-
Die folgende Erfindung betrifft generell ein besonderes Katalysatormaterial sowie die Herstellung eines solchen Katalysatormaterials.
-
Für verschiedene Einsatzgebiete werden Katalysatormaterialien benötigt, die bei niedrigen Kosten zugleich eine elektrische Leitfähigkeit ermöglichen. Ein wichtiges Anwendungsgebiet solcher Katalysatormaterialien ist beispielsweise bei der Herstellung von Membran-Elektroden-Einheiten („MEA” – Membrane-Electrode-Assembly) für Polymer-Elektrolyt-Membran-Brennstoffzellen (PEM-Brennstoffzellen) gegeben.
-
Eine MEA besteht grundsätzlich aus einer Membran und einer Gas-Diffusions-Elektrode (GDE), auch Gas-Diffusions-Layer (GDL) genannt, auf beiden Seiten. Zwischen der Membran und der Gas-Diffusions-Elektrode befindet sich üblicherweise eine Reaktionszone. An die Gas-Diffusions-Elektroden schließen sich dann die Elektroden der Brennstoffzelle an, nämlich die Kathode und die Anode.
-
Als Katalysatormaterialien werden üblicherweise Mischungen aus feinen Kohlenstoffpartikeln mit Katalysatormetallpartikeln, wie beispielsweise Platinpartikeln, verwendet. Ein im Stand der Technik bekanntes Material ist beispielsweise der sogenannte „E-TEK”-Katalysator, der aus feinen Platinpartikeln mit einem mittleren Durchmesser von vier Nanometern sowie aus Kohleruß als Kohlenstoffträger besteht. Mit diesem Material werden Membranen und Gas-Diffusions-Elektroden für Brennstoffzellen beschichtet. Neben der Anforderung einer katalytischen Wirkung durch Platin sowie einer Elektronenleitfähigkeit, die durch den Kohlenstoff vermittelt wird, wird für Brennstoffzellen-MEA's auch eine Protonenleitfähigkeit sowie eine Fähigkeit zur Zu- und Abfuhr von Gaskomponenten benötigt. Die Eigenschaften werden durch Verwendung geeigneter Grundmaterialien erreicht. Bei den Membranen kann es sich dabei beispielsweise um ein perfluoriertes, protonenleitendes Polymer handeln, etwa das sogenannte „Nafion” der Firma DuPont. Die Gas-Diffusions-Elektroden können beispielsweise aus porösem Kohlefaser-Papier oder aus textilen Materialien bestehen.
-
Bei konventionell vorbekannten Katalysatormaterialien liegen die Kohlenstoffpartikel und die Katalysatormetallpartikel nebeneinander vor und stehen nur über zufällige Kontakte miteinander in einem Elektronen übertragendem Kontakt. Allenfalls entsteht während der Herstellung eine Imrägnierungsschicht, bei der eine lockere Anbindung des Katalysators an den Kohlenstoffträgern vorliegt.
-
In der
DE 199 10 151 A1 wird ein Verfahren zur plasmagestützten Abscheidung von Metallteilchen auf einem Trägermaterial beschrieben. Gemäß dem bekannten Verfahren wird ein fester Precursor verwendet. Zunächst wird ein Vakuum angelegt und ein Mikrowellenplasma erzeugt. Das Mikrowellenplasma ist der Auslöser dafür, dass der Precursor verdampft und sich anschließend auf dem Trägermaterial absetzt.
-
Die
DE 101 20 484 A1 offenbart eine Lösung zur thermischen Behandlung von pulverförmigen Stoffen, wobei der pulverförmige Stoff in einem Trägergas dispergiert und durch einen beheizbaren Reaktor geleitet, dort thermisch behandelt und anschließend durch ein Kühlmedium stark abgekühlt und in einem Gas-Feststoff-Schneideaggregat aufgefangen wird.
-
Für eine bessere Ausnutzung des Katalysators werden zwei verschiedene Ansätze untersucht. Dies ist zum einen die Reduzierung der Katalysatorpartikelgröße, um über eine größere aktive Oberfläche zu Materialeinsparung und Kostenminimierung zu gelangen. Andererseits soll eine Verbesserung der Energieumwandlung durch eine optimierte Katalysatorverteilung an den elektrochemisch aktiven Orten, wie oben beschrieben, erreicht werden.
-
Die der Erfindung zugrundeliegende Problemstellung ist daher insbesondere die Synthese neuartiger geträgerter Katalysatoren – beispielsweise für Brennstoffzellen – mit speziellen morphologischen Anforderungen bei zugleich hoher Katalysatoraktivität.
-
Diese Aufgabe wird gelöst durch die Bereitstellung eines Verfahrens zur Herstellung eines solchen Kohlenstoffnanopartikel-Katalysatormaterials gemäß dem unabhängigen Patentanspruch 1, eine Verwendung eines durch das Verfahren hergestellten Kohlenstoffnanomaterial-Katalysatormaterials gemäß dem unabhängigen Patentanspruch 17, ein Kohlenstoffnanopartikel-Katalysatormaterial gemäß dem unabhängigen Patentanspruch 18 sowie einer Vorrichtung zur Herstellung von Kohlenstoffnanopartikel-Katalysatormaterial gemäß dem unabhängigen Patentanspruch 19. Weitere vorteilhafte Ausgestaltungen, Merkmale, Aspekte, Details und Effekte der vorliegenden Erfindung ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung und den beigefügten Zeichnungen.
-
Der Erfindung liegt die Erkenntnis zugrunde, die gezielte Abscheidung von Nanopartikeln auf Kohlenstoffträgern auch für das Gebiet der Kohlenstoffnanomaterialien, beispielsweise das Gebiet der Kohlenstoffnanofasern oder dergleichen, einzusetzen.
-
Damit ist die Erfindung zunächst gerichtet auf ein Verfahren zur Herstellung von Kohlenstoffnanopartikel-Katalysatormaterial, das die folgenden Schritte aufweist:
Bereitstellen eines Reaktionsgemischs, enthaltend Kohlenstoffnanomaterial und ein Katalysatormetallquellmaterial; und
Erzeugen eines Mikrowellenfeldes in dem Reaktionsgemisch zur Überhitzung des Kohlenstoffnanomaterials und zur Zersetzung des Katalysatorquellmaterials in Katalysatormetall und zur Ausbildung von am Kohlenstoffnanomaterial gebundenen Nanopartikeln des Katalysatormetalls, indem das Kohlenstoffnanomaterial durch das Mikrowellenfeld gezielt erhitzt wird, so dass sich das Katalysatormetallquellmaterial derart zersetzt, dass sich die freigesetzten Nanopartikel des Katalysatormetalls an dem Kohlenstoffnanomaterial binden.
-
Folgende Aspekte spielen im Zusammenhang mit dem erfindungsgemäßen Verfahren und dem derart hergestellten Katalysatormaterial eine Rolle:
- 1. Eine aufgrund des Mikrowellenfeldes erzeugte thermische Zersetzung des verwendeten kolloidalen Stoffsystems führt zu nanokristallinen Katalysatorpartikeln mit einer Partikelgröße von üblicherweise < 2 nm.
- 2. Es erfolgt eine Abscheidung auf dem verwendeten Kohlenstoffnanomaterial durch eine stoffspezifische Überhitzung des verwendeten Materials im angelegten Mikrowellenfeld, das zu einer Partikelgröße von 2–2,5 nm führt.
- 3. Die Übertragung der oben genannten Prinzipien führt im erfindungsgemäßen Verfahren schließlich zu einer Partikelabscheidung von Katalysatormetall auf die verwendeten Kohlenstoffnanomaterialien (beispielsweise Fasern) bei realisiertem Katalysatorpartikelgrößen von etwa 2,5 nm.
-
Durch das Anlegen des Mikrowellenfeldes kommt es zu einer gezielten aber auch hinreichenden Überhitzung des Trägermaterials, also des Kohlenstoffnanomaterials, welche ausreicht, das verwendete Katalysator-metallquellmaterial so zu zersetzen, dass sich die freigesetzten Metallatome als Nanopartikel unmittelbar auf dem überhitzten Trägermaterial ablagern. Dies führt zu sehr feinen Nanopartikeln, die an das Kohlenstoffnanomaterial gebunden sind. Dabei wurde in überraschender Weise herausgefunden, dass trotz eines ungünstigen Oberflächen:Volumen-Verhältnisses bei Nanomaterialien (Wärmeabführung), beispielsweise Nanofasern, die Überhitzung dennoch zur gezielten Abscheidung ausreicht.
-
Als Katalysatormetallquellmaterial wird vorzugsweise eines verwendet, das Platin, Kobalt, Ruthenium oder ein anderes (Edel-)Metall enthält. Dabei handelt es sich bei Kobalt insbesondere um eine Modellsubstannz für weitere mögliche (Edel-)Metalle. Natürlich sind auch andere Materialien, insbesondere Metalle denkbar. Ein besonders bevorzugtes und bei Brennstoffzellenmembranen relativ häufig verwendetes Material ist hierbei Platin, beziehungsweise Platin/Ruthenium im Falle der Anode einer Direktmethanol-Brennstoffzelle. Kupfer kann generell auch verwendet werden, allerdings weniger als katalytisch aktives Material, denn als Modellsubstrat für weitere (Edel-)Metalle.
-
Das Katalysatormetallquellmaterial weist vorzugsweise eine Metallverbindung mit einer Zersetzungstemperatur von 150–220°C auf. Bei der Verwendung von Materialien dieser Zersetzungstemperatur kann eine hinreichende Überhitzung an den Kohlenstoffnanopartikelmaterialien erreicht werden, um das Katalysatormetallquellmaterial zuverlässig zu zersetzen und damit unter Verwendung von Nanokristallisierungsmaterial die Bildung von Nanopartikeln aus diesem Metall auf dem Kohlenstoffnanomaterial zu bewirken.
-
Vorzugsweise verwendetes Katalysatormetallquellmaterial ist eine metallorganische Verbindung oder eine Metallsäureverbindung, da diese häufig die gewünschte leichte Zersetzbarkeit mit einer einfachen Handhabbarkeit (z. B. Löslichkeit) kombinieren.
-
Ein besonderes bevorzugtes Katalysatormetallquellmaterial ist Pt(acac)2, (Platin(II)acetylacetonat auch als Platinpentandionat bezeichnet), das eine thermische Zersetzungstemperatur von ca. 180°C aufweist und damit für das erfindungsgemäße Verfahren geeignet ist.
-
Vorzugsweise enthält das Reaktionsgemisch weiterhin ein Nanokristallisierungsmaterial. Das erfindungsgemäß verwendete Nanokristallisierungsmaterial moduliert die Aggregation von Katalysatormetallatomen im Keimbildungsprozess zu Nanopartikeln. Es hat sich überraschender Weise gezeigt, dass durch die Verwendung geeigneter Nanokristallisierungsmaterialien die Partikelgröße des Katalysatormetalls sehr deutlich verkleinert werden kann, was vom Aspekt der gleichmäßigen Verteilung und der vergrößerten aktiven Oberfläche ein maßgeblich verbessertes Produkt erzeugt. Es hat sich weiterhin gezeigt, dass bei bestimmten Nanokristallisierungsmaterialien das Gewichtsverhältnis von Nanokristallisierungsmaterial zu Katalysator-metallquellmaterial vorzugsweise zumindest 1:1; besonders bevorzugt mindestens 2:1, beispielsweise 5:1 bis 20:1, betragen sollte. Als Nanokristallisierungsmaterial können erfindungsgemäß Flüssigkristallpolymere und/oder metallorganische Verbindungen verwendet werden, die im relevanten Temperaturbereich thermisch stabil sind, beispielsweise einige Übergangs-Metallalkoholate.
-
Daher wird es bevorzugt, dass das Nanokristallisierungsmaterial zumindest eine Alkyloxy-Verbindung eines Elementes der vierten Nebengruppe des Periodensystems der Elemente oder von Aluminium aufweist. Die nichtradioaktiven Vertreter der vierten Nebengruppe des Periodensystems sind Titan, Zirkonium und Hafnium. Als Alkyloxy-Substituent kann beispielsweise Propyloxy, Isopropyloxy, Butyloxy, sekundäres Butyoxy, Isobutyoxy, Pentyloxy, Isopentyloxy etc, verwendet werden. Besonders bevorzugt wird es, dass das Nanokristallisierungsmaterial Tetrapropyloxy-Zirkonium (Zr(OPr)4, Zirkonium IV Poboxyt)) und/oder Tetrabutyoxy-Titan (Ti(OBu)4); Titan (IV) Butoxyt aufweist. Auch die Verwendung von Alkyloxy-Verbindungen des Aluminiums der allgemeinen Formel Al(OR)3 wird bevorzugt. Abhängig von den Reaktionsbedingungen dekomponiert Ti(OR)4, beispielsweise Tetrabutyloxy-Titan zu TiO2 als Anatase oder Rutil, während Al(OR)3 zu Al2OR dekomponiert. Die Verwendung dieser Metallalkoholate wird auch besonders bevorzugt, da sich erwiesen hat, dass man sich die technologischen Aspekte bei der Synthese von TiO2 und ZrO2 durch Mikrowellen unterstütze thermische Zersetzung eines kolloidalen Vorläufermatrixsystems aus dem oben genannten Nanokristallisierungsmaterialien zunutze machen kann, um poröse Strukturen zu erhalten, welche die beispielsweise bei Brennstoffzellenmembranen gewünschte Porösität des katalytischen Systems erreichen können. Zudem weist beispielsweise TiO2 ebenfalls eine katalytische Aktivität auf. Damit zieht man aus der Verwendung von Metallalkoholaten bei der Herstellung des erfindungsgemäßen Kohlenstoffnanopartikel-Katalysatormaterials doppelten Nutzen. Allerdings kann dadurch möglicherweise die elektrische Leitfähigkeit gesenkt werden, so dass es möglicherweise sinnvoll ist, die Materialien vorher auszuwaschen.
-
Das erfindungsgemäß verwendete Reaktionsgemisch enthält vorzugsweise weiterhin ein Matrixmaterial zum Verteilen der anderen Materialien.
-
Das für das Verfahren zum Einsatz kommende Stoffsystem besteht generell aus folgenden vier Grundkomponenten:
- – Katalysatorprekursormaterial, z. B. Pt(acac)2
- – Kohlenstoffträgermaterial, z. B. Kohlenstoffnanofasern
- – Nanokristallisierungsmaterial, z. B. Ti(OBu)4 o. Zr(OPr)4
- – Temporäres Matrixmaterial während der Synthese, z. B. Paraffin o. Pentandiol
-
Die Rolle des Matrixmaterials ist hierbei die folgende:
Abhängig von Art und Konzentration des verwendeten Katalysatorprekursormaterials, kann die als Matrixmaterial bezeichnete Komponente den Prekursor bei einer Temperatur von < 130°C, teilweise auch schon bei Raumtemperatur lösen. Das Matrixmaterial dient also als Lösemittel. Im weiteren Verlauf der Aufheizung kommt es zu einer Mikroemulsionsbildung, die für C-Trägerfreie Systeme durch einen auftretenden Tyndall-Effekt angezeigt wird. In dieser, vor der Zersetzung auftretenden Mikroemulsion übernimmt das Paraffin o. Pentandiol die Rolle einer flüssigen, temporären Matrix, welche die weiteren Bestandteile des Stoffsystems umschließt. Dieses Kolloidsystem bewirkt die Nanokristallinität des entstehenden Katalysators. Nach der Keimbildung von Katalysatorpartikeln unterstützt das Matrixmaterial die räumliche Trennung der Einzelpartikel und sorgt für deren gleichmäßige Verteilung.
-
Im Falle einer mikrowellenbeheizten Zersetzung gemäß dem beschriebenen Colloidal Microwave Processing fällt dem Matrixmaterial eine weitere Funktion zu: Die temporäre Matrix verhält sich, verglichen mit den stark Mikrowellen absorbierenden Kohlenstoff-Trägermaterialien, mikrowellentransparent. Das Matrixmaterial bleibt hierdurch auf mikroskopischem Niveau deutlich kühler als die überhitzten C-Trägermaterialien, es bietet also die Voraussetzung für einen Temperaturgradienten auf mikroskopischer Ebene.
-
Die Reaktion verläuft durch das abgesenkte makroskopische Temperaturniveau (welches nach außen hin gemessen wird), deutlich schonender als ohne Matrixmaterial. Die mikroskopische Temperaturdifferenz (überhitzte C-Fasern, kältere umgebende Matrix) ermöglicht erst die ortsspezifische Abscheidung durch Keimbildung und Zersetzung des Prekursormaterials an den lokal heißesten Stellen.
-
Als Matrixmaterial werden vorzugsweise Paraffin oder ein zweiwertiger Alkohol, wie beispielsweise und insbesondere Pentandiol verwendet. Auch andere zweiwertige Alkohole, wie Butandiol (Siedepunkt etwas niedriger) oder Hexandiol können erfindungsgemäß eingesetzt werden.
-
Das im Reaktionsgemisch eingesetzte Kohlenstoffnanomaterial unterscheidet sich zunächst von vorbekannten katalytisch beschichteten Ausgangsmaterialien, wie Kohlenstoffkurzfasern, durch seine Abmessungen. Während Kohlenstoffkurzfasern beispielsweise einen Durchmesser von etwa 10 μm aufweisen, liegen übliche Abmessungen von Kohlenstoffnanomaterialien in zumindest einer Dimension um 2 bis 3 Zehnerpotenzen unter diesem Wert. Solche Nanomaterialien werden aus Kohlenstoff in unterschiedlichen Ausprägungen, teils auch kommerziell, hergestellt und sind für die vorliegende Erfindung verwendbar. So kann das Kohlenstoffnanomaterial vorzugsweise aus Nanofasern (nanofibers), Nanoröhren bzw. -röhrchen (nanotubes) und/oder Nanoschuppen (nanoshells) und beliebigen Mischungen davon bestehen. In einer besonders bevorzugten Ausführungsform enthält das Kohlenstoffnanomaterial helixförmige Kohlenstoffnanofasern. Eine solche helixförmige Struktur kann beispielhaft mit der Form einer Wendeltreppe beschrieben werden. Die helixförmigen Nanostrukturen können vorteilhaft als helixförmige Carbon-Nanofasern ausgebildet sein, die somit zunächst eine äußere, in einer Längsrichtung verlaufende Struktur, in Form einer Schraubenlinie und zusätzlich eine innere Struktur aufweisen. Diese innere Struktur, die in dem exemplarischen Beispiel der „Wendeltreppe” die einzelnen „Treppenstufen” bilden würde, umfasst einzelne Graphitebenen. Demzufolge kann man auch sagen, dass die helixförmigen Kohlenstoffnanofasern Stufen auf der Helix aufweisen. Eine solche Struktur hat wegen ihrer vielen Kanten (edges) erhebliche Vorteile. Beispielsweise stellten sich Wechselwirkungen zwischen der Mikrostruktur des Trägermaterials und der Nanokristallinität des entstehenden Katalysators ein.
-
Es wird weiterhin bevorzugt, dass durch das Erzeugen eines Mikrowellenfelds gezielt das Kohlenstoffnanomaterial erhitzt wird, um über eine Temperatur zu kommen, die zu einer Zersetzung des Katalysatormetallquellmaterials direkt an dem Kohlenstoffnanomaterial und dessen Anbindung daran führt.
-
Weiterhin wird es bevorzugt, dass das Verfahren unter einer Inertgasschutzatmosphäre, beispielsweise einer Edelgasschutzatmosphäre, Stickstoffatmosphäre oder dergleichen durchgeführt wird. Ein bevorzugtes Edelgas ist hierbei Argon, das dem Abführen von gasförmigen Produkten aus dem verwendeten Reaktionsgefäß dienen kann und das diese einem Kondensator zuleiten kann, der mittels eines Kühlsystems kondensierbare Stoffe aus dem „Abgas” kondensiert.
-
Dadurch kann beispielsweise Oxidation oder eine Selbstentzündung vermieden werden (bei Nanokristallinität und auch bei Edelmetallen möglich). Weiterhin können gasförmige Reaktionsprodukte abgeführt werden.
-
Nach Einwirkung des Mikrowellenfeldes liegen die gewonnenen Kohlenstoffnanopartikel-Katalysatormaterialien in möglicherweise nicht hinreichend reiner Form vor. Daher können sich an den eigentlichen Herstellprozess im Rahmen des erfindungsgemäßen Verfahrens Reinigungsschritte anschließen, welche der Isolierung der Kohlenstoffnanopartikel mit darauf gebundenen Katalysatornanopartikeln dienen und die zumindest eine der folgenden Schritte aufweist:
- • Waschen des Produktes mit einem Lösungsmittel. Als geeignete Lösungsmittel kommen beispielsweise Alkohole in Frage, wie etwa 1 Butanol, Propanol oder Ethanol, die gegebenenfalls vorhandene Matrix aus Pentandiol und gegebenenfalls Nebenprodukten etc. auswaschen können. Das Waschen mit Lösungsmittel kann gegebenenfalls zweimal oder öfter durchgeführt werden. Das Auswaschen von Paraffin erfolgt am besten mit Xylol.
- • Waschen mit einer Säure, die mit dem verwendeten Nanokristallisierungsmaterial reagiert. Zum – je nach Anwendung gegebenenfalls notwendigen – Auswaschen von TiO2 bietet sich beispielsweise verdünnte Schwefelsäure an. Der Auswaschvorgang sollte möglichst bald nach der Synthese erfolgen.
- • Ausheizen bei 400°C unter einer Argon/Wasserstoffatmosphäre.
-
Bei besonders bevorzugten Ausführungsformen der Erfindung werden alle Aufbereitungsschritte ausgeführt.
-
Erfindungsgemäß ist eine Verwendung eines mittels eines erfindungsgemäßen Verfahrens hergestellten Kohlenstoffnanopartikel-Katalysatormaterials zur Herstellung einer katalytischen Membran-Elektroden-Einheit.
-
Es wird außerdem ein Verfahren zur Herstellung einer katalytischen Membran-Elektrode-Einheit beschrieben, welches die folgenden Schritte aufweist:
Erzeugen oder Bereitstellen eines Kohlenstoffnanopartilkel-Katalysatormaterials gemäß dem erfindungsgemäßen, oben beschriebenen Verfahren;
Beschichten einer geeigneten Membran mit dem Kohlenstoffnanopartikel-Katalysatormaterial. Vorzugsweise ist die Membran eine Nafionmembran, deren günstige Eigenschaften bezüglich ihrer Protonenleitfähigkeit sie gerade beim Einsatz in Brennstoffzellen als geeignet erscheinen lässt.
-
In einer bevorzugten Ausführungsform erfolgt das Beschichten der Membran mit einem Brei (beispielsweise einem dünnflüssigen Brei oder Tinte) der Kohlenstoffnanoparikel-Katalysatormaterial, das neben Lösungsmitteln ebenfalls für die Membran verwendete Materialien, beispielsweise Nafion, und Polytetrafluorethylen enthält.
-
Die Beschichtung der gewählten Membran kann einseitig oder zweiseitig erfolgen. Das eigentliche Beschichten kann vorzugsweise mit einer sogenannten Filmziehspirale erfolgen, die ein gleichmäßiges Aufbringen des verwendeten Breis auf der Oberfläche der Membran erreichen kann. Alternativ ist eine Filmaufbringung mittels Sprühtechnik möglich. Auch kann eine Beschichtung auf der Gas-Diffusions-Elektrode erfolgen.
-
An den oder die Beschichtungsvorgänge können sich gegebenenfalls Trocknungsschritte und/oder Heißpressschritte anschließen.
-
Die Erfindung ist des Weiteren auf Kohlenstoffnanopartikel-Katalysatormaterialien als solche gerichtet. Alles bezüglich des erfindungsgemäßen Verfahren ausgeführte gilt gleichermaßen für die sich ergebenen Katalysatormaterialien und umgekehrt, sodass wechselweise Bezug genommen wird.
-
Dementsprechend ist die Erfindung gerichtet auf ein Kohlenstoffnanopartikel-Katalysatormaterial, welches Kohlenstoffnanopartikel mit daran als Nanokristallen gebundenen Katalysatorpartikeln aufweist. Dieses Material unterscheidet sich vom im Stand der Technik bekannten einerseits durch die Nanostruktur der verwendeten Partikeln und andererseits darin, dass die Katalysatorpartikel fest an die Kohlenstoffpartikel gebunden sind.
-
Des Weiteren ist die Erfindung auf ein entsprechendes Kohlerstoffnanopartikelmaterial gerichtet, welches nach dem erfindungsgemäßen Verfahren herstellbar ist.
-
Wie oben ausgeführt, können die verwendeten Partikel Nanofasern, Nanoröhrchen oder Nanoschuppen sein. Die Fasern und Röhren können Durchmesser von 50 bis 300 nm aufweisen. Mit dem erfindungsgemäßen, oben vorgestellten Verfahren, können sehr kleine Katalysatorprimärpartikel abgeschieden werden, sodass es bevorzugt ist, dass das erfindungsgemäße Katalysatormaterial katalytische Partikel mit einem mittleren Durchmesser von 2 bis 4 nm, insbesondere 2,6 nm aufweist.
-
Auch ist die Erfindung auf eine Vorrichtung zur Herstellung von Kohlenstoffnanopartikel-Katalysatormaterial gerichtet, dembezüglich ebenfalls auf das unter dem Verfahren Ausgeführte verwiesen wird und welche aufweist:
Ein Reaktionsgefäß zur Aufnahme eines Reaktionsgemisches, enthaltend Kohlenstoffnanomaterial, ein Katalysatormetallquellmaterial und optional ein Nanokristallisierungsmaterial; eine das Reaktionsgefäß zumindest teilweise umgebene thermische Isolierung (Bei Verwendung einer ausreichend großen Menge an Kohlenstoffträgern kann aufgrund der hervorragenden Aufheizung auf eine thermische Isolierung sogar verzichtet werden); eine das Reaktionsgefäß und die thermische Isolierung umgebende Mikrowellencavity zum Erzeugen eines Mikrowellenfeldes in dem Reaktionsgemisch und Bewegungsmittel zum Bewegen des Reaktionsgefäßes.
-
Durch die spezielle Anordnung der Mikrowellencavity um das Reaktionsgefäß herum kann eine gleichmäßige Überhitzung des Inhalts des Reaktionsgefäßes erreicht werden. Die thermische Isolierung sorgt dafür, dass das erhitzte Material im Reaktionsgefäß nicht zu viel Wärme abgibt und innerhalb kurzer Zeit die notwendige kritische Temperatur zur Zersetzung des Katalysatormetallquellmaterials und gegebenenfalls dessen Nanokristallisierungsmaterials ermöglicht. Die thermische Isolierung kann aus Luft oder einem Vakuum bestehen, kann jedoch auch ein Al2O3-Fasermaterial, ein anderes mikrowellentransparentes Material oder ähnliches sein. Die Mikrowellencavity kann eine handelsüblich verwendete Mikrowellencavity sein oder eine speziell für den Einsatzzweck konstruierte Mikrowellencavity, die vom Frequenzverhalten her die Kohlenstoffnanopartikel besonders gut anregen kann. Ein typischer Frequenzbereich für die erzeugten Mikrowellen kann zwischen 2 und 3 GHz, beispielsweise 2,45 GHz liegen, bei einer Leistungsabgabe, die für die jeweilige Reaktionsgemischmenge geeignet ist, beispielsweise 1 bis 4, vorzugsweise 2 bis 2,5 kW.
-
Das Gefäß kann vorzugsweise mit einem Kondensator verbunden sein, in den ein Inertisierungsgas einleitbar ist und flüchtige Substanzen aus dem Reaktionsgefäß kondensierbar und nach außen abführbar sind. Es kann beispielsweise der übliche Kondensator einer Destilliervorrichtung verwendet werden, der mit einer Kondensationseinheit, beispielsweise einer Kühlschlange, mit durchgeführtem Kühlmittel ausgestattet ist, an der die kondensierbare Substanz niederschlagen und in einen Auffangbereich des Kondensators tropfen während weniger leicht kondensierbare, die sich nicht auf eine Temperatur abkühlen, bei der sie kondensieren, vom Edelgas nach außen abführbar sind. Typischerweise wird als Inertisierungsgas Argon oder Stickstoff verwendet.
-
Erfindungsgemäß wird vorgesehen, nanokristalline Partikel auf Kohlenstoffnanomaterialien, beispielsweise Kohlenstoffnanofasern oder dergleichen, abzuscheiden. Es wurde herausgefunden, dass die zur Abscheidung erforderliche Überhitzung des Trägermaterials gegenüber der Umgebung bei hochfeinen Kohlenstoffträgern geringer ist, aber überraschenderweise nachgewiesener maßen zur gezielten Abscheidung ausreicht. Gemäß der vorliegenden Erfindung kann eine definierte Anbindung von nanokristallinen Katalysatorpartikeln auf Kohlenstoffnanomaterialien, beispielsweise Kohlenstoffnanofasern oder dergleichen, realisiert werden. Dies führt zu einer Erhöhung der Katalysatorausnutzung und/oder Aktivität. Die erfindungsgemäß hergestellten Materialien können auf verschiedenen Gebieten eingesetzt werden, beispielsweise als Katalysatorkohlenstoffträgersysteme, etwa für die Membranenelektrodeneinheit von Niedertemperaturbrennstoffzellen oder dergleichen oder zur Verwendung des erhaltenen Kohlenstoffnanopartikel-Katalysatormaterialprodukts zum Aufwachsen weiterer Kohlenstoffnanomaterialien, beispielsweise von Kohlenstoffnanofasern.
-
Die Erfindung weist gegenüber den bisher bekannten Lösungen eine Reihe von Vorteilen auf.
-
Die Kombination von ortsspezifischer Abscheidung von nanokristallinen Partikeln auf Kohlenstoff-Nanomaterialien, etwa Kohlenstoff-Nanofasern oder dergleichen, aus der Flüssigphase war vorher nicht möglich.
-
Bei Abscheidung auf Ruß als Trägermaterial Die elektrische Perkolation bei gleichem Kohlenstoffgehalt ist schlechter als bei Nanomaterialien, beispielsweise Nanofasern; ein zum Ausgleich dieses Nachteils erhöhter Kohlenstoffgehalt in der Reaktionszone wiederum verringert für das Beispiel der Membran-Elektrode-Einheit einer Brennstoffzelle den Porenraum und damit die Gasversorgung.
-
Die Abscheidung aus der Gasphase führt zu deutlich gröberen Partikeln, die Abscheidung aus flüssigen Systemen ohne Einsatz von Mikrowellen führt zu Agglomeraten neben, nicht jedoch auf dem Trägermaterial.
-
Mit der vorliegenden Erfindung wird realisiert eine Kombination von ortsspezifischer Abscheidung nanokristalliner Partikel auf Kohlenstoff-Nanomaterialien, beispielsweise Kohlenstoff-Nanofasern, aus der Flüssigphase. Dies bietet Vorteile, beispielsweise für die Struktur und Funktionalität der Membran-Elektrode-Einheit einer Brennstoffzelle, in der oben beschriebene geträgerte Katalysatoren zum Einsatz kommen.
-
Ein wesentlicher Aspekt der vorliegenden Erfindung besteht in der definierten Abscheidung nanokristalliner Partikel auf Kohlenstoff-Nanomaterialien, beispielsweise Kohlenstoff-Nanofasern, aus der Flüssigphase durch den Einsatz von Mikrowellen.
-
Im Gegensatz zu den bisher bekannten kommerziellen, auf Ruß geträgerten Katalysatoren eröffnet die Abscheidung von Katalysatoren auf Kohlenstoff-Nanomaterialien (beispielsweise Kohlenstoff-Nanofasern, -Nanotubes oder dergleichen) neue Möglichkeiten in der Gestaltung optimierter Strukturen am Ort von Gasphasenreaktionen, etwa in Membran-Elektrode-Einheiten von Brennstoffzellen.
-
Dies ist von hoher Bedeutung, weil in der relevanten aktiven Zone gleichzeitig Perkolation für die Elektronenleitung, Protonenleitung und Gasversorgung gewährleistet werden muss, mit möglichst vielen Kontaktstellen zwischen den Phasen.
-
Im Folgenden soll die Erfindung anhand konkretisierterer Ausführungsbeispiele erläutert werden, wobei auf die beigefügten Zeichnungen Bezug genommen wird, in denen Folgendes dargestellt ist.
-
1 zeigt eine erfindungsgemäße Vorrichtung, die auch zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist;
-
2A zeigt in schematisierter Darstellung die Verteilung von Kohlenstoffnanopartikeln und Platinnanopartikeln bei einem Verfahren aus dem Stand der Technik;
-
2B zeigt die Verteilung von erfindungsgemäß verwendeten Nanofasern und den daran angebundenen Katalysatorpartikeln gemäß einer Ausführungsform der Erfindung;
-
3 zeigt rasterelektronenmikroskopische Aufnahmen von Kohlenstoffkurzfasern mit konventionell erzeugten (3A) und gemäß dem erfindungsgemäßen Verfahren erzeugten (3B), an die Fasern gebundenen Katalysatorpartikeln; und
-
4 zeigt rasterelektronenmikroskopische Aufnahmen von Pt-beschichteten Kohlenstoffnanofasern.
-
1 zeigt eine erfindungsgemäße Vorrichtung mit einem Reaktionsgefäß 1 mit einer darin vorgelegten Reaktionsmischung 2 einer das Reaktionsgefäß umgebenden Isolierschicht 3, welche eine Rotation des Reaktionsgefäßes 1 noch gestattet, die allesamt in einer Mikrowellencavity 4 aufgenommen sind, die einen (nicht dargestellten) Mikrowellengenerator angeordnet ist. Eine Durchführung 5 gestattet das Durchführen eines Halses 6 des Reaktionsgefäßes 1, der mit einem Rotor 7 verbunden ist, welcher während der Reaktion das Reaktionsgefäß 1 drehen kann, um somit eine gleichmäßige Durchmischung des Reaktionsgemisches 2 während der Reaktion zu gestatten. Über einen nicht dargestellten Anschlussmechanismus ist die Halsöffnung des Halses 6 im Rotor 7 mit einem Ansatz 9 eines Kondensatorapparats 8 verbunden, in den aus dem Reaktionsgefäß 1 entweichende Gase oder Dämpfe hineingelangen können, wo sie unter Argonzufuhr an einem Kühlaggregat 10 abgekühlt werden und gegebenenfalls in einen Auffangbereich 11 oder über ein Abluftrohr 12 aus der Vorrichtung hinausgelangen können. Eine durch den Kondensatorapparat 8, Ansatz 9, und Hals 6 geführte Temperatursonde 13 ragt bis in das Reaktionsgemisch, so dass eine Überwachung der Reaktionstemperatur und eine entsprechende Regulierung des Mikrowellenfeldes möglich ist.
-
Die in 1 dargestellte Temperatursonde 13 ist für den Offline-Betrieb gedacht. Mit der Temperatursonde wird keine Messung während des Betriebs durchgeführt. Natürlich sind auch Temperaturmessungen während des Betriebs möglich. Dies kann beispielsweise unter Verwendung eines Pyrometers erfolgen.
-
Beispiel 1
-
0,5 g Kohlenstoffnanofasern, beispielsweise W10-Fasern der FutureCarbon GmbH, 1 g Pt(acac)2, 1 g Ti(OBu)4 und 80 g Pentandiol werden miteinander gemischt und in ein Reaktionsgefäß gegeben. Bei einer Temperatur von ca. 130°C kann das Pt(acac)2 vollständig gelöst werden. Eine Temperatur von 150°C und damit noch unterhalb der Zersetzungstemperatur wird für eine Dauer von 10 Minuten gehalten. Bei Steigerung der Temperatur beginnt die thermische Zersetzung bei Temperaturen von ca. 180°C. Der Ansatz wird im Mikrowellenfeld der Mikrowellencavity auf insgesamt 220°C (makroskopische Temperatur) erhitzt. Die thermische Zersetzung erfolgt dabei in der in skizzierten Anordnung. Die zur Zersetzung notwendige Temperatur wird in Abhängigkeit von Kohlenstoffanteil und der Morphologie der Nanofasern bei Aufheizraten von 0,5 bis 2,5°C/sec innerhalb von Sekunden bis wenigen Minuten erreicht. Es ergeben sich Primärpartikel des Katalysatormaterials in einer Größenordnung < 10 nm.
-
Beispiel 2
-
Beispiel 2 wird wie Beispiel 1 durchgeführt, jedoch besteht der Syntheseansatz aus 0,5 g Kohlenstoffnanofasern; 1 g Pt(acac)2, 5 g Ti(OBu)4 und 50 g Paraffin.
-
2A zeigt eine derzeitige Vorstellung von den Verhältnissen bei konventionell hergestellten Katalysatormaterialien. Erkennbar sind Trägerruß sowie verstreute Katalysatorpartikel (offene Kreise), beispielsweise aus Platin. Ein möglicher Strompfad zur Ableitung von Elektronen durch das Kohlenstoffmaterial ist durch die gezackte Linie angedeutet, was zeigt, dass die Stromführung sehr kompliziert ist und damit verzögert und mit hohen Übergangswiderständen erfolgt. Einzelne, nicht angebundene Pt-Partikel können, da die Elektronen nicht weitergeleitet werden können, nicht an der Stromführung teilnehme.
-
Demgegenüber zeigt 2B ein erfindungsgemäß hergestelltes Katalysatormaterial, bei dem durch die Verwendung von Fasern statt Körnern die leitfähigkeit für Elektronen deutlich verbessert worden ist. Durch die erfindungsgemäße Herstellung dieses Materials sind praktisch alle Katalysatornanopartikel an die Kohlenstoffnanofasern gebunden, was eine verbesserte Katalysatorausnutzung mit sich bringt. Die Partikel können (bei Belegungen von 20 bis 30 Gew.-%) eine mittlere Größe von 2 bis 3 nm erreichen, was gegenüber dem Stand der Technik bekannten Partikelgrößen von ca. 4 nm eine deutliche Verbesserung darstellt. Die verbesserte Perkolation der Elektronenleitung ist durch die Verwendung von stabförmigen Kohlenstoffträgern bedingt.
-
3A zeigt im linken Bereich eine rasterelektronenmikroskopische Aufnahme von Kohlenstoffkurzfasern mit Katalysatorpartikeln, die durch konventionelle Beheizung entstanden sind, also nicht durch ein kolloidales Mikrowellenverfahren. Das rechte Bild von 3A zeigt ein Rückstreuelektronenbild, bei dem das verwendete Katalysatormaterial Platin hell erscheint. Es zeigt sich, dass Platin im gesamten Volumen der Probe und damit nicht ortspezifisch entsteht, und dass keine definierte Anbindung an das Kohlenstoffträgermaterial gegeben ist.
-
Im Vergleich dazu zeigt 3B Kohlenstoffkurzfasern, die gemäß der vorliegenden Erfindung behandelt sind. Im linken Teil zeigt das konventionelle Rasterelektronenmikroskop das Erscheinungsbild der Fasern mit daran angelagerten Partikeln, die sich im Rückstreuelektronenbild der rechten Seite als angelagerter Katalysator, dass heißt Platinpartikel, erweisen. Es zeigt sich, dass die Platinpartikel praktisch ausschließlich an den Fasern gebunden sind und nicht frei vorliegen. Damit kann die Effektivität des verwendeten Katalysatormaterials entscheidend gesteigert werden.
-
In 4 schließlich sind Rasterelektronenmikroskop-Bilder einer ortsspezifischen Katalysator-Abscheidung auf Nanomaterialien, im vorliegenden Beispiel Nanofasern, dargestellt. Wiederum erscheint Pt hell 4A zeigt ein Sekundärelektronenbild, während 4B ein Rückstreuelektronenbild zeigt.
-
Insgesamt können folgende Arten von Katalysatorpartikeln unterschieden werden:
- 1. Freie Katalysatorpartikel. Dieser Fall tritt hauptsächlich bei konventioneller, dass heißt nicht Mikrowellen unterstützer Erhitzung des kohlenstoffträgerhaltigen Ansatzes auf. Bei Erhitzung im Mikrowellenfeld ist ein Auftreten nur vereinzelt gegeben.
- 2. Abscheidung von Katalysatorpartikeln auf Kohlenstofffasern. Dieser Fall tritt bei Kohlenstoffkurzfasern und bei Kohlenstoffnanofasern auf.
- 3. Abscheidung von Katalysatorpartikeln an Berührpunkten von Kohlenstofffasern. Dieser Fall ist derzeit nur bei Kohlenstoffkurzfasern (also nicht im Nanobereich) nachgewiesen und tritt dort im Zusammenhang mit Mikrolichtbögen bei entsprechend hohen Temperaturen zwischen den Fasern auf. Für Nanofasern ist diesbezüglich kein Nachweis erbracht worden, ein entsprechender Effekt kann jedoch nicht ausgeschlossen werden.
- 4. Abscheidung von Katalysatorpartikeln in „Nestern” von Nanofasern. Unter Nestern sind hierbei Agglomerationen vom Fasern zu verstehen. Dieser Fall ist bei Nanofasern beobachtet worden. Mittels Ultraschall lässt sich die Zahl und Größe solcher Nester, in denen Katalysatorabscheidung stattfindet, auf Wunsch auch noch weiter verringern. Ein solcher Schritt kann möglich sein, da Nester mit Platineinlagerung für die Reaktionsgase im Brennstoffzellenbetrieb nicht gut zugänglich sind, da sie zu dicht sind.
-
Beispiel 3
-
Im vorliegenden Beispiel soll eine Möglichkeit zur Beschichtung einer Membran für Brennstoffzellen beispielhaft vorgestellt werden. Das Verfahren, das hier vorgestellt wird, basiert auf einem experimentellen Laboransatz und muss gegebenenfalls bei größeren Membranen oder größeren Durchsätzen entsprechend modifiziert werden. Es soll lediglich als Hinweis für die konkrete Ausgestaltung des Membranbeschichtungsverfahrens gemäß der Erfindung dienen.
-
Eine Membran-Elektrode-Einheit (MEA) kann hergestellt werden, indem auf die Ionomermembran mittels Filmziehtechnik eine katalytisch aktive Schicht aufgebracht wird. Ein ca. 6 × 6 großes Stück Nafion soll durch Beschichtung zu einer MEA verarbeitet werden. Dazu wird es zunächst gewogen, die Dicke ausgemessen, und beides nach einer 45-minütigen Trocknung bei 80°C wiederholt (vgl. Ablaufplan). Aus der Gewichtsdifferenz kann letztlich die Pt-Belegung berechnet werden. Zunächst muss jedoch aus den Komponenten Katalysator auf Kohlenstoffträger, Nafionsuspension (5 Gew.-% Nafionanteil), ggf. Porositätshilfsstoffen sowie Lösemitteln eine „Slurry” (eine Art viskose Tinte) hergestellt werden. Die Slurry hat folgende Zusammensetzung:
270 mg E-TEK Vulcan Pt (20% Pt-Anteil auf Trägerruß)
0,7 ml VE-Wasser
0,1 ml Ethylenglykol
0,7 ml Nafionsyspension (5 Gew.-%)
2,3 ml Ethanol p. a
75 mg PTFE-Suspension
-
Um eine Selbstentzündung zu vermeiden, ist auf das vorgelegte Vulcan Pt zunächst Wasser, Nafion- und PTFE-Suspension, erst dann Ethanol und Ethylenglykol aufzubringen. Letzteres Lösemittel ist eine schwerflüchtige Komponente, sie macht den Film geschmeidiger und verhindert Rissbildung. Die Slurry wird in einem 10 ml Rollrandgläschen vorgemischt und anschließend im Ultraschallbad homogenisiert (nach 15 Minuten gut schütteln und weitere 15 Minuten im Ultraschallbad lassen).
-
Das Nafionstück mit nunmehr bekanntem Trockengewicht wird vor der Beschichtung ca. 5–10 Minuten lang gewässert. Mit der Vorquellung der Membran soll ein durch Quellung verursachtes Faltenwerfen der Membran bei Berührung mit der Slurry vermindert werden. Das wassergetränkte Stück Nafion wird nur oberflächlich getrocknet und vorsichtig auf der Kristallglasplatte eines Filmziehgerätes fixiert. Die Filmziehspirale wird an die Kante der Membran gesetzt und mit den Stellschrauben auf lockeren Kontakt zur Membran eingestellt. 1 ml Slurry wird mit einer Einwegpipette über die Breite der Membran direkt vor der Spirale aufgebracht und schließlich die Spirale über die Membran bewegt (Vortrieb: 5 mm/s). Nach ca. 2 Minuten ist die Membran soweit getrocknet, dass man sie von dem Klebestreifen lösen kann. Vor dem Heißpressen ist jedoch noch ca. 10–15 Minuten im Trockenschrank bei 80°C der größte Teil des Lösungsmittels abzudampfen. Würde dies nicht getan, könnten beim Heißpressen schlagartig entstehende Dampfblasen das Material schädigen.
-
Die Heißpressung erfolgt in einer Presse mit temperaturgeregelten Heizplatten. In den Regler ist die Solltemperatur von 135°C einzugeben und die Wasserkühlung anzustellen. Die MEA wird jedoch nicht direkt zwischen die Heizplatten, sondern zusätzlich zwischen zwei ausreichend große Stücke Teflonfolie gelegt. Bei Erreichen von 135°C wird ein Druck von 20 kN aufgebracht. Das Heißpressen bei 135°C bewirkt eine ausreichend stabile Beschichtung; beim Einlegen in Wasser löst sich der Nafionanteil der Beschichtung nicht mehr auf. Gegen mechanische Beanspruchung ist die MEA jedoch zu schützen. Zunächst wird nun erneut das MEA-Trockengewicht und die Dicke bestimmt.
-
Abschließend wird die MEA in VE-Wasser eingelegt, um sie für die zweite Beschichtung vorzubereiten beziehungsweise sie nach der zweiten Beschichtung in einen protonenleitenden Zustand zu überführen.
-
Eine zusätzliche Protinierung mit einer geeigneten Säure (z. B. 10%-iger H2SO4) mit anschließendem Auswaschen in destilliertem Wasser kann hierbei die Protonenleitfähigkeit gegebenenfalls erhöhen.
-
Eine Kontrolle der aufgebrachten Beschichtungsmenge, insbesondere des Pt-Anteils, erfolgt über die oben beschriebene Bestimmung des Trockengewichts vor, nach der ersten und der zweiten Beschichtung.