat.”, Vol. 65, 1987, pages 139 to 144 ).
- the powder crystallized in this way is aligned in a further external magnetic constant field.
- the field strength of this alignment field can be significantly lower than that of the field created during the crystallization process and can be, for example, at least 1, preferably at least 5 kOe.
- Simultaneously with this alignment of the powder particles they are e.g. can be mechanically fixed by pouring quick-curing synthetic resin. Appropriate magnets can then be built up with the body made of the special anisotropic magnetic material.
- the crystallized particles can also be aligned in the magnetic field and simultaneously compacted into a dense body by mechanical pressing processes.
- a workpiece of the desired geometry can first be pressed out of the amorphous material, so that the field crystallization is carried out only afterwards.
- the material can also give complicated preferred geometries. For example, Create magnetic ring bodies with a radial preferred direction.
- the method according to the invention can be used for any alloy Concentrations are used as long as it is ensured that the hard magnetic phase Nd2 (Fe, Co) 14B is formed at least for the most part during crystallization.
- the Co concentration, based on the Fe content, should be between 0.1 and 0.60, preferably between 0.15 and 0.5. This results in Curie temperatures between 430 and 630 ° C.
- the corresponding temperature conditions for the material Nd15 (Fe 1-x Co x ) 77B8 can be seen in the diagram of Figure 1.
- the Co concentration x is a substituted Fe component on the abscissa and the associated temperatures T in ° C are plotted on the ordinate.
- Curve I represents the Curie temperature T c of the crystallizing Nd2 (Fe, Co) 14-B phase and curve II the crystallization temperature T k of corresponding amorphous bands for a heating rate of 40 K / min. Since, according to the invention, the heat treatment for crystallization is to take place above the crystallization temperature T k , but below the Curie temperature T c , according to the diagram, only Co concentrations with x above 0.3 are possible due to the intended annealing conditions. However, if one selects smaller heating rates or if the crystallization is carried out isothermally for longer annealing times, curve II slips further down in the diagram, so that the required temperature conditions can then be maintained even with correspondingly low Co concentrations.
- the required theta phase of the 4-substance system SE x (Fe, Co) y B z occurs when a composition of this system is selected, so that the following applies: 10 ⁇ x ⁇ 30, 60 ⁇ y ⁇ 85 and 3 ⁇ z ⁇ 20.
- x, y and z should have the following relationships: 11 ⁇ x ⁇ 20, 65 ⁇ y ⁇ 80 and 5 ⁇ z ⁇ 20.
- SE is at least one rare earth metal whose atomic number in the periodic table of the elements is between 58 and 66 (inclusive).
- Nd is the rare earth metal to be selected SE.
- another rare earth metal such as praseodymium (Pr) can be selected as well.
- Pr praseodymium
- a lighter rare earth metal to be replaced by a heavier rare earth metal such as To at least partially substitute dysprosium (Dy) in order to achieve higher coercive field strengths.
- the Fe component can optionally also be partially substituted by another metallic element, such as in particular aluminum (Al).
- another metallic element such as in particular aluminum (Al).
- the method according to the invention is not limited to intermediate products in particle or powder form.
- Thin layers produced according to the invention can be provided for the construction of magnetic heads in data storage devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Ein anisotroper Magnetwerkstoff mit Eisen (Fe), Bor (B) und einem Selten-Erd-Metall (SE) wird bisher durch Rascherstarrung einer Legierungsschmelze der gewünschten Zusammensetzung und nachfolgender Behandlung zur Erzeugung einer magnetischen Anisotropie hergestellt. Die so hergestellten Werkstoffe haben jedoch eine verhältnismäßig kleine Koerzitivfeldstärke. Mit dem neuen Verfahren sollen vergleichsweise größere Koerzitivfeldstärken zu erreichen sein. Zunächst wird eine Vorlegierung mit den Stoffkomponenten hergestellt, der Kobalt (Co) in einer solchen Menge zulegiert ist, daß die Kristallisationstemperatur (Tk) des entsprechenden amorphen Stoffsystems unterhalb der Curie-Temperatur (Tc) der kristallisierenden SE2(Fe, CO)14B-Phase des Stoffsystems liegt, wird dann aus der Schmelze der Vorlegierung ein Zwischenprodukt mit amorphem Gefüge unter Anwendung der Rascherstarrungstechnik ausgebildet und wird danach eine Kristallisation des Zwischenproduktes mittels einer Wärmebehandlung bei einer Temperatur oberhalb der Kristallisationstemperatur (Tk), jedoch unterhalb der Curie-Temperatur (Tc) in Gegenwart eines externen magnetischen Gleichfeldes zur Erzeugung der magnetischen Anisotropie vorgenommen. Falls Partikel vorliegen, können diese nach der Kristallisation ausgerichtet und mechanisch fixiert werden. Herstellung von magnetisch anisotropen WerkstoffenAn anisotropic magnetic material with iron (Fe), boron (B) and a rare earth metal (SE) has hitherto been produced by rapid solidification of an alloy melt of the desired composition and subsequent treatment to produce a magnetic anisotropy. However, the materials produced in this way have a relatively small coercive field strength. The new method should be able to achieve comparatively larger coercive field strengths. First, a master alloy is made with the material components, the cobalt (Co) is alloyed in such an amount that the crystallization temperature (Tk) of the corresponding amorphous material system below the Curie temperature (Tc) of the crystallizing SE2 (Fe, CO) 14B phase of the material system, an intermediate product with an amorphous structure is then formed from the melt of the master alloy using the rapid solidification technique, and the intermediate product is then crystallized by means of heat treatment at a temperature above the crystallization temperature (Tk) but below the Curie temperature (Tc) in the presence of an external magnetic constant field to generate the magnetic anisotropy. If particles are present, they can be aligned and mechanically fixed after crystallization. Manufacture of magnetically anisotropic materials
Description
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines anisotropen Magnetwerkstoffes aus einem Stoffsystem mit mindestens den drei Stoffkomponenten Eisen (Fe), Bor (B) und einem Selten-Erd-Metall (SE), bei welchem Verfahren eine Rascherstarrung einer Legierungsschmelze der gewünschten Zusammensetzung und nachfolgend eine Behandlung zur Erzeugung einer magnetischen Anisotropie vorgenommen wird. Ein entsprechendes Verfahren geht aus der EP-A-0 144 112 hervor.The invention relates to a method for producing an anisotropic magnetic material from a material system with at least the three material components iron (Fe), boron (B) and a rare earth metal (SE), in which method rapid solidification of an alloy melt of the desired composition and subsequently a treatment for generating magnetic anisotropy is carried out. A corresponding method can be found in EP-A-0 144 112.
Nd-Fe-B-Magnetwerkstoffe zeigen bei Zimmertemperatur Remanenzwerte und Energiedichten, die deutlich größer als die der bekannten Legierungen auf Sm-Co-Basis sind. Es ist deshalb zu erwarten, daß sie in vielen Anwendungen die konventionellen Sm-Co-Materialien verdrängen. Die hervorragenden magnetischen Eigenschaften dieses Dreistoffsystems beruhen auf der tetragonalen intermetallischen Phase Nd₂Fe₁₄B. Hierbei handelt es sich um eine bisweilen auch als Theta-Phase bezeichnete Phase mit einer uniaxialen Kristallanisotropie, wobei das Anisotropiefeld HA bei 300 K ungefähr 75 kOe beträgt.At room temperature, Nd-Fe-B magnetic materials show remanence values and energy densities that are significantly higher than those of the known Sm-Co-based alloys. It is therefore to be expected that they will replace the conventional Sm-Co materials in many applications. The excellent magnetic properties of this three-component system are based on the tetragonal intermetallic phase Nd₂Fe₁₄B. This is a phase which is sometimes also referred to as the theta phase and has a uniaxial crystal anisotropy, the anisotropy field H A at 300 K being approximately 75 kOe.
Die Herstellung von anisotropen Nd-Fe-B-Magnetmaterialien erfolgt vielfach pulvermetallurgisch (vgl. EP-A-0 126 179). Gemäß diesem Verfahren wird zunächst eine Legierung der gewünschten Zusammensetzung so weit gemahlen, daß die Pulverkörner die Größe von Einbereichsteilchen haben. Diese Pulverkörner mit Korngrößen zwischen 2 und 4 µm werden dann in einem Magnetfeld ausgerichtet, z.B. durch isostatisches Pressen vorkompaktiert und danach zu einem Körper hoher Dichte gesintert. Mit einer abschließenden Wärmebehandlung werden dann die magnetischen Eigenschaften optimiert.Anisotropic Nd-Fe-B magnetic materials are often produced using powder metallurgy (cf. EP-A-0 126 179). According to this method, an alloy of the desired composition is first ground so far that the powder grains are the size of single-range particles. These powder grains with grain sizes between 2 and 4 µm are then aligned in a magnetic field, for example pre-compacted by isostatic pressing and then sintered to form a high-density body. With a final heat treatment, the magnetic properties are then optimized.
In einem alternativen Verfahren, wie es z.B. aus der eingangs genannten EP-A-0 144 112 zu entnehmen ist, werden zunächst durch rasches Erstarren einer Legierungsschmelze der gewünschten Zusammensetzung isotrope Bänder hergestellt. Diese Bänder mit feinkristallinem Gefüge werden dann zu einem isotropen dichten Körper durch Verpressen bei Temperaturen um 700°C kompaktiert. Eine nachfolgende Heißverformung bei etwa 700°C um etwa 50 % führt dann zu einer anisotropen Textur mit der magnetisch leichten c-Richtung parallel zur Preßrichtung (vgl. auch "Appl.Phys.Lett." 46 (8), 15.4.1985, Seiten 790 und 791).In an alternative process, as can be seen, for example, from EP-A-0 144 112 mentioned at the outset, isotropic strips of the desired composition are first produced by rapid solidification of an alloy melt. These strips with a fine crystalline structure are then compacted into an isotropic dense body by pressing at temperatures around 700 ° C. A subsequent hot deformation at about 700 ° C by about 50% then leads to an anisotropic texture with the magnetically easy c-direction parallel to the pressing direction (see also "Appl.Phys.Lett." 46 (8), April 15, 1985, pages 790 and 791).
Technische Magnete haben in der Regel eine Zusammensetzung der Art Nd₁₅Fe₇₇B₈ und liegen damit innerhalb eines Dreiphasengleichgewichts zwischen der hartmagnetischen Nd₂Fe₁₄B-Phase, einer B-reichen Phase Nd1,14Fe₄B₄ sowie einem Nd-reichen Mischkristall. Die Fremdphasen sind dabei zum Teil zur Optimierung der gefügeabhängigen koerzitiven Eigenschaften notwendig.Technical magnets usually have a composition of the type Nd₁₅Fe₇₇B₈ and are thus within a three-phase equilibrium between the hard magnetic Nd₂Fe₁₄B phase, a B-rich phase Nd 1.14 Fe₄B₄ and an Nd-rich mixed crystal. The external phases are partly necessary to optimize the structure-dependent coercive properties.
Trotz ihrer überlegenen magnetischen Werte ist der Einsatz von Nd-Fe-B-Materialien wegen ihrer niedrigen Curie-Temperatur Tc von ca. 315°C stark eingeschränkt, da mit steigender Temperatur die Remanenz und vor allem die Koerzitivfeldstärke drastisch abnehmen und die Werte von optimierten Sm-Co-Magnetwerkstoffen unterschreiten. Es ist deshalb versucht worden, die Curie-Temperatur durch die teilweise Substitution von Fe durch Co zu erhöhen, um so die Spanne zwischen Curie- und Einsatztemperatur zu vergrößern (vgl. "Appl.Phys.Lett."46 (3), 1.2.1985, Seiten 308 bis 310). Allerdings zeigen die Ergebnisse an gesinterten Magneten, daß für Co-Zusätze gleichzeitig die Koerzitivfeldstärke abnimmt, so daß sich letztlich kein positiver Effekt mit der Co-Substitution zeigt (vgl. "IEEE Trans. Magn.", MAG-21, 1985, Seiten 1952 bis 1954).Despite their superior magnetic values, the use of Nd-Fe-B materials is severely restricted due to their low Curie temperature T c of approx. 315 ° C, since with increasing temperature the remanence and especially the coercive force decrease drastically and the values of optimized Sm-Co magnetic materials. Attempts have therefore been made to increase the Curie temperature by partially substituting Fe with Co in order to increase the range between the Curie temperature and the operating temperature (cf. "Appl.Phys.Lett." 46 (3), 1.2. 1985, pages 308 to 310). However, the results on sintered magnets show that the coercive field strength decreases at the same time for Co additives, so that ultimately there is no positive effect with the Co substitution (cf. "IEEE Trans. Magn. ", MAG-21, 1985, pages 1952 to 1954).
Aufgabe der vorliegenden Erfindung ist es deshalb, das Verfahren der eingangs genannten Art dahingehend weiter zu entwickeln, daß mit ihm anisotrope Magnetwerkstoffe mit den Stoffkomponenten Fe, B und einem Selten-Erd-Metall herzustellen sind, die eine größere Koerzitivfeldstärke aufweisen.The object of the present invention is therefore to further develop the method of the type mentioned at the outset in such a way that it can be used to produce anisotropic magnetic materials with the material components Fe, B and a rare earth metal which have a greater coercive force.
Diese Aufgabe wird erfindungsgemäß mit den im Kennzeichen des Anspruchs 1 angegebenen Maßnahmen gelöst.This object is achieved with the measures specified in the characterizing part of claim 1.
Im ternären System Nd-Fe-B scheitern nämlich Verfahren, durch eine Wärmebehandlung der zunächst amorphen Legierung im Magnetfeld eine Vorzugsanisotropie einzustellen, an der niedrigen Curie-Temperatur Tc von ca. 315°C im Vergleich zur Kristallisationstemperatur Tk von ca. 550°C. Bei pulvermetallurgisch hergestellten Magneten auf Nd-Fe-B-Basis war es zwar bekannt, daß Co-Zusätze die Curie-Temperatur erhöhen. Jedoch verschlechterte sich dabei die Koerzitivkraft, so daß z.B. eine Verbesserung der Temperaturstabilität durch Co allein nicht möglich ist. Der Erfindung liegt die Erkenntnis zugrunde, daß die Nd₂(Fe1-xCox)₁₄B-Phase, die sich in den Frähstadien einer Kristallisation der entsprechenden amorphen Legierung bildet, eine der Gleichgewichtsphase vergleichbare Curie-Temperatur Tc hat. Dies liegt nicht ohne weiteres auf der Hand, da im Verlauf der Kristallisation zunächst (metastabile) Phasen mit einer anderen Struktur und/oder einer anderen Zusammensetzung entstehen können, die damit auch andere physikalische Eigenschaften haben als die hinsichtlich der Struktur und der Konzentration im thermodynamischen Gleichgewicht vorliegende Phase. Daß Co tatsächlich in die Nd₂Fe₁₄B-Phase eingebaut wird, läßt sich mit Röntgenspektren belegen, die mit steigendem Co-Gehalt eine charakteristische Verschiebung der Reflexlagen zu höheren Winkeln zeigen, wie sie aus der Abnahme der Gitter konstanten der tetragonalen Phase durch Einbau von Co zu erwarten ist (vgl. die genannte Literaturstelle aus "Appl.Phys. Lett." 46, 3). Zusätzlich haben bei dem erfindungsgemäßen Verfahren Co-Zusätze bei geeigneter Wahl der Gesamtzusammensetzung des Stoffsystems im Gegensatz zu gesinterten Materialien noch einen erhöhenden Einfluß auf die Koerzitivfeldstärke und gegebenenfalls auch auf die Remanenz. So werden z.B. in einem zunächst amorphen Nd17,5(Fe0,7Co0,3)67,5B₁₅-Material nach einer Kristallisation bei 630°C Koerzitivfelder von 20 kOe erreicht im Vergleich zu nur etwa 16 kOe eines entsprechendes Co-freien Materials.In the ternary system Nd-Fe-B, methods fail to set a preferred anisotropy by heat treatment of the initially amorphous alloy in the magnetic field at the low Curie temperature T c of approx. 315 ° C. compared to the crystallization temperature T k of approx. 550 ° C. In the case of Nd-Fe-B-based magnets produced by powder metallurgy, it was known that co-additives increase the Curie temperature. However, the coercive force deteriorated, so that, for example, an improvement in temperature stability by Co alone is not possible. The invention is based on the knowledge that the Nd₂ (Fe 1-x Co x ) ₁₄B phase, which forms in the early stages of crystallization of the corresponding amorphous alloy, has a Curie temperature T c comparable to the equilibrium phase. This is not immediately obvious, since in the course of the crystallization (metastable) phases with a different structure and / or a different composition can initially arise, which therefore also have different physical properties than those with regard to the structure and the concentration in the thermodynamic equilibrium present phase. That Co is actually built into the Nd₂Fe₁₄B phase can be proven with X-ray spectra, which show a characteristic shift of the reflex positions to higher angles with increasing Co content, as they result from the decrease in the grating constant of the tetragonal phase can be expected by incorporation of Co (cf. the cited reference from "Appl.Phys. Lett." 46 , 3). In addition, in the process according to the invention, with a suitable choice of the overall composition of the material system, in contrast to sintered materials, co-additives have an increasing influence on the coercive field strength and possibly also on the remanence. For example, in an initially amorphous Nd 17.5 (Fe 0.7 Co 0.3 ) 67.5 B₁₅ material after crystallization at 630 ° C, coercive fields of 20 kOe are achieved compared to only about 16 kOe of a corresponding Co free material.
Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens gehen aus den Unteransprüchen hervor.Advantageous refinements of the method according to the invention emerge from the subclaims.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles beschrieben, wobei auf die Zeichnung Bezug genommen wird. Dabei zeigt Figur 1 für das System Nd-(Fe, Co)-B die Abhängigkeit der Curie-Temperatur und der Kristallisationstemperatur von der Co-Konzentration. Für dieses System gehen aus dem Diagramm der Figur 2 die Koerzitivfeldstärke und die Remanenz in Abhängigkeit der Co-Konzentration hervor.The invention is described below using an exemplary embodiment, reference being made to the drawing. Figure 1 shows for the system Nd- (Fe, Co) -B the dependence of the Curie temperature and the crystallization temperature on the Co concentration. For this system, the coercive field strength and the remanence as a function of the Co concentration are shown in the diagram in FIG.
Dem Ausführungsbeispiel ist ein Magnetwerkstoff des 4-Stoff-Systems SE-(Fe, Co)-B zugrundegelegt, wobei als Selten-Erd-Metall SE Nd gewählt ist. Zu einer erfindungsgemäßen Herstellung eines Magnetwerkstoffes der Zusammensetzung Nd₁₅(Fe1-xCox)₇₇B₈ mit 0,1 ≦ x ≦ 0,6, beispielsweise der Legierung Nd₁₅(Fe0,7Co0,3)₇₇B₈, werden die Ausgangsmaterialien mit hinreichender Reinheit im gewünschten Verhältnis unter einer Ti-gereinigten Argonatmosphäre induktiv zu einer Vorlegierung erschmolzen. Dabei werden pyrolytische BN-oder Al₂O₃-Tiegel verwendet. Auch ein Erschmelzen in einem Lichtbogenofen ist möglich.The exemplary embodiment is based on a magnetic material of the 4-substance system SE- (Fe, Co) -B, with SE Nd selected as the rare earth metal. For an inventive production of a magnetic material of the composition Nd₁ N (Fe 1-x Co x ) ₇₇B₈ with 0.1 ≦ x ≦ 0.6, for example the alloy Nd₁₅ (Fe 0.7 Co 0.3 ) ₇₇B₈, the starting materials with sufficient Purity in the desired ratio under a Ti-cleaned argon atmosphere was inductively melted into a master alloy. Pyrolytic BN or Al₂O₃ crucibles are used. Melting in an arc furnace is also possible.
Die Erzeugung einer amorphen Struktur durch rasches Erstarren der entsprechenden Legierungsschmelze geschieht durch das sogenannte "melt-spinning" (Schmelzspinnverfahren), ein Verfahren, das aus der Herstellung amorpher Metallegierungen bekannt ist (vgl. z.B. "Zeitschrift für Metallkunde" Bd. 69, 1978, Heft 4, Seiten 212 bis 220). Hierzu wird unter einem Schutzgas wie z.B. Argon oder unter Vakuum die Vorlegierung z.B. in einem Quarztiegel mit Hochfrequenz erschmolzen und dann durch eine Düse auf eine schnell rotierende Kupfertrommel gespritzt. Die Substratgeschwindigkeit, d.h. die Umdrehungsgeschwindigkeit der Kupfertrommel, liegt dabei typisch oberhalb von 30 m/sec. Auf diese Weise wird die erforderliche Abkühlungsgeschwindigkeit von mehr als 10⁶ K/sec erreicht. Hiermit wird eine Kristallisation unterdrückt und der gewünschte amorphe Zustand erhalten. Die amorphe Phase ist gekennzeichnet durch ein diffuses Röntgenbeugungsdiagramm und eine symmetrische Hystereseschleife mit Koerzitivfeldstärken unterhalb von 100 Oe.The generation of an amorphous structure by rapid solidification of the corresponding alloy melt is done by the so-called "melt-spinning", a process which is known from the production of amorphous metal alloys (cf. for example "Zeitschrift für Metallkunde" Vol. 69, 1978, Book 4, pages 212 to 220). For this purpose, under a protective gas such as Argon or under vacuum the master alloy e.g. melted in a quartz crucible at high frequency and then sprayed through a nozzle onto a rapidly rotating copper drum. The substrate speed, i.e. the speed of rotation of the copper drum is typically above 30 m / sec. In this way, the required cooling rate of more than 10⁶ K / sec is achieved. This suppresses crystallization and maintains the desired amorphous state. The amorphous phase is characterized by a diffuse X-ray diffraction diagram and a symmetrical hysteresis loop with coercive field strengths below 100 Oe.
Das so erhaltene Zwischenprodukt in Bandform wird anschließend zu kleineren Bandstücken oder zu Pulvern zerkleinert. Die damit ausgebildeten Partikel werden dann z.B. in Quarzrohren unter Argonatmosphäre, gegebenenfalls in Gegenwart von zusätzlichen Gettermaterialien wie z.B. Zr zur Abbindung von Restsauerstoff, eingeschmolzen.The intermediate product obtained in tape form is then comminuted into smaller pieces of tape or into powders. The particles thus formed are then e.g. in quartz tubes under an argon atmosphere, optionally in the presence of additional getter materials such as e.g. Zr for setting residual oxygen, melted down.
Die Kristallisation des so präparierten Zwischenproduktes in Partikelform erfolgt anschließend mittels einer geeigneten Wärmebehandlung. Die Temperatur ist dabei so gewählt, daß sie oberhalb der Kristallisationstemperatur Tk, jedoch unterhalb der Curie-Temperatur Tc liegt. So werden z.B. für die spezielle Legierung Nd₁₅(Fe0,7Co0,3)₇₇B₈ etwa 500°C über eine Zeitdauer von beispielsweise 120 min vorgesehen, da die Curie-Temperatur dieser Legierung bei 525°C liegt. Diese Wärmebehandlung soll in einem magnetischen Gleichfeld vorgenommen werden, um so die gewünschte magnetische Anisotropie einzustellen. Für die Feldstärke wird dabei vorteilhaft ein Wert zwischen 0,5 und 100 kOe gewählt. Hierbei muß selbstverständlich die zu wählende Temperatur auch unterhalb der Temperatur Ts liegen, bei der die uniaxiale Vorzugsrichtung in eine planare Vorzugsebene wechselt (vgl. "Journ. of Magnetism and Magn.Mat.", Vol. 65, 1987, Seiten 139 bis 144).The intermediate product thus prepared in particle form is then crystallized by means of a suitable heat treatment. The temperature is chosen so that it is above the crystallization temperature T k , but below the Curie temperature T c . For example, for the special alloy Nd₁₅ (Fe 0.7 Co 0.3 ) ₇₇B₈ about 500 ° C over a period of 120 minutes, for example, because the Curie temperature of this alloy is 525 ° C. This heat treatment is said to be in a magnetic direct field can be made so as to set the desired magnetic anisotropy. A value between 0.5 and 100 kOe is advantageously chosen for the field strength. The temperature to be selected must of course also be below the temperature T s at which the uniaxial preferred direction changes to a planar preferred plane (cf. "Journ. Of Magnetism and Magn.Mat.", Vol. 65, 1987, pages 139 to 144 ).
Schließlich wird das so kristallisierte Pulver in einem weiteren externen magnetischen Gleichfeld ausgerichtet. Die Feldstärke dieses Ausrichtungsfeldes kann dabei wesentlich geringer gegenüber der des bei dem Kristallisationsvorgang angelegten Feldes sein und beispielsweise mindestens 1, vorzugsweise mindestens 5 kOe betragen. Gleichzeitig mit dieser Ausrichtung der Pulverpartikel werden diese z.B. durch Eingießen von schnell aushärtendem Kunstharz mechanisch fixiert werden. Mit dem so erhaltenen Körper aus dem speziellen anisotropen Magnetwerkstoff lassen sich dann entsprechende Magnete aufbauen.Finally, the powder crystallized in this way is aligned in a further external magnetic constant field. The field strength of this alignment field can be significantly lower than that of the field created during the crystallization process and can be, for example, at least 1, preferably at least 5 kOe. Simultaneously with this alignment of the powder particles, they are e.g. can be mechanically fixed by pouring quick-curing synthetic resin. Appropriate magnets can then be built up with the body made of the special anisotropic magnetic material.
Abweichend von dem dargestellten Ausführungsbeispiel kann auch ein Ausrichten der kristallisierten Partikel im Magnetfeld und eine gleichzeitige Kompaktierung zu einem dichten Körper durch mechanische Preßverfahren vorgenommen werden. Hierbei läßt sich auch zunächst ein Werkstück gewünschter Geometrie aus dem amorphen Material pressen, so daß erst anschließend die Feldkristallisation durchgeführt wird. Dies hat den Vorteil, daß man z.B. durch spezielle Magnetfeldkonfigurationen den Werkstoff auch komplizierte Vorzugsgeometrien geben kann. So lassen sich z.B. magnetische Ringkörper mit radialer Vorzugsrichtung erstellen.In a departure from the exemplary embodiment shown, the crystallized particles can also be aligned in the magnetic field and simultaneously compacted into a dense body by mechanical pressing processes. Here, a workpiece of the desired geometry can first be pressed out of the amorphous material, so that the field crystallization is carried out only afterwards. This has the advantage that e.g. due to special magnetic field configurations, the material can also give complicated preferred geometries. For example, Create magnetic ring bodies with a radial preferred direction.
Das erfindungsgemäße Verfahren kann für beliebige Legierungs konzentrationen angewendet werden, solange sichergestellt ist, daß bei der Kristallisation zumindest zum überwiegenden Teil die hartmagnetische Phase Nd₂(Fe, Co)₁₄B entsteht. Die Co-Konzentration, bezogen auf den Fe-Anteil, sollte dabei zwischen 0.1 und 0.60, vorzugsweise zwischen 0.15 und 0.5 liegen. Dies hat Curie-Temperaturen zwischen 430 und 630°C zur Folge. Die entsprechenden Temperaturverhältnisse für das Material Nd₁₅(Fe1-xCox)₇₇B₈ sind aus dem Diagramm der Figur 1 ersichtlich. In diesem Diagramm ist auf der Abszisse die Co-Konzentration x als substituierter Fe-Anteil und sind auf der Ordinate die zugehörigen Temperaturen T in °C aufgetragen. Die Kurve I stellt dabei die Curie-Temperatur Tc der kristallisierenden Nd₂(Fe, Co)₁₄-B-Phase und die Kurve II die Kristallisationstemperatur Tk entsprechender amorpher Bänder für eine Aufheizrate von 40 K/min. dar. Da erfindungsgemäß die Wärmebehandlung zur Kristallisation oberhalb der Kristallisationstemperatur Tk, jedoch unterhalb der Curie-Temperatur Tc erfolgen soll, sind gemäß dem Diagramm aufgrund der vorgesehenen Glühbedingungen nur Co-Konzentrationen mit x über 0.3 möglich. Wählt man jedoch kleinere Aufheizraten bzw. führt man die Kristallisation isotherm für längere Glühzeiten durch, so rutscht in dem Diagramm die Kurve II weiter nach unten, so daß dann auch mit entsprechend geringen Co-Konzentrationen die geforderten Temperaturverhältnisse einzuhalten sind.The method according to the invention can be used for any alloy Concentrations are used as long as it is ensured that the hard magnetic phase Nd₂ (Fe, Co) ₁₄B is formed at least for the most part during crystallization. The Co concentration, based on the Fe content, should be between 0.1 and 0.60, preferably between 0.15 and 0.5. This results in Curie temperatures between 430 and 630 ° C. The corresponding temperature conditions for the material Nd₁₅ (Fe 1-x Co x ) ₇₇B₈ can be seen in the diagram of Figure 1. In this diagram, the Co concentration x is a substituted Fe component on the abscissa and the associated temperatures T in ° C are plotted on the ordinate. Curve I represents the Curie temperature T c of the crystallizing Nd₂ (Fe, Co) ₁₄-B phase and curve II the crystallization temperature T k of corresponding amorphous bands for a heating rate of 40 K / min. Since, according to the invention, the heat treatment for crystallization is to take place above the crystallization temperature T k , but below the Curie temperature T c , according to the diagram, only Co concentrations with x above 0.3 are possible due to the intended annealing conditions. However, if one selects smaller heating rates or if the crystallization is carried out isothermally for longer annealing times, curve II slips further down in the diagram, so that the required temperature conditions can then be maintained even with correspondingly low Co concentrations.
Ganz allgemein gilt, daß bei dem erfindungsgemäßen Verfahren die geforderte Theta-Phase des 4-Stoffsystems SEx(Fe, Co)yBz auftritt, wenn eine Zusammensetzung dieses Systems gewählt wird, so daß gilt: 10 ≦ x ≦ 30, 60 ≦ y ≦ 85 und 3 ≦ z ≦ 20. Vorzugsweise sollten x, y und z die folgenden Beziehungen erfüllen: 11 ≦ x ≦ 20, 65 ≦ y ≦ 80 und 5 ≦ z ≦ 20. Dabei ist SE mindestens ein Selten-Erd-Metall, dessen Ordnungszahl im Periodensystem der Elemente zwischen 58 und 66 (jeweils einschließlich) liegt.In general it applies that in the process according to the invention the required theta phase of the 4-substance system SE x (Fe, Co) y B z occurs when a composition of this system is selected, so that the following applies: 10 ≦ x ≦ 30, 60 ≦ y ≦ 85 and 3 ≦ z ≦ 20. Preferably, x, y and z should have the following relationships: 11 ≦ x ≦ 20, 65 ≦ y ≦ 80 and 5 ≦ z ≦ 20. SE is at least one rare earth metal whose atomic number in the periodic table of the elements is between 58 and 66 (inclusive).
Aus dem Diagramm der Figur 2 sind die mit dem erfindungsgemäßen Verfahren erreichbare Koerzitivfeldstärke Hk (in kOe) sowie die Remanenz Jr in Abhängigkeit der Co-Konzentration x (substituierter Fe-Anteil) von rasch erstarrten Nd₁₅(Fe1-xCox)₇₇B₈-Bändern dargestellt. Dabei zeigt die Kurve III die Koerzitivfeldstärkeverhältnisse, während mit der Kurve IV die Remanenz-Verhältnisse wiedergegeben sind. Wie aus dem Diagramm hervorgeht, führt im Gegensatz zu den Ergebnissen an gesinterten Magneten eine Substitution von bis zu etwa 50 % Co für Fe praktisch zu keiner Verschlechterung der Koerzitivfelder. Für einen Co-Gehalt von 30 % werden sogar Hk-Werte von 25 kOe gemessen. Die Remanenzwerte (Kurve IV) nehmen dagegen für kobaltreiche Proben unter anderem aufgrund einer Abnahme der Sättigungsmagnetisierung für Co-Konzentrationen x oberhalb von 0,2 um etwa 10 % ab.From the diagram in FIG. 2, the coercive field strength H k (in kOe) achievable with the method according to the invention and the remanence J r as a function of the Co concentration x (substituted Fe component) of rapidly solidified Nd₁₅ (Fe 1-x Co x ) ₇₇B₈ bands shown. Curve III shows the coercive field strength ratios, while curve IV shows the remanence ratios. As can be seen from the diagram, in contrast to the results on sintered magnets, a substitution of up to about 50% Co for Fe leads to practically no deterioration of the coercive fields. Even H k values of 25 kOe are measured for a Co content of 30%. The remanence values (curve IV), on the other hand, decrease by approximately 10% for cobalt-rich samples, among other things due to a decrease in the saturation magnetization for Co concentrations x above 0.2.
Bei dem dargestellten Ausführungsbeispiel wurde davon ausgegangen, daß Nd das zu wählende Selten-Erd-Metall SE ist. Stattdessen kann ebensogut auch ein anderes Selten-Erd-Metall wie insbesondere Praseodym (Pr) gewählt werden. Daneben ist es auch möglich, das eine leichtere Selten-Erd-Metall durch ein schwereres Selten-Erd-Metall wie z.B. Dysprosium (Dy) zumindest teilweise zu substituieren, um so höhere Koerzitivfeldstärken zu erreichen.In the illustrated embodiment, it was assumed that Nd is the rare earth metal to be selected SE. Instead, another rare earth metal such as praseodymium (Pr) can be selected as well. In addition, it is also possible for a lighter rare earth metal to be replaced by a heavier rare earth metal such as To at least partially substitute dysprosium (Dy) in order to achieve higher coercive field strengths.
Auch die Fe-Komponente kann gegebenenfalls durch ein anderes metallisches Element wie insbesondere Aluminium (Al) teilweise substituiert sein.The Fe component can optionally also be partially substituted by another metallic element, such as in particular aluminum (Al).
Ferner können zur Erzeugung eines amorphen Gefüges des Zwischenproduktes auch andere bekannte Rascherstarrungstechniken wie z.B. die Ausbildung dünner Schichten durch Sputtertechniken oder die Herstellung amorpher Metallpulver durch Verdüsung eingesetzt werden. Im letzteren Fall ist dann sogar ein besonderer Zerkleinerungsschritt wie bei einer Ausbildung von amorphen Bändern nicht mehr erforderlich.Furthermore, other known rapid solidification techniques such as the formation of thin layers by sputtering techniques or the production of amorphous metal powders by atomization can also be used to produce an amorphous structure of the intermediate product. In the latter case, it is even a special one Crushing step as in the case of forming amorphous bands is no longer necessary.
Das erfindungsgemäße Verfahren ist jedoch nicht nur auf Zwischenprodukte in Partikel- oder Pulverform beschränkt. So können z.B. erfindungsgemäß hergestellte dünne Schichten für den Aufbau von Magnetköpfen in Datenspeichereinrichtungen vorgesehen werden.However, the method according to the invention is not limited to intermediate products in particle or powder form. For example, Thin layers produced according to the invention can be provided for the construction of magnetic heads in data storage devices.
Claims (17)
- zunächst eine Vorlegierung mit den Stoffkomponenten hergestellt wird, der Kobalt (Co) als weitere Stoffkomponente in einer solchen Menge zulegiert ist, daß die Kristallisationstemperatur (Tk) des entsprechenden amorphen Stoffsystems unterhalb der Curie-Temperatur (Tc) der kristallisierenden SE₂(Fe, Co)₁₄B-Phase des Stoffsystems liegt,
- dann aus der Schmelze der Vorlegierung ein Zwischenprodukt mit amorphem Gefüge unter Anwendung der Rascherstarrungstechnik ausgebildet wird,
und
- danach eine Kristallisation des Zwischenproduktes mittels einer Wärmebehandlung bei einer Temperatur oberhalb der Kristallisationstemperatur (Tk), jedoch unterhalb der Curie-Temperatur (Tc) unter Ausbildung der SE₂(Fe, Co)₁₄B-Phase des Stoffsystems und in Gegenwart eines externen magnetischen Gleichfeldes zur Erzeugung der magnetischen Anisotropie vorgenommen wird.1. A process for producing an anisotropic magnetic material from a material system with at least the three material components iron (Fe), boron (B) and a rare earth metal (SE), in which process a rapid solidification of an alloy melt of the desired composition and subsequently a treatment is carried out to generate a magnetic anisotropy, characterized in that
- First, a master alloy is made with the material components, the cobalt (Co) is alloyed as a further material component in such an amount that the crystallization temperature (T k ) of the corresponding amorphous material system below the Curie temperature (T c ) of the crystallizing SE₂ (Fe , Co) ₁₄B phase of the material system,
an intermediate product with an amorphous structure is then formed from the melt of the master alloy using the rapid solidification technique,
and
- Then a crystallization of the intermediate product by means of a heat treatment at a temperature above the crystallization temperature (T k ), but below the Curie temperature (T c ) with the formation of the SE₂ (Fe, Co) ₁₄B phase of the material system and in the presence of an external magnetic DC field is generated to generate the magnetic anisotropy.
10 ≦ x ≦ 30,
60 ≦ y ≦ 85 und
3 ≦ z ≦ 20.8. The method according to any one of claims 1 to 7, characterized in that a material system SE x (Fe, Co) y B z is produced, the overall composition of which applies:
10 ≦ x ≦ 30,
60 ≦ y ≦ 85 and
3 ≦ z ≦ 20.
11 ≦ x ≦ 20,
65 ≦ y ≦ 80 und
5 ≦ z ≦ 20.9. The method according to claim 8, characterized in that an overall composition of the material system is selected, for which the following applies:
11 ≦ x ≦ 20,
65 ≦ y ≦ 80 and
5 ≦ z ≦ 20.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3709140 | 1987-03-20 | ||
DE3709140 | 1987-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0284832A1 true EP0284832A1 (en) | 1988-10-05 |
Family
ID=6323565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88103535A Withdrawn EP0284832A1 (en) | 1987-03-20 | 1988-03-07 | Manufacturing process for an anisotropic magnetic material based on Fe, B and a rare-earth metal |
Country Status (3)
Country | Link |
---|---|
US (1) | US4854979A (en) |
EP (1) | EP0284832A1 (en) |
JP (1) | JPS63238215A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8707905D0 (en) * | 1987-04-02 | 1987-05-07 | Univ Birmingham | Magnets |
US5026438A (en) * | 1988-07-14 | 1991-06-25 | General Motors Corporation | Method of making self-aligning anisotropic powder for magnets |
EP0414974B1 (en) * | 1989-09-01 | 1994-12-28 | Masaaki Yagi | Thin soft magnetic alloy strip |
US5279349A (en) * | 1989-12-29 | 1994-01-18 | Honda Giken Kogyo Kabushiki Kaisha | Process for casting amorphous alloy member |
GB9215109D0 (en) * | 1992-07-16 | 1992-08-26 | Univ Sheffield | Magnetic materials and method of making them |
DE4324661C2 (en) * | 1992-09-29 | 2000-03-16 | Siemens Ag | Process for producing a material with increased magnetoresistance and using the material thus produced |
US6019859A (en) * | 1994-09-02 | 2000-02-01 | Sumitomo Special Metals Co., Ltd. | Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets |
US5976271A (en) * | 1997-04-21 | 1999-11-02 | Shin-Etsu Chemical Co., Ltd. | Method for the preparation of rare earth based anisotropic permanent magnet |
ES2164528B1 (en) * | 1999-04-27 | 2003-10-16 | Univ Barcelona Autonoma | PROCEDURE TO INCREASE THE COERCITIVITY OF A FERROMAGNETIC MATERIAL. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4402770A (en) * | 1981-10-23 | 1983-09-06 | The United States Of America As Represented By The Secretary Of The Navy | Hard magnetic alloys of a transition metal and lanthanide |
EP0144112A1 (en) * | 1983-10-26 | 1985-06-12 | General Motors Corporation | High energy product rare earth-transition metal magnet alloys containing boron |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0108474B2 (en) * | 1982-09-03 | 1995-06-21 | General Motors Corporation | RE-TM-B alloys, method for their production and permanent magnets containing such alloys |
US4597938A (en) * | 1983-05-21 | 1986-07-01 | Sumitomo Special Metals Co., Ltd. | Process for producing permanent magnet materials |
JPS60197843A (en) * | 1984-03-17 | 1985-10-07 | Namiki Precision Jewel Co Ltd | Permanent magnet alloy |
-
1988
- 1988-03-07 EP EP88103535A patent/EP0284832A1/en not_active Withdrawn
- 1988-03-14 JP JP63060164A patent/JPS63238215A/en active Pending
- 1988-03-18 US US07/170,297 patent/US4854979A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4402770A (en) * | 1981-10-23 | 1983-09-06 | The United States Of America As Represented By The Secretary Of The Navy | Hard magnetic alloys of a transition metal and lanthanide |
EP0144112A1 (en) * | 1983-10-26 | 1985-06-12 | General Motors Corporation | High energy product rare earth-transition metal magnet alloys containing boron |
Non-Patent Citations (1)
Title |
---|
APPLIED PHYSICS LETTERS, Band 44, Nr. 9, 1. Mai 1984, Seiten 925-926, American Institute of Physics, New York, US; R.A. OVERFELT et al.: "Thermal effects of moderate substitions of cobalt for iron in Fe76Pr16B8" * |
Also Published As
Publication number | Publication date |
---|---|
US4854979A (en) | 1989-08-08 |
JPS63238215A (en) | 1988-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3850001T2 (en) | Magnetic rare earth iron boron powder and its manufacturing process. | |
DE3875183T2 (en) | PERMANENT MAGNET. | |
DE3779481T2 (en) | PERMANENT MAGNET AND METHOD FOR THE PRODUCTION THEREOF. | |
DE3587977T2 (en) | Permanent magnets. | |
DE3783413T2 (en) | METHOD FOR PRODUCING A RARE-EARTH IRON BOR PERMANENT MAGNET WITH THE AID OF A QUARKED ALLOY POWDER. | |
DE3780876T2 (en) | PERMANENT MAGNET BASED ON THE RARE EARTH. | |
DE3789951T2 (en) | Anisotropic magnetic powder, magnet made of it and manufacturing process. | |
DE3686043T2 (en) | PERMANENT MAGNET PRODUCTION FROM A RARE-EARTH TRANSITION METAL-BOR ALLOY OF VERY LOW CORERIVITY. | |
DE68916184T2 (en) | Magnetic substances containing rare earth elements, iron, nitrogen and hydrogen. | |
DE19626049C2 (en) | Magnetic material and bonded magnet | |
DE68917213T2 (en) | Sintered Nd-Fe-B magnet and its manufacturing process. | |
DE69009335T2 (en) | Rare earth powder for permanent magnet, manufacturing process and bonded magnet. | |
DE69716588T2 (en) | Cast alloy for the production of permanent magnets with rare earths and process for the production of this alloy and these permanent magnets | |
DE3750661T2 (en) | Permanent magnet with good thermal stability. | |
DE3786426T2 (en) | Permanent magnet and permanent magnet alloy. | |
DE69007720T2 (en) | Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen. | |
DE69302329T2 (en) | Fine-grain anisotropic powder made from melt-spun ribbons | |
EP0470475B1 (en) | Method for the preparation of a body from anisotropic magnetic material based on the Sm-Fe-N substance system | |
DE60311960T2 (en) | METHOD FOR THE PRODUCTION OF R-T-B BASED RARE-ELEMENT PERMANENT MAGNETS | |
EP0284832A1 (en) | Manufacturing process for an anisotropic magnetic material based on Fe, B and a rare-earth metal | |
DE69011328T2 (en) | MAGNETIC ALLOY COMPOSITIONS AND PERMANENT MAGNETS. | |
DE68914078T2 (en) | Permanent magnet and manufacturing process. | |
DE68927203T2 (en) | Manufacturing process of a permanent magnet | |
DE3750367T2 (en) | Permanent magnet and its manufacturing process. | |
DE69423846T2 (en) | Hot pressed magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19881026 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19911003 |