DE10251325A1 - Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden - Google Patents

Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden Download PDF

Info

Publication number
DE10251325A1
DE10251325A1 DE10251325A DE10251325A DE10251325A1 DE 10251325 A1 DE10251325 A1 DE 10251325A1 DE 10251325 A DE10251325 A DE 10251325A DE 10251325 A DE10251325 A DE 10251325A DE 10251325 A1 DE10251325 A1 DE 10251325A1
Authority
DE
Germany
Prior art keywords
catalyst
manganese
bound form
group
elemental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10251325A
Other languages
English (en)
Inventor
Markus Dr. Dugal
Andreas Dr. Wegner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE10251325A priority Critical patent/DE10251325A1/de
Priority to PCT/EP2003/011791 priority patent/WO2004041429A1/de
Priority to AU2003276165A priority patent/AU2003276165A1/en
Priority to US10/698,683 priority patent/US20040097746A1/en
Publication of DE10251325A1 publication Critical patent/DE10251325A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Katalysator, der Mangan in elementarer oder in gebundener Form enthält und der ein Element, ausgewählt aus der Gruppe, bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form enthält sowie ein Verfahren zur Herstellung dieses Katalysators sowie ein Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden in Gegenwart dieses Katalysators.

Description

  • Die vorliegende Erfindung betrifft einen Katalysator, der Mangan in elementarer oder in gebundener Form enthält und der ein Element ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form enthält sowie ein Verfahren zur Herstellung dieses Katalysators sowie ein Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden in Gegenwart dieses Katalysators.
  • Epoxide sind ein wichtiges Ausgangsmaterial für die Polyurethanindustrie. Für deren Herstellung gibt es eine Reihe von Verfahren, die zum Teil auch technisch umgesetzt wurden. Für die industrielle Herstellung von Ethylenoxid verwendet man die Direktoxidation von Ethen mit Luft bzw. mit Gasen, die molekularen Sauerstoff enthalten, in Gegenwart eines silberhaltigen Katalysators. Dies ist in EP-A 0 933 130 beschrieben.
  • Um Epoxide mit mehr als zwei C-Atomen herzustellen, werden in technischem Maßstab in der Regel Wasserstoffperoxid oder Hypochlorit als Oxidationsmittel in der Flüssigphase eingesetzt. EP-A 0 930 308 beschreibt zum Beispiel den Gebrauch von Ionen-ausgetauschten Titansilikaliten als Katalysator mit diesen beiden Oxidationsmitteln.
  • Eine weitere Klasse von Oxidationskatalysatoren, die es erlaubt Propen in der Gasphase zu Propenoxid zu oxidieren, wird in US-A 5 623 090 offenbart. Hierbei wird Gold auf Anatas als Katalysator verwendet, als Oxidationsmittel dient Sauerstoff, der in Gegenwart von Wasserstoff eingesetzt wird. Das System zeichnet sich durch ein außergewöhnlich hohe Selektivität (S > 95%) bezüglich der Propenoxidation aus. Nachteilig sind der geringe Umsatz und die Deaktivierung des Katalysators.
  • DE-A 100 24 096 offenbart, dass Mischungen enthaltend Mangan und wenigstens ein weiteres Element ausgewählt aus der Gruppe bestehend aus Cu, Ru, Rh, Pd, Os, Ir, Pt, Au, In, Tl und Ce die Direktoxidation von Propen zu Propenoxid katalysieren können.
  • DE-A 101 39 531 und DE-A 102 08 254 offenbaren ebenfalls Katalysatoren zur Oxidation von Propen zu Propenoxid.
  • Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, weitere Katalysatoren für die Oxidation von Kohlenwasserstoffen zu Epoxiden bereit zu stellen und ein Verfahren zur Oxidation von Kohlenwasserstoffen in Gegenwart dieser Katalysatoren bereit zu stellen.
  • Diese Aufgabe wird gelöst durch einen Katalysator umfassend
    • a) einen Träger und
    • b) Mangan in elementarer oder in gebundener Form und
    • c) eines oder mehrere verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form,

    wobei der Träger eine BET-Oberfläche von weniger als 200 m2/g aufweist.
  • Dieser Katalysator ist Gegenstand der vorliegenden Erfindung.
  • Weiterhin ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen Katalysators umfassend
    • a) das Bereitstellen des Trägers mit einer BET-Oberfläche von weniger als 200 m2/g,
    • b) das Tränken des Trägers mit einer oder mit mehreren verschiedenen Lösungen, wobei alle Lösungen zusammengenommen Mangan und eine oder mehrere verschiedene Verbindungen eines oder mehrerer verschiedener Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink enthalten,
    • c) das Trocknen des nach dem Tränken erhaltenen getränkten Trägers,
    • d) das Calcinieren des nach dem Trocknen erhaltenen getrockneten Trägers.
  • In einer besonderen Form der vorliegenden Erfindung ist der erfindungsgemäße Katalysator ein Katalysator, der nach dem genannten Verfahren erhältlich ist.
  • Weiterhin ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Epoxids aus einem Kohlenwasserstoff umfassend die Umsetzung des Kohlenwasserstoffs mit einem sauerstoffhaltigen gasförmigen Oxidationsmittel in Gegenwart eines Katalysators, wobei der Katalysator Mangan in elementarer oder in gebundener Form enthält und wobei der Katalysator eines oder mehrere verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form enthält.
  • Eine besondere Form der vorliegenden Erfindung ist gegeben, wenn in dem genannten Verfahren das Oxidationsmittel ausgewählt ist aus der Gruppe bestehend aus Sauerstoff und Stickstoffoxiden.
  • Eine besondere Form der vorliegenden Erfindung ist gegeben, wenn in dem genannten Verfahren der Katalysator der oben genannte erfindungsgemäße Katalysator ist.
  • Der erfindungsgemäße Katalysator und das erfindungsgemäße Verfahren haben zahlreiche Vorteile. Der Katalysator hat eine hohe Aktivität und er hat eine hohe Selekti vität bei der Oxidation von Kohlenwasserstoffen zu Epoxiden, insbesondere bei der Oxidation von Propen zu Propenoxid.
  • Die Oxidation des Kohlenwasserstoffs nach dem erfindungsgemäßen Verfahren bzw. in Gegenwart des erfindungsgemäßen Katalysators endet auf der Stufe des Epoxids und führt nicht vollständig zur entsprechenden Säure oder zum Aldehyd oder Keton.
  • In einer besonderen Ausführungsform umfasst der erfindungsgemäße Katalysator eines oder mehrerer verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Natrium, Kalium und Caesium.
  • In einer besonderen Ausführungsform umfasst der erfindungsgemäße Katalysator Mangan in elementarer oder in gebundener Form und Natrium in gebundener Form.
  • In einer besonderen Ausführungsform umfasst der erfindungsgemäße Katalysator Mangan in elementarer oder in gebundener Form und Kalium in gebundener Form.
  • Erfindungsgemäß werden unter dem Begriff Kohlenwasserstoff ungesättigte oder gesättigte Kohlenwasserstoffe wie Olefine oder Alkane verstanden. Diese können auch Heteroatome wie N, O, P, S oder Halogene enthalten.
  • Diese Kohlenwasserstoffe können azyklisch, monozyklisch, bizyklisch oder polyzyklisch sein. Diese Kohlenwasserstoffe können monoolefinisch, diolefinisch oder polyolefinisch sein.
  • Diese Kohlenwasserstoffe können zwei oder mehr Doppelbindungen enthalten. In diesem Fall können die Doppelbindungen konjugiert und nichtkonjugiert vorliegen.
  • Bevorzugt werden Kohlenwasserstoffe, aus denen solche Oxidationsprodukte gebildet werden, deren Partialdruck bei der Reaktionstemperatur niedrig genug liegt, um das Produkt ständig vom Katalysator zu entfernen.
  • Bevorzugt sind ungesättigte oder gesättigte Kohlenwasserstoffe mit 2 bis 20, vorzugsweise 3 bis 10 Kohlenstoffatomen.
  • Besonders bevorzugt sind Kohlenwasserstoffe ausgewählt aus der Gruppe bestehend aus Propen, Propan, Isobutan, Isobutylen, 1-Buten, 2-Buten, cis-2-Buten, trans-2-Buten, 1,3-Butadien, Penten, Pentan, 1-Hexen, 1-Hexan, Hexadien, Cyclohexen und Benzol.
  • Ganz besonders bevorzugt sind Kohlenwasserstoffe ausgewählt aus der Gruppe bestehend aus Propen und Buten. Unter diesen ist Propen besonders bevorzugt.
  • Erfindungsgemäß sind beliebige gasförmige, sauerstoffhaltige Oxidationsmittel geeignet. In einer besonderen Ausführungsform der vorliegenden Erfindung wird das gasförmige, sauerstoffhaltige Oxidationsmittel ausgewählt aus der Gruppe bestehend aus Sauerstoff und Stickstoffoxiden. In einer weiteren besonderen Ausführungsform der vorliegenden Erfindung ist das Oxidationsmittel Sauerstoff.
  • Als Oxidationsmittel kann auch im Gemisch mit anderen Gasen eingesetzt werden. So kann zum Beispiel ein Gasgemisch enthaltend Sauerstoff und Stickstoff eingesetzt werden. Oder es kann Luft eingesetzt werden.
  • Das Mangan und das Element ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink können in dem erfindungsgemäßen Katalysator elementar oder in gebundener Form vorliegen. In einer besonderen Ausführungsform der vorliegenden Erfindung liegen beide in gebundener Form vor.
  • Das Mengenverhältnis von Mangan zu Alkalimetall oder Erdalkalimetall im erfindungsgemäßen Katalysator ist in weiten Bereichen variierbar. Bevorzugte Mengenverhältnisse sind Mangan zu Alkalimetall oder Mangan zu Erdalkalimetall von 1000 zu 1 bis 1 zu 10, besonders bevorzugt von 100 zu 1 bis 1 zu 5. Diese Mengenverhältnisse sind Massenverhältnisse der genannten Elemente.
  • Erfindungsgemäße Katalysatoren können auch Mangan und mehrere verschiedene Alkalimetalle und/oder Erdalkalimetalle sowie Zink enthalten.
  • Es kann vorteilhaft sein, wenn der erfindungsgemäße Katalysator zusätzlich Promotoren oder Moderatoren, zum Beispiel weitere Erdalkalimetalle und/oder Alkalimetalle und/oder Zn als Hydroxide, Carbonate, Nitrate, Chloride, Carboxylate, Alkoholate, Acetate oder in Form anderer Salze und/oder Silber (in elementarer oder in gebundener Form) enthält. Geeignete Promotoren sind in EP-A 0 933 130 auf Seite 4, Zeile 39 ff. beschrieben.
  • Das Mangan in elementarer oder in gebundener Form und das Element ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder in gebundener Form und auch die optional vorhandenen Promotoren und auch die optional vorhandenen Moderatoren können in weiten Mengengrenzen in dem erfindungsgemäßen Katalysator vorhanden sein Jeweils besondere Ausführungsformen der vorliegenden Erfindung ergeben sich, wenn die Menge eines jeden der genannten Bestandteile unabhängig voneinander in den Grenzen 0,01 bis 99,99 Gew.-%, insbesondere 0,1 bis 99,9 Gew.-%, liegen. Dabei ist die Menge der Verbindung des Mangans oder des genannten Elementes gemeint, wenn es nicht in elementarer Form vorliegt. Dabei sind die genannten Mengen in Gew.-% bezogen auf die Summe der Menge des Mangans in elementarer oder in gebundener Form und des Elements ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form und der Promotoren und der Moderatoren.
  • Der bevorzugte Bereich für die Menge der Promotoren im erfindungsgemäßen Katalysator beträgt 0,001 bis 35 Gew.-%, bezogen auf die Summe der Menge des Mangans in elementarer oder in gebundener Form und des Elements ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form und der Promotoren und der Moderatoren.
  • Der erfindungsgemäße Katalysator kann einen Träger enthalten oder er kann keinen Träger enthalten. Katalysatoren ohne Träger können durch verschiedene Verfahren hergestellt werden. Sie können zum Beispiel hergestellt werden durch die thermische Zersetzung von Metallsalzen, oder durch Fällungsverfahren und durch ein Sol-Gel-Verfahren.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung umfasst der erfindungsgemäße Katalysator einen Träger.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung wird der erfindungsgemäße Träger ausgewählt aus der Gruppe bestehend aus Al2O3, SiO2, CeO2, ZrO2, SiC und TiO2.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung besteht der Träger aus Al2O3.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung hat der erfindungsgemäße Träger eine BET-Oberflächen von weniger als 200 m2/g, insbesondere weniger als 100 m2/g, insbesondere weniger als 10 m2/g, insbesondere weniger als 1 m2/g.
  • Die BET-Oberfläche ist die spezifische Oberfläche gemessen nach dem Verfahren nach Brunauer, Emmet und Teller.
  • Die BET-Oberfläche des Trägers wird gemessen bevor der Träger mit Mangan, Alkalimetallen oder Erdalkalimetallen oder andern Stoffen belegt wird.
  • Die BET-Oberfläche wird in üblicher Weise bestimmt nach Brunauer, Emmet und Teller, Journal of the American Chemical Society, Jahrgang 1938, Band 60, Seite 309 (und nach DIN 66 131).
  • In einer besonderen Ausführungsform der vorliegenden Erfindung ist der erfindungsgemäße Träger porös.
  • Die Porosität des Trägers beträgt vorteilhaft 20 bis 60% (Volumenteil des Trägers), insbesondere 30 bis 50%. Die Porosität kann in üblicher Weise, zum Beispiel durch die Quecksilberporosimetrie, bestimmt werden.
  • Die Teilchengröße des erfindungsgemäßen Trägers kann in weiten Bereichen variieren. Sie wird den Verfahrensbedingungen der Oxidation der Kohlenwasserstoffe entsprechend gewählt. Sie liegt üblicherweise im Bereich von 1/10 bis 1/20 des Reaktordurchmessers.
  • Die Teilchengröße der Partikel, die Mangan enthalten, auf der Trägeroberfläche kann mittels Elektronenmikroskopie und Röntgendiffraktometrie bestimmt werden.
  • Die Summe der Massen des Mangans oder der Manganverbindungen und der Elemente oder Elementverbindungen (gemeint ist hier das Element ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink) auf dem Träger sollte in der Regel im Bereich von 0,001 bis 50 Gew.-%, bevorzugt 0,001 bis 20 Gew.-%, ganz besonders bevorzugt 0,01 bis 10 Gew.-% betragen (bezogen auf die Summe der Massen des Trägers und dieser Masse).
  • Im Folgenden werden Verfahren beschrieben, mit denen der erfindungsgemäße Katalysator hergestellt werden kann, indem das Mangan in elementarer oder in gebundener Form und ein oder mehrere Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form auf den erfindungsgemäßen Träger aufgebracht werden. Dabei ist mit dem Begriff „erfindungsgemäßes Element" im Folgenden gemeint ein oder mehrere verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form. Der Einfachheit halber wird im Folgenden nur von „Mangan" gesprochen. Gemeint ist jeweils Mangan in elementarer oder gebundener Form.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung liegt das Mangan im erfindungsgemäßen Katalysator als Oxid vor.
  • In einer besonderen Ausführungsform der vorliegenden Erfindung liegt das bzw. liegen die erfindungsgemäßen Elemente im erfindungsgemäßen Katalysator als Oxid vor.
  • Die Erzeugung von Partikeln des Mangans und des erfindungsgemäßen Elements auf dem Träger ist nicht auf eine Methode beschränkt. Verfahren, die angewandt werden können sind zum Beispiel:
    • – das Abscheidungs-Ausfällungs-Verfahren (auch Deposition-Precipitation-Process genannt) wie zum Beispiel offenbart in EP-B-0 709 360 auf Seite 3, Zeilen 38 ff.,
    • – die Imprägnierung in Lösung,
    • – das Incipient-wetness-Verfahren,
    • – das Kolloid-Verfahren,
    • – Sputtern,
    • – CVD (chemical vapor deposition) und
    • – PVD (physical vapor deposition) genannt.
  • Unter dem Incipient-wetness-Verfahren wird die Zugabe einer Lösung enthaltend lösliche Verbindungen des Mangans und des erfindungsgemäßen Elements zum Träger verstanden, wobei das Volumen der Lösung kleiner als oder gleich dem Porenvolumen des Trägers ist. Somit bleibt der Träger makroskopisch trocken.
  • Als Lösungsmittel für das Incipient-wetness-Verfahren können alle Lösungsmittel verwendet werden, in denen die Verbindungen des Mangans und des erfindungsgemäßen Elements löslich sind. Geeignete Lösungsmittel sind beispielsweise Wasser, Alkohole, (Kronen-)Ether, Ester, Ketone, halogenierte Kohlenwasserstoffe usw.
  • Bevorzugt wird der Träger mit einer Lösung, die Verbindungen des Mangans und des erfindungsgemäßen Elements enthält, getränkt und anschließend getrocknet und kalziniert. Diese Lösung kann zusätzlich dem Fachmann bekannte Komponenten enthalten, die die Löslichkeit der Verbindungen des Mangans und des erfindungsgemäßen Elements im Lösungsmittel erhöhen können und/oder, die die Redoxpotentiale des Mangans und/oder des erfindungsgemäßen Elements verändern und/oder den pH-Wert verändern. Insbesondere seien als solche Komponenten genannt Ammoniak, Amine, Diamine, Hydroxyamine und Säuren, wie HCl, HNO3, H2SO4, H3PO4.
  • Das Tränken des Trägers mit einer Lösung, die Verbindungen des Mangans und des erfindungsgemäßen Elements enthält, kann zum Beispiel nach dem Incipientwetness-Verfahren durchgeführt werden.
  • Der Incipient-wetness-Prozess kann folgende Schritte enthalten:
    • – einmalige Belegung des Trägers mit Verbindungen des Mangans und/oder des erfindungsgemäßen Elements und/oder mehrmalige Belegung des Trägers mit anderen Verbindungen des Mangans und/oder des erfindungsgemäßen Elements,
    • – einmalige Belegung mit einem Teil der Verbindungen des Mangans und des erfindungsgemäßen Elements oder mit der gesamten Menge an den Verbindungen des Mangans und des erfindungsgemäßen Elements in einem Schritt,
    • – mehrfache Belegung mit mehreren Verbindungen des Mangans und mehreren Verbindungen des erfindungsgemäßen Elements in einem oder mehreren Schritten hintereinander,
    • – mehrfache Belegung mit mehreren Verbindungen des Mangans und mehreren Verbindungen des erfindungsgemäßen Elements wechselseitig in einem oder mehreren Schritten.
  • Das Trocknen des nach dem Tränken erhaltenen getränkten Trägers wird insbesondere bei einer Temperatur von etwa 40°C bis etwa 200°C bei Normaldruck oder auch reduziertem Druck durchgeführt. Bei Normaldruck kann unter Luftatmosphäre oder auch unter Inertgasatmosphäre (z.B. Ar, N2, He oder andere Inertgase) gearbeitet werden. Die Zeit der Trocknung liegt üblicherweise im Bereich von 2 bis 24 Stunden, bevorzugt von 4 bis 8 Stunden.
  • Das Calcinieren des nach dem Trocknen erhaltenen getrockneten Trägers kann erst unter Inertgasatmosphäre und anschließend unter Sauerstoff enthaltender Gasatmosphäre vorgenommen werden. Es kann auch ausschließlich unter Sauerstoff enthaltender Gasatmosphäre vorgenommen werden. Der Gehalt an Sauerstoff in der genannten Gasatmosphäre liegt vorteilhaft im Bereich von 0 bis 30 Vol.-%, bevorzugt von 5 bis 21 Vol.-%(bezogen auf das Volumen der Gasatmosphäre).
  • Das Calcinieren des nach dem Trocknen erhaltenen getrockneten Trägers kann an Luft bei Temperaturen von 200 bis 1000°C durchgeführt werden. Der Temperaturbereich von 300 bis 700°C ist bei der Calcinierung an Luft bevorzugt.
  • Die Temperatur für das Calcinieren wird dem je nach verwendetem erfindungsgemäßen Element verschieden gewählt. Sie liegt in der Regel im Bereich von 200 bis 1000°C, insbesondere von 300 bis 900°C, bevorzugt von 350 bis 550°C, besonders bevorzugt bei etwa 400°C.
  • Das Reduzieren des Trägers erfolgt insbesondere bei erhöhten Temperaturen unter einer Stickstoffatmosphäre, die Wasserstoff enthält. Der Gehalt an Wasserstoff kann dabei zwischen 0 bis 100 Vol.-% liegen, bevorzugt liegt er bei 0 bis 25, besonders bevorzugt bei 1 bis 10 Vol.-% (bezogen auf das Volumen der gesamten Stickstoffatmosphäre). Die Reduktionstemperaturen sind dem jeweiligen Element angepasst und liegen üblicherweise zwischen 100 und 600°C.
  • Als Ausgangsverbindungen für das im erfindungsgemäßen Katalysator enthaltene Mangan können, je nach Synthesemethode, verschiedene Manganverbindungen eingesetzt werden. Es können zum Beispiel eingesetzt werden Mangan-Halogenide, Mangan-Acetate, Mangan-Nitrate, Mangan-Carboxylate, Mangan-Alkoholate, Mangan-Sulfate, Mangan-Phosphate, Mangan-Hydroxide, Mangan-Acetylacetonate, Mangan-Oxide, Mangan-Carbonate oder Mangan-Aminkomplexe. Das Mangan kann dabei in verschiedensten Oxidationsstufen vorliegen.
  • Als Ausgangsverbindungen für die im erfindungsgemäßen Katalysator enthaltenen Alkali- und oder Erdalkalimetalle können verschiedene Alkali- und/oder Erdalkalimetallverbindungen eingesetzt werden. Es können zum Beispiel eingesetzt werden Nitrate, Halogenide, Carboxylate, Carbonate, Hydrogencarbonate, Hydroxide, Oxide, Acetate, Acetylacetonate, Alkoholate, Phosphate oder Sulfate.
  • Im Folgenden wird das erfindungsgemäße Verfahren zur Herstellung eines Epoxids aus einem Kohlenwasserstoff beschrieben.
  • Üblicherweise wird das genannte Verfahren unter folgenden Bedingungen durchgeführt:
    Es wird bevorzugt in der Gasphase durchgeführt.
  • Die molare Menge des eingesetzten Kohlenwasserstoffs in Bezug auf die Gesamtmolzahl aus Kohlenwasserstoff, Sauerstoff und gegebenenfalls vorhandenem Verdünnungsgas sowie das relative molare Verhältnis der Komponenten kann in weiten Bereichen variiert werden und orientiert sich in der Regel an den Explosionsgrenzen des Kohlenwasserstoff-Sauerstoff-Gemisches. In der Regel wird oberhalb oder unterhalb der Explosionsgrenze außerhalb des Explosionsbereiches gearbeitet.
  • Bevorzugt wird ein Überschuss von Kohlenwasserstoff, bezogen auf den eingesetzten Sauerstoff (auf molarer Basis) eingesetzt. Der Kohlenwasserstoffgehalt im Reaktionsgas ist typischerweise ≤ 2 Mol-% oder ≥ 78 Mol-% (bezogen auf die Summe aller Mole im Reaktionsgas). Bevorzugt werden Kohlenwasserstoffgehalte im Bereich von 0,5 bis 2 Mol-% bei Fahrweisen unterhalb der unteren Explosionsgrenze und 78 bis 99 Mol-% bei Fahrweisen oberhalb der oberen Explosionsgrenze gewählt. Besonders bevorzugt sind jeweils die Bereiche von 1 bis 2 Mol-% bzw. 78 bis 90 Mol-%.
  • Der molare Sauerstoffanteil, in Bezug auf die Gesamtmolzahl aus Kohlenwasserstoff, Sauerstoff und Verdünnungsgas, kann in weiten Bereichen variiert werden. Bevorzugt wird der Sauerstoff im molaren Unterschuss zum Kohlenwasserstoff eingesetzt. Bevorzugt werden im Bereich von 1 bis 21 Mol-%, besonders bevorzugt 5 bis 21 Mol-% Sauerstoff eingesetzt (bezogen auf die gesamten Mole im Gasstrom).
  • Zusätzlich zu Kohlenwasserstoff und Sauerstoff kann optional auch ein Verdünnungsgas, wie Stickstoff, Helium, Argon, Methan, Kohlendioxid, Kohlenmonoxid oder ähnliche, sich überwiegend inert verhaltende Gase, eingesetzt werden. Auch Mischungen der beschriebenen Inertkomponenten können eingesetzt werden. Der Inertkomponentenzusatz ist zum Transport der freiwerdenden Wärme dieser exothermen Oxidationsreaktion und aus sicherheitstechnischen Gesichtspunkten günstig. In diesem Fall ist die oben beschriebene Zusammensetzung der Eduktgasmischungen auch in den Explosionsbereich der unverdünnten Mischung aus Kohlenwasserstoff und Sauerstoff hinein möglich.
  • Die Kontaktzeit von Kohlenwasserstoff und Katalysator liegt in der Regel im Bereich von 0,1 bis 100 Sekunden, vorzugsweise im Bereich von 5 bis 60 Sekunden.
  • Der Prozess wird in der Regel bei Temperaturen im Bereich von 120 bis 300°C, bevorzugt 160 bis 260°C durchgeführt.
  • Die Beispiele dienen der Veranschaulichung der Erfindung. Die Erfindung ist in ihrem Umfang nicht auf die Beispiele beschränkt.
  • Beispiele 1–22
  • In den Beispielen 1 bis 16 wurden sogenannte Stammlösungen verwendet. Diese Stammlösungen wurden wie folgt hergestellt. Für die Lösung 1 wurden 40,09 g Mangan(II)nitrat in 64,2 g destilliertem Wasser gelöst. Für die Lösung 2 wurden 32,4 g Natriumnitrat in 75 g destilliertem Wasser gelöst.
  • Mischungen dieser Lösungen mit einem Gesamtvolumen von 2,39 ml wurden in 5 g Al2O3 vollständig aufgesaugt. Der so erhaltene Feststoff wurde 8 Stunden bei 100°C in einem Vakuumtrockenschrank bei einem Vakuum von ca. 20 mbar getrocknet. Es wurde dabei eine sogenannte Vorstufe des Katalysators erhalten
  • Schließlich wurde die so hergestellte Vorstufe auf verschiedene Weise für 8 Stunden nachbehandelt. Diese Nachbehandlung erfolgte entweder durch Kalzinierung unter Luftzutritt (Methode 1 in Tabelle 1) oder durch Reduktion in einem Gasgemisch aus 10 Vol.-% H2 und 90 Vol.-% N2, jeweils bezogen auf das Gesamtvolumen des Gases, bei einem Fluss von 60 l/h (Methode 2 in Tabelle 1). Die Nachbehandlungstemperaturen sind in Tabelle 1 angegeben. Durch die Nachbehandlung wurde der Katalysator erhalten.
  • Nach der Nachbehandlung wurden 1 g des so erhaltenen Katalysators in einem kontinuierlich betriebenen Festbettreaktor bei einer Verweilzeit von ca. 20 Sekunden mit einem Gasgemisch mit einer Zusammensetzung von 79 Vol.-% Propen und 21 Vol.-% Sauerstoff untersucht. Die in Tabelle 1 angegebene Reaktionstemperatur ist die Reaktortemperatur im Festbett. Die Ergebnisse dieser Untersuchungen finden sich ebenfalls in Tabelle 1.
  • Tabelle 1: Herstellung der Katalysatoren und Eignung der Katalysatoren für die Oxidation von Propen zu Propenoxid (PO).
    Figure 00160001
  • In den eispielen 23 bis 28 wurden sogenannte Stammlösungen verwendet. Diese Stammlösungen wurden wie folgt hergestellt. Für die Lösung 3 wurden 39,15 g Manganacetat in 63,5 g destilliertem Wasser gelöst. Für die Lösung 4 wurden 51,56 g Natriumacetat in 54,4 g destilliertem Wasser gelöst.
  • Mischungen dieser Lösungen mit einem Gesamtvolumen von 2,39 ml wurden in 5 g Al2O3 vollständig aufgesaugt. Der so erhaltene Feststoff wurde 8 Stunden bei 100°C in einem Vakuumtrockenschrank bei einem Vakuum von ca. 20 mbar getrocknet. Es wurde dabei eine sogenannte Vorstufe des Katalysators erhalten.
  • Schließlich wurde die so hergestellte Vorstufe für 8 Stunden durch Kalzinierung unter Luftzutritt nachbehandelt. Die Nachbehandlungstemperaturen sind in Tabelle 2 angegeben. Durch die Nachbehandlung wurde der Katalysator erhalten.
  • Nach der Nachbehandlung wurden 1 g des so erhaltenen Katalysators in einem kontinuierlich betriebenen Festbettreaktor bei einer Verweilzeit von ca. 20 Sekunden mit einem Gasgemisch mit einer Zusammensetzung von 79 Vol.-% Propen und 21 Vol.-% Sauerstoff untersucht. Die in Tabelle 2 angegebene Reaktionstemperatur ist die Reaktortemperatur im Festbett. Die Ergebnisse dieser Untersuchungen finden sich ebenfalls in Tabelle 2.
  • Tabelle 2: Herstellung von Katalysatoren und Eignung der Katalysatoren für die Oxidation von Propen zu Propenoxid (PO).
    Figure 00170001
  • Beispiele 29–37
  • In den Beispielen 29 bis 37 wurden sogenannte Stammlösungen verwendet. Diese Stammlösungen wurden wie folgt hergestellt. Für die Lösung 5 wurden 40,09 g Mangannitrat in 64,2 g destilliertem Wasser gelöst. Für die Lösung 6 wurden 22,7 g Kaliumnitrat in 75 g destilliertem Wasser gelöst.
  • Mischungen dieser Lösungen mit einem Gesamtvolumen von 2,39 ml wurden in 5 g Al2O3 vollständig aufgesaugt. Der so erhaltene Feststoff wurde 8 Stunden bei 100°C in einem Vakuumtrockenschrank bei einem Vakuum von ca. 20 mbar getrocknet. Es wurde dabei eine sogenannte Vorstufe des Katalysators erhalten.
  • Schließlich wurde die so hergestellte Vorstufe auf verschiedene Weise für 8 Stunden nachbehandelt. Diese Nachbehandlung erfolgte entweder durch Kalzinierung unter Luftzutritt (Methode 1 in Tabelle 3) oder durch Reduktion in einem Gasgemisch aus 10 Vol.-% H2 und 90 Vol.-% N2, jeweils bezogen auf das Gesamtvolumen des Gases, bei einem Fluss von 60 l/h (Methode 2 in Tabelle 3). Die Nachbehandlungstemperaturen sind in Tabelle 3 angegeben. Durch die Nachbehandlung wurde der Katalysator erhalten.
  • Nach der Nachbehandlung wurden 1 g des so erhaltenen Katalysators in einem kontinuierlich betriebenen Festbettreaktor bei einer Verweilzeit von ca. 20 Sekunden mit einem Gasgemisch mit einer Zusammensetzung von 79 Vol.-% Propen und 21 Vol.-% Sauerstoff untersucht. Die in Tabelle 3 angegebene Reaktionstemperatur ist die Reaktortemperatur im Festbett. Die Ergebnisse dieser Untersuchungen finden sich ebenfalls in Tabelle 3.
  • Tabelle 3: Herstellung von Katalysatoren und Eignung der Katalysatoren für die Oxidation von Propen zu Propenoxid (PO).
    Figure 00180001
  • Beispiele 38–44
  • In den Beispielen 38 bis 44 wurden sogenannte Stammlösungen verwendet. Diese Stammlösungen wurden wie folgt hergestellt. Für die Lösung 7 wurden 40,09 g Mangannitrat in 64,2 g destilliertem Wasser gelöst. Für die Lösung 8 wurden 12,87 g Cäsiumnitrat in 75 g destilliertem Wasser gelöst.
  • Mischungen dieser Lösungen mit einem Gesamtvolumen von 2,39 ml wurden in 5 g Al2O3 vollständig aufgesaugt. Der so erhaltene Feststoff wurde 8 Stunden bei 100°C in einem Vakuumtrockenschrank bei einem Vakuum von ca. 20 mbar getrocknet. Es wurde dabei eine sogenannte Vorstufe des Katalysators erhalten.
  • Schließlich wurde die so hergestellte Vorstufe auf verschiedene Weise für 8 Stunden nachbehandelt. Diese Nachbehandlung erfolgte entweder durch Kalzinierung unter Luftzutritt (Methode 1 in Tabelle 4) oder durch Reduktion in einem Gasgemisch aus 10 Vol.-% H2 und 90 Vol.-% N2, jeweils bezogen auf das Gesamtvolumen des Gases, bei einem Fluss von 60 l/h (Methode 2 in Tabelle 4). Die Nachbehandlungstemperaturen sind in Tabelle 4 angegeben. Durch die Nachbehandlung wurde der Katalysator erhalten.
  • Nach der Nachbehandlung wurden 1 g des so erhaltenen Katalysators in einem kontinuierlich betriebenen Festbettreaktor bei einer Verweilzeit von ca. 20 Sekunden mit einem Gasgemisch mit einer Zusammensetzung von 79 Vol.-% Propen und 21 Vol.-% Sauerstoff untersucht. Die in Tabelle 4 angegebene Reaktionstemperatur ist die Reaktortemperatur im Festbett. Die Ergebnisse dieser Untersuchungen finden sich ebenfalls in Tabelle 4.
  • Tabelle 4: Herstellung von Katalysatoren und Eignung der Katalysatoren für die Oxidation von Propen zu Propenoxid (PO).
    Figure 00190001
  • Figure 00200001

Claims (6)

  1. Ein Katalysator umfassend a) einen Träger und b) Mangan in elementarer oder in gebundener Form und c) eines oder mehrere verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form, wobei der Träger eine BET-Oberfläche von weniger als 200 m2/g aufweist.
  2. Ein Verfahren zur Herstellung des Katalysators nach Anspruch 1 umfassend a) das Bereitstellen des Trägers mit einer BET-Oberfläche von weniger als 200 m2/g, b) das Tränken des Trägers mit einer oder mit mehreren verschiedenen Lösungen, wobei alle Lösungen zusammengenommen Mangan und eine oder mehrere verschiedene Verbindungen eines oder mehrerer verschiedener Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink enthalten, c) das Trocknen des nach dem Tränken erhaltenen getränkten Trägers, d) das Calcinieren des nach dem Trocknen erhaltenen getrockneten Trägers.
  3. Der Katalysator erhältlich nach dem Verfahren nach Anspruch 2.
  4. Ein Verfahren zur Herstellung eines Epoxids aus einem Kohlenwasserstoff umfassend die Umsetzung des Kohlenwasserstoffs mit einem sauerstoffhaltigen gasförmigen Oxidationsmittel in Gegenwart eines Katalysators, wobei der Katalysator Mangan in elementarer oder in gebundener Form enthält und wobei der Katalysator eines oder mehrere verschiedene Elemente ausgewählt aus der Gruppe bestehend aus Lithium, Natrium, Kalium, Rubidium, Caesium, Beryllium, Magnesium, Calcium, Strontium, Barium und Zink in elementarer oder gebundener Form enthält.
  5. Das Verfahren nach Anspruch 4, wobei das Oxidationsmittel ausgewählt ist aus der Gruppe bestehend aus Sauerstoff und Stickstoffoxiden.
  6. Das Verfahren nach Anspruch 4 oder 5, wobei der Katalysator der Katalysator nach Anspruch 1 oder 3 ist.
DE10251325A 2002-11-05 2002-11-05 Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden Withdrawn DE10251325A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10251325A DE10251325A1 (de) 2002-11-05 2002-11-05 Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden
PCT/EP2003/011791 WO2004041429A1 (de) 2002-11-05 2003-10-24 Manganhaltiger katalysator und verfahren zur oxidation von kohlenwasserstoffen zu epoxiden
AU2003276165A AU2003276165A1 (en) 2002-11-05 2003-10-24 Catalyst containing manganese and method for oxidising hydrocarbons to form epoxides
US10/698,683 US20040097746A1 (en) 2002-11-05 2003-10-31 Catalyst and process for the oxidation of hydrocarbons to epoxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10251325A DE10251325A1 (de) 2002-11-05 2002-11-05 Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden

Publications (1)

Publication Number Publication Date
DE10251325A1 true DE10251325A1 (de) 2004-05-13

Family

ID=32103316

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10251325A Withdrawn DE10251325A1 (de) 2002-11-05 2002-11-05 Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden

Country Status (4)

Country Link
US (1) US20040097746A1 (de)
AU (1) AU2003276165A1 (de)
DE (1) DE10251325A1 (de)
WO (1) WO2004041429A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157260A1 (ja) * 2008-06-24 2009-12-30 コスモ石油株式会社 フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2040782A (en) * 1936-05-12 Manufacture of olefine oxides
US4499322A (en) * 1983-08-12 1985-02-12 Atlantic Richfield Company Methane conversion
US5057481A (en) * 1987-02-20 1991-10-15 Union Carbide Chemicals And Plastics Technology Corporation Catalyst composition for oxidation of ethylene to ethylene oxide
CA1337722C (en) * 1989-04-18 1995-12-12 Madan Mohan Bhasin Alkylene oxide catalysts having enhanced activity and/or stability
US5112795A (en) * 1990-10-12 1992-05-12 Union Carbide Chemicals & Plastics Technology Corporation Supported silver catalyst, and processes for making and using same
JP2615432B2 (ja) * 1994-10-28 1997-05-28 工業技術院長 金−酸化チタン含有触媒による炭化水素の部分酸化方法
IT1298126B1 (it) * 1998-01-15 1999-12-20 Enichem Spa Procedimento per la preparazione di epossidi olefinici
DE19803890A1 (de) * 1998-01-31 1999-08-05 Erdoelchemie Gmbh Silberhaltige Trägerkatalysatoren und Katalysator-Zwischenprodukte, Verfahren zu ihrer Herstellung und ihre Verwendung
FR2791907B1 (fr) * 1999-04-12 2002-06-21 Rhodia Chimie Sa COMPOSITIONS UTILISABLES COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALIN OU D'UN ALCALINO-TERREUX ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
DE10024096A1 (de) * 2000-05-18 2001-11-22 Bayer Ag Verfahren zur Epoxidierung von Kohlenwasserstoffen
DE10139531A1 (de) * 2001-08-10 2003-02-20 Bayer Ag Verfahren zur Epoxidierung von Kohlenwasserstoffen
DE10208254A1 (de) * 2002-02-26 2003-09-04 Bayer Ag Katalysator

Also Published As

Publication number Publication date
AU2003276165A1 (en) 2004-06-07
US20040097746A1 (en) 2004-05-20
WO2004041429A1 (de) 2004-05-21

Similar Documents

Publication Publication Date Title
DE69710472T2 (de) Verfahren zur direkten oxidation von olefinen zu olefinoxiden
EP0034338B1 (de) Katalysator zur Synthese von Methanol und höhere Alkohole enthaltenden Alkoholgemischen
DE2712785C2 (de)
DE69200450T2 (de) Ethylenoxidkatalysator und Verfahren zu seiner Herstellung und seiner Anwendung.
DE69130098T2 (de) Alkylenoxid-Katalysator mit verbesserter Aktivität und/oder Stabilität
DE2820170C2 (de)
EP2513073B1 (de) Verfahren zur herstellung eines olefinoxids
DE2220799C3 (de) Verfahren zur Herstellung von Acrylsäure durch Oxydation von Acrolein
DE2041317C3 (de) Verfahren zur Herstellung eines Katalysators und dessen Verwendung
EP0985447A2 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE19654391A1 (de) Katalysator zur selektiven Herstellung von Propylen aus Propan
EP1473083B1 (de) Verfahren zur Herstellung von aktivierten Methathesekatalysatoren
EP2696973A1 (de) Katalysator für die herstellung von ehtylenoxid
EP2696971A1 (de) Verfahren zur herstellung eines katalysators zur oxidation von ethen zu ethylenoxid
DE10208254A1 (de) Katalysator
DE10139531A1 (de) Verfahren zur Epoxidierung von Kohlenwasserstoffen
DE10024096A1 (de) Verfahren zur Epoxidierung von Kohlenwasserstoffen
EP1955766A1 (de) Katalysator zur ethylenoxiderzeugung, herstellungsverfahren dafür und verfahren zur ethylenoxiderzeugung
WO2006094746A1 (de) Katalysator zur acetoxylierung von c2-c9-kohlenwasserstoffen
EP0431478B1 (de) Verfahren zur Herstellung von Vinylacetat
DE3119887C2 (de)
DE10137783A1 (de) Verfahren zur Herstellung von Epoxiden aus Alkenen
DE2015543A1 (de) Verfahren zur Herstellung von Oxiranverbindungen durch Epoxidieren von Olefinen mit Hydroperoxiden
EP1102635B1 (de) Verfahren zur herstellung von trägerkatalysatoren sowie deren verwendung für die herstellung von vinylacetatmonomer
DE10251325A1 (de) Katalysator und Verfahren zur Oxidation von Kohlenwasserstoffen zu Epoxiden

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE

8139 Disposal/non-payment of the annual fee