CZ300681B6 - Aircraft hybrid drive - Google Patents
Aircraft hybrid drive Download PDFInfo
- Publication number
- CZ300681B6 CZ300681B6 CZ20080500A CZ2008500A CZ300681B6 CZ 300681 B6 CZ300681 B6 CZ 300681B6 CZ 20080500 A CZ20080500 A CZ 20080500A CZ 2008500 A CZ2008500 A CZ 2008500A CZ 300681 B6 CZ300681 B6 CZ 300681B6
- Authority
- CZ
- Czechia
- Prior art keywords
- propeller
- electric motor
- fuselage
- propulsion
- internal combustion
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 230000001141 propulsive effect Effects 0.000 abstract 2
- 239000000446 fuel Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/04—Aircraft characterised by the type or position of power plants of piston type
- B64D27/08—Aircraft characterised by the type or position of power plants of piston type within, or attached to, fuselages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/026—Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Description
Hybridní pohon letadlaHybrid propulsion aircraft
Oblast technikyTechnical field
Vynález se týká propulsního pohonu letadla, využívajícího principy elektrického motoru a spalovacího motoru.BACKGROUND OF THE INVENTION The invention relates to an aircraft propulsion propulsion system utilizing the principles of an electric motor and an internal combustion engine.
io Dosavadní stavio Background
V současnosti jsou v převážné většině všechna prakticky využitelná letadla poháněná motory, které pro vytvoření propulse přeměňují chemickou energii obsaženou v palivu spalovacím procesem na tepelnou a poté její expanzí na mechanickou sloužící k urychlení proudu vzduchu pomocí vrtule a na základě zákona o změně hybnosti proudu vzduchu tak vytvářejí tah potřebný k pohybu letounu. Vedle tohoto základního principu přeměny energie na vytvoření propulse se objevují v současnosti pokusy využít k vytvoření propulse elektrické energie její přeměnou na mechanickou energii v elektrickém motoru, Tyto elektrické motory jsou z důvodu omezené kapacity elektrických článků schopné pohánět pouze lehčí letadla, převážně modely letadel. Objevují se také pokusy překonat omezení kapacity elektrických článků pomocí hybridního pohonu (kombinace spalovacího motoru a elektromotoru), který je řešen jako analogie pohonu hybridních automobilů, V rámci tohoto řešení existuje buďto mechanická vazba mezi spalovacím motorem a elektromotorem, tvořící společný náhon pouze na jednu vrtuli, takže obě pohonné jednotky nejsou nezávislé, neboje spalovací motor pouze zdroj energie pro dobíjení článků. Tato řešení mají z hledis25 ka aplikace na letadlech nevýhody, především z ohledem na konstrukční složitost, hmotnost a spolehlivost. Pohon těžších letadel sloužících k dopravě osob či nákladů je ve stadiu pokusů. Vzhledem k budoucí omezené dostupnosti uhlovodíkových paliv na bázi ropy nabývá na důležitosti trend využít k pohonu letadel elektrické energie.At present, most of the practically usable aircraft are engines powered by engines that convert the chemical energy contained in the fuel into a thermal process to create propulsion and then expand it to mechanical to accelerate the air flow using a propeller and based on the momentum create the thrust required to move the airplane. In addition to this basic principle of converting energy into propulsion, there are presently attempts to use propulsion to convert propulsion into mechanical energy in an electric motor. There are also attempts to overcome the capacity limitation of electric cells by means of a hybrid drive (a combination of an internal combustion engine and an electric motor), which is solved as an analogue to the hybrid car. In this solution there is either a mechanical link between the internal combustion engine and the electric motor. so that both power units are not independent, or the internal combustion engine is only a source of energy for recharging the cells. These solutions have disadvantages in terms of aircraft applications, particularly in terms of design complexity, weight and reliability. The propulsion of heavier aircraft used for the transport of persons or cargo is in the experimental phase. Given the future limited availability of petroleum-based hydrocarbon fuels, the trend of using electricity to power aircraft is increasingly important.
Podstata vynálezuSUMMARY OF THE INVENTION
Nevýhody a omezené možnosti čistě elektrického pohonu letadel odstraňuje navržený hybridní pohon, který jednoduchým způsobem kombinuje dvě nezávislé vrtulové pohonné jednotky vytvo35 řené na principu spalovacího motoru s vrtulí a elektrického motoru s vrtulí.Disadvantages and limited possibilities of purely electric aircraft propulsion are eliminated by the proposed hybrid propulsion, which combines in a simple way two independent propeller propulsion units created on the principle of internal combustion engine with propeller and electric engine with propeller.
Podstatou koncepčního uspořádání podle vynálezu je tandemové uspořádání obou druhů motorů s vrtulí na trupu letadla. Jeden motor s vrtulí je umístěn v přední části trupu letadla jako tažný a druhý motor s vrtulí je umístěn na konci trupu jako tlačný. Toto uspořádání motorů je bez vnitřní mechanické vazby a umožňuje jak společný chod obou motorů, kdy oba vytváří maximální propulsní účinek, tak současně umožňuje i vzájemně nezávislý chod pouze jednoho z motorů např. v cestovním letu, kdy se tak šetří energie druhého motoru. Současně další výhodou této koncepce je to, že osy obou motorů / vrtulí jsou uspořádány souběžně s hlavní podélnou osou symetrie trupu / letadla a mohou být případně jak v její blízkosti, tak i s touto hlavní osou iden45 tické a v případě letu najeden motor je tím vhodně eliminován zatáčivý účinek, který je jinak významný při letu najeden motor u letadel v klasickém uspořádání motorů na křídlech.The essence of the conceptual arrangement according to the invention is a tandem arrangement of both types of propeller engines on the fuselage of an aircraft. One propeller engine is located at the front of the fuselage as a traction and the other propeller engine is located at the end of the fuselage as a thrust. This arrangement of the motors is free of internal mechanical coupling and allows both motors to run together, both producing maximum impulse effect, and at the same time allowing only one of the motors to operate independently, for example in a cruise flight, thereby saving the energy of the other. At the same time, another advantage of this concept is that the axes of the two engines / propellers are arranged parallel to the main longitudinal axis of the fuselage / aircraft symmetry and may be iden- tical both near and with this major axis. eliminated cornering effect, which is otherwise significant in a single engine flight of aircraft in the classic arrangement of the wings.
Výhodou nezávislého uspořádání pohonných jednotek je také možnost rekuperačního dobíjení elektrických článků za letu pomocí hnacího elektromotoru ve funkci generátoru, poháněného vrtulí. Tento systém dobíjení za letu může být dále kombinován s dobíjením elektrických článků z generátoru na spalovacím motoru a na zemi lze elektrické články dobíjet z pozemního a síťového zdroje.An advantage of the independent arrangement of power units is also the possibility of regenerative charging of electric cells in flight by means of a propulsion electric motor as a generator driven by a propeller. This in-flight recharging system can be combined with the recharging of electrical cells from a generator on an internal combustion engine, and on the ground the electrical cells can be recharged from a terrestrial and AC power source.
Cl 300681 B6Cl, 300681 B6
Přehled obrázku na výkreseOverview of the figure in the drawing
Vynález bude dále vysvětlen pomocí výkresu, na kterém je v bočním pohledu schematicky znázorněno uspořádání jednotlivých motorů s vrtulí na trupu letadla.The invention will be further explained by means of a drawing, in which a side view schematically shows the arrangement of the individual engines with a propeller on the fuselage of the aircraft.
Příklad provedení vynálezu io Hybridní pohon letadla, podle obrázku, sestává ze dvou na sobě nezávislých tandemově uspořádaných motorů s vrtulí. Přední motor i s tažnou vrtulí je umístěn v přední části trupu letadla a může být buď elektrický nebo spalovací. Zadní motor 2 s tlačnou vrtulí je umístěn na konci trupu letadla a může být buď elektrický nebo spalovací v závislosti na tom, jaký typ motoru s vrtulí je použit jako přední. Osy vrtulí obou motorů, předního i zadního jsou uspořádány rovnoběžně/sou15 běžně s hlavní podélnou osou symetrie trupu.DETAILED DESCRIPTION OF THE INVENTION The hybrid aircraft propulsion, as shown in the figure, consists of two independent tandem propeller engines. The front engine with a propeller is located in the front of the fuselage and can be either electric or internal combustion. The rear propeller engine 2 is located at the end of the aircraft fuselage and can be either electric or internal combustion, depending on which type of propeller engine is used as the front. The propeller axes of both the front and rear engines are arranged parallel / parallel to the main longitudinal axis of the fuselage symmetry.
Elektrické články napájející energií elektrický motor 2 jsou dobij itelné za letu rekuperací od elektrického motoru 2 s vrtulí a/nebo z generátoru umístěného na spalovacím motoru kElectric cells supplying power to the electric motor 2 are rechargeable in flight by recovery from the electric motor 2 with the propeller and / or from a generator located on the internal combustion engine to
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ20080500A CZ300681B6 (en) | 2008-08-20 | 2008-08-20 | Aircraft hybrid drive |
PCT/CZ2009/000102 WO2010020199A1 (en) | 2008-08-20 | 2009-08-19 | Aircraft hybrid propulsion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ20080500A CZ300681B6 (en) | 2008-08-20 | 2008-08-20 | Aircraft hybrid drive |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ2008500A3 CZ2008500A3 (en) | 2009-07-15 |
CZ300681B6 true CZ300681B6 (en) | 2009-07-15 |
Family
ID=40848144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ20080500A CZ300681B6 (en) | 2008-08-20 | 2008-08-20 | Aircraft hybrid drive |
Country Status (2)
Country | Link |
---|---|
CZ (1) | CZ300681B6 (en) |
WO (1) | WO2010020199A1 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH703260A1 (en) * | 2010-06-03 | 2011-12-15 | Eugen Gaehwiler | Glider for motorized flight and gliding, comprises rechargeable direct current voltage source, and propeller fastened at shaft, where two electromotors are provided, which are coupled with shaft |
GB201104733D0 (en) * | 2011-03-21 | 2011-05-04 | Lee Christopher J | Charging unit for hybrid electrically powered aircraft |
DE102012209807A1 (en) * | 2012-06-12 | 2013-12-12 | Siemens Aktiengesellschaft | Airplane and method for manufacturing an aircraft |
US9527597B1 (en) | 2013-01-11 | 2016-12-27 | Jaime Sada | Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods |
WO2014163688A1 (en) | 2013-03-09 | 2014-10-09 | Rolls-Royce Corporation | Aircraft power plant |
FR3004699B1 (en) * | 2013-04-19 | 2016-12-09 | Airbus Operations Sas | AIRCRAFT COMPRISING A HYBRID ENGINE |
WO2015157114A1 (en) | 2014-04-11 | 2015-10-15 | Sada-Salinas Jaime G | Modular nacelles to provide vertical takeoff and landing (vtol) capabilities to fixed wing aerial vehicles, and associated systems and methods |
US10000293B2 (en) | 2015-01-23 | 2018-06-19 | General Electric Company | Gas-electric propulsion system for an aircraft |
US9815560B2 (en) | 2015-09-21 | 2017-11-14 | General Electric Company | AFT engine nacelle shape for an aircraft |
US9637217B2 (en) | 2015-09-21 | 2017-05-02 | General Electric Company | Aircraft having an aft engine |
US9957055B2 (en) | 2015-09-21 | 2018-05-01 | General Electric Company | Aft engine for an aircraft |
US9884687B2 (en) | 2015-09-21 | 2018-02-06 | General Electric Company | Non-axis symmetric aft engine |
US9821917B2 (en) | 2015-09-21 | 2017-11-21 | General Electric Company | Aft engine for an aircraft |
US10017270B2 (en) | 2015-10-09 | 2018-07-10 | General Electric Company | Aft engine for an aircraft |
US9764848B1 (en) | 2016-03-07 | 2017-09-19 | General Electric Company | Propulsion system for an aircraft |
US10392119B2 (en) * | 2016-04-11 | 2019-08-27 | General Electric Company | Electric propulsion engine for an aircraft |
US20170291693A1 (en) * | 2016-04-11 | 2017-10-12 | General Electric Company | Electric propulsion engine for an aircraft |
US10252810B2 (en) | 2016-04-19 | 2019-04-09 | General Electric Company | Propulsion engine for an aircraft |
US10392120B2 (en) | 2016-04-19 | 2019-08-27 | General Electric Company | Propulsion engine for an aircraft |
US11105340B2 (en) | 2016-08-19 | 2021-08-31 | General Electric Company | Thermal management system for an electric propulsion engine |
US10800539B2 (en) | 2016-08-19 | 2020-10-13 | General Electric Company | Propulsion engine for an aircraft |
US10676205B2 (en) | 2016-08-19 | 2020-06-09 | General Electric Company | Propulsion engine for an aircraft |
US10308366B2 (en) | 2016-08-22 | 2019-06-04 | General Electric Company | Embedded electric machine |
US10093428B2 (en) | 2016-08-22 | 2018-10-09 | General Electric Company | Electric propulsion system |
US10071811B2 (en) | 2016-08-22 | 2018-09-11 | General Electric Company | Embedded electric machine |
US10487839B2 (en) | 2016-08-22 | 2019-11-26 | General Electric Company | Embedded electric machine |
US10793281B2 (en) | 2017-02-10 | 2020-10-06 | General Electric Company | Propulsion system for an aircraft |
US11149578B2 (en) | 2017-02-10 | 2021-10-19 | General Electric Company | Propulsion system for an aircraft |
US10822103B2 (en) | 2017-02-10 | 2020-11-03 | General Electric Company | Propulsor assembly for an aircraft |
US10137981B2 (en) | 2017-03-31 | 2018-11-27 | General Electric Company | Electric propulsion system for an aircraft |
US10762726B2 (en) | 2017-06-13 | 2020-09-01 | General Electric Company | Hybrid-electric propulsion system for an aircraft |
CN118083115A (en) * | 2017-08-10 | 2024-05-28 | 保罗·奈瑟 | Device and method for fluid handling |
US11156128B2 (en) | 2018-08-22 | 2021-10-26 | General Electric Company | Embedded electric machine |
US11097849B2 (en) | 2018-09-10 | 2021-08-24 | General Electric Company | Aircraft having an aft engine |
CH715437A1 (en) * | 2018-10-07 | 2020-04-15 | Martin Ziegler Dr | Method and device for regenerative drive for flow-around vehicles with jet drive. |
US11628942B2 (en) | 2019-03-01 | 2023-04-18 | Pratt & Whitney Canada Corp. | Torque ripple control for an aircraft power train |
EP3931093A4 (en) | 2019-03-01 | 2022-12-07 | Pratt & Whitney Canada Corp. | Aircraft having hybrid-electric propulsion system with electric storage located in fuselage |
CA3132276A1 (en) | 2019-03-01 | 2020-09-10 | Pratt & Whitney Canada Corp. | Cooling system configurations for an aircraft having hybrid-electric propulsion system |
US11574548B2 (en) | 2019-04-25 | 2023-02-07 | Pratt & Whitney Canada Corp. | Aircraft degraded operation ceiling increase using electric power boost |
US11597514B2 (en) * | 2019-08-16 | 2023-03-07 | Embraer S.A. | Unmanned aircraft having reduced acoustic signatures |
US11667391B2 (en) | 2019-08-26 | 2023-06-06 | Pratt & Whitney Canada Corp. | Dual engine hybrid-electric aircraft |
EP3798130B1 (en) | 2019-09-30 | 2023-03-01 | Hamilton Sundstrand Corporation | Systems and methods for battery ventilation |
GB2587671A (en) * | 2019-10-02 | 2021-04-07 | Advanced Mobility Res And Development Ltd | Systems and methods for aircraft |
US11738881B2 (en) | 2019-10-21 | 2023-08-29 | Hamilton Sundstrand Corporation | Auxiliary power unit systems |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2012511C1 (en) * | 1993-08-31 | 1994-05-15 | Фирма "ВИСТ" | Hybrid flying vehicle |
WO1997015492A2 (en) * | 1995-10-24 | 1997-05-01 | Bothe Hans Jurgen | Hybrid aircraft |
US20050011990A1 (en) * | 2003-07-16 | 2005-01-20 | Yuriy Gmirya | Split torque gearbox with pivoted engine support |
GB2408971A (en) * | 2003-11-05 | 2005-06-15 | Peter Antony Hulmes | Aircraft using both turbojet and rocket propulsion |
JP2006021733A (en) * | 2004-07-07 | 2006-01-26 | Kaido Ikeda | Vertical taking-off and landing machine installing rapid wind quantity generation wind direction changing device of double inversion two-axis tilt as device for lift and propulsion of machine body and using it as steering means |
FR2888212A1 (en) * | 2005-07-05 | 2007-01-12 | Paul Julien Alphonse | HYBRID AIRCRAFT, OR BATTERY HELICOPTERS. (DEVICE OF WINGS FOR ...) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1851857A (en) * | 1931-04-04 | 1932-03-29 | Marney Arthur | Aeroplane |
DE728044C (en) * | 1937-08-03 | 1942-11-18 | Dornier Werke Gmbh | Airplane with two engines in a row |
US4089493A (en) * | 1976-09-29 | 1978-05-16 | Paulson Allen E | Aircraft with combination power plant |
US5782427A (en) * | 1994-11-28 | 1998-07-21 | Hermach; Carl J. | Tandem-engine aircraft propulsion module |
DE10156868A1 (en) * | 2001-11-20 | 2003-05-28 | Kurt Schumann | Drive system for aircraft has electric motor, storage arrangement, airscrew that can be used as propeller and rotor, with airscrew changeable between propeller and rotor functions by adjusting blades |
US20080184906A1 (en) * | 2007-02-07 | 2008-08-07 | Kejha Joseph B | Long range hybrid electric airplane |
-
2008
- 2008-08-20 CZ CZ20080500A patent/CZ300681B6/en not_active IP Right Cessation
-
2009
- 2009-08-19 WO PCT/CZ2009/000102 patent/WO2010020199A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2012511C1 (en) * | 1993-08-31 | 1994-05-15 | Фирма "ВИСТ" | Hybrid flying vehicle |
WO1997015492A2 (en) * | 1995-10-24 | 1997-05-01 | Bothe Hans Jurgen | Hybrid aircraft |
US20050011990A1 (en) * | 2003-07-16 | 2005-01-20 | Yuriy Gmirya | Split torque gearbox with pivoted engine support |
GB2408971A (en) * | 2003-11-05 | 2005-06-15 | Peter Antony Hulmes | Aircraft using both turbojet and rocket propulsion |
JP2006021733A (en) * | 2004-07-07 | 2006-01-26 | Kaido Ikeda | Vertical taking-off and landing machine installing rapid wind quantity generation wind direction changing device of double inversion two-axis tilt as device for lift and propulsion of machine body and using it as steering means |
FR2888212A1 (en) * | 2005-07-05 | 2007-01-12 | Paul Julien Alphonse | HYBRID AIRCRAFT, OR BATTERY HELICOPTERS. (DEVICE OF WINGS FOR ...) |
Also Published As
Publication number | Publication date |
---|---|
CZ2008500A3 (en) | 2009-07-15 |
WO2010020199A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CZ300681B6 (en) | Aircraft hybrid drive | |
CN113840777B (en) | Hybrid propulsion system for aircraft with vertical take-off and landing | |
Adu-Gyamfi et al. | Electric aviation: A review of concepts and enabling technologies | |
US10967984B2 (en) | Hybrid aircraft | |
CN106394910B (en) | Hybrid electric drive system for vertical take-off and landing unmanned aerial vehicle | |
CN102971216B (en) | For hybrid electric drive system and the energy system of aircraft | |
US8469306B2 (en) | Purebred and hybrid electric VTOL tilt rotor aircraft | |
US20080184906A1 (en) | Long range hybrid electric airplane | |
US20150151844A1 (en) | Hybrid aircraft | |
JP2015137092A (en) | Parallel hybrid multi-rotor aircraft | |
EP3548377A1 (en) | Electrical vertical take-off and landing aircraft | |
US10967981B2 (en) | Hybrid aircraft with transversely oriented engine | |
WO2018099856A1 (en) | Electrical vertical take-off and landing aircraft | |
CN109733621A (en) | A kind of hybrid power unmanned plane promoting mode more | |
CN110316387A (en) | Propeller propulsion unit including Thermal Motor and electric motor and the aircraft including such propeller propulsion unit | |
CN108995802A (en) | A kind of modular propulsion system and can be with the aircraft of vertical and landing takeoff | |
Kuśmierek et al. | Review of the hybrid gas-electric aircraft propulsion systems versus alternative systems | |
WO2010017766A1 (en) | A vehicle wheel or transport device with a motor-generator | |
RU2532672C1 (en) | Heavy convertible electric drone | |
RU2543120C1 (en) | Multirotor hybrid electrical convertiplane | |
RU2577931C1 (en) | Hybrid short takeoff and landing aircraft | |
RU2554043C1 (en) | Hybrid short takeoff and landing electric aircraft | |
US20220001998A1 (en) | Aircraft propulsion system and method for operating such a system | |
CZ19143U1 (en) | Aircraft hybrid drive | |
RU2558168C1 (en) | Hybrid short takeoff and landing electric aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20100820 |