发明背景
本文中使用的包括触摸传感器的触摸屏幕是用于计算机或其他电子系统的透明或不透明的输入装置。透明触摸屏幕通常设置在诸如阴极射线管监视器以及液晶显示器等显示装置的上面。这样就构成触摸显示系统,现已日益广泛地使用在商业应用中,包括饭店定菜输入系统、工业过程控制应用、博物馆的交互展示、公共信息亭、寻呼机、蜂窝电话和个人数字助理。
目前,主流触摸技术是阻性、容性、红外以及声控。这些触摸屏幕都有高标准的性能和具有竞争力的价格。声触摸屏幕,也称为“超声”触摸屏幕,一直能够与其他触摸技术相抗衡。这大部分是由于声触摸屏幕能够以高透明度、高分辨率的触摸性能来处理高要求的应用,同时又能提供耐用的触摸表面。随着声触摸屏幕的技术不断发展,耐用的触摸表面仍将是关键的销售特征和产品要求。
基于声波的应用的触摸屏幕都是触感衬底,其中声波在衬底上传播,对触感衬底某位置的触摸导致在衬底上传播的波至少一部分被吸收。利用电子电路在XY坐标系统中定位所述吸收位置来确定触摸位置。通常类型的声触摸屏幕采用瑞利波类型的声波,本文中使用的包括准-瑞利波。关于瑞利波触摸屏幕的说明性公开文件包括美国专利No.4,642,423;4,645,870;4,700,176;4,746,914;Re33,151;4,825,21;4,859,996;4,880,665;4,644,100;5,739,479;5,708,461;5,854,450;5,986,224;6,091,406;6,225,985;和6,236,691。采用其他类型声波,例如Lamb或剪切波,或不同类型声波的组合(包括涉及瑞利波的组合)的说明性公开文件包括美国专利No.5,591,945;5,854,450;5,072,427;5,162,618;5,177,327;5,329,070;5,573,077;6,087,599;5,260,521;和5,856,820。所有以上引述的专利均作为参考包括在本文中。
声触摸屏幕,包括通过瑞利波的吸收来感测触摸的E1oTouchSystem,Inc.Intellitouch产品已证明在商业上是很成功的。利用瑞利波的产品取得成功主要是由于瑞利波的以下两种特性。第一,瑞利波对于触摸具有比其他声波更高的敏感度。第二,瑞利波是表面波,能在任何简单的单一玻璃衬底表面上传播。
但瑞利波也有缺点。例如,为使瑞利波在触摸屏幕衬底中传播,衬底通常必须是进入衬底的波长的三到四倍厚。因此,瑞利波需要厚重的衬底,这对于许多应用,包括具有触摸屏幕的便携式电子装置来说是不利的。
此外,由于瑞利波限于或靠近衬底表面,对于液体杂质,例如油和水,以及靠近触摸屏幕表面的其他材料,例如密封剂等,瑞利波触摸屏幕会具有更高的敏感度。杂质或其他靠近的材料吸收传播中的波的能量,可能产生沿衬底轴线延伸的、横断杂质的盲区或盲点。结果,触摸屏幕不能够检测到沿盲区轴的触摸。因此,在瑞利波触摸屏幕暴露于水时以及设计暴露的触摸表面和触摸屏幕衬底的封闭区之间的密封件时都需要特别当心。对于有大量液体杂质的应用,使用瑞利波就很成问题。
使瑞利波触摸屏幕的性能优化的能力是有限的,因为不能独立选择触摸敏感度和最小触摸屏幕厚度。为了在厚度减小而其他尺寸保持不变的触摸屏幕中能支持瑞利波,波长或频率必须减小以保持声波的单表面限制。瑞利波的特性是其限制深度与波长有关,波长减小,限制深度减小。结果,声波限于以表面为界的较浅的区域,而给定的吸收介质所吸收的声波能量的比例增加。实验表明大约随波长的负二次方而变化。如前所述,利用瑞利波的触摸屏幕被认为对于某些应用,甚至对于较厚的显示板,其敏感度不适合,这样减小触摸板的厚度就会使触摸屏幕对于表面杂质或其他靠近材料更为敏感。反之,增加准瑞利波波长来降低敏感度会导致面板厚度和重量的增加。最后,触摸屏幕大批量生产的商业经济希望各种各样的触摸屏幕在同样的工作频率下使用同样的电子电路。因此需要一种瑞利波触摸屏幕,其敏感度、最小厚度和重量都可改变,但声波的波长不变。
剪切波模式的触摸屏幕在业界已众所周知。这些系统通过在衬底中激励非色散的零次水平偏振剪切波(ZOHPS)来工作。这种触摸屏幕在授予Knowles的美国专利No.5177327和No.5329070中作了说明和图示,并且由Exzec Inc.和Carroll Touch Inc.销售,商品名为SureTouchTM。
如果在触摸屏幕中使用水平偏振剪切波(以下也称为“剪切波”),瑞利波触摸屏幕的一些缺点就可避免。例如,在任意薄的衬底中都可支持剪切波,而且事实上,衬底应保持在小于两个波长的厚度,以抑制高次波和谐波。所以,剪切波触摸屏幕非常适用于必须减小触摸屏幕重量的应用中。
但非常薄的衬底,例如原来在剪切波触摸屏幕中使用的1mm厚的钠钙玻璃,却不耐用。为了增加厚度从而增加1mm厚的玻璃衬底的耐用性,将剪切波在其中传播的衬底利用非剪切波耦合的粘接剂层叠到背板上。用来把衬底粘接到背板上的合适的粘接剂是一种硅橡胶粘接剂,它即使在固化后仍保持液状。
授予Weighers等人的美国专利No.5856820公开了用于支持剪切波的SureTouchTM衬底的层叠方法。但层叠的SureTouchTM衬底不能耐受在美国专利No.5648643所公开的化学腐蚀嵌入的反射阵列工艺。例如,硅橡胶不能耐受所述专利所公开的固化银熔接材料所需的高烧结温度。因此,所公开的层叠工艺是一种在1mm厚的声衬底中制造完反射阵列后进行的下游制造工艺。下游叠层工艺使制造过程的成本显著增加。因此需要提供一种耐用的防水的支持剪切波触摸屏幕衬底,但又不必花费成本在下游层叠工艺上就可制造。
授予Keni的美国专利No.5591945公开了一种用2.3mm厚的玻璃衬底构成的剪切波触摸屏幕。这种触摸屏幕利用高次水平偏振剪切波(HOHPS)来感测触摸。如所述专利所提出的,瑞利波沿阵列传播,并由非-45°反射器将其模式转换成n=4的HOHPS波。
在许多应用中,2.3mm厚的玻璃衬底在结构上已足够结实而不再需要叠层衬底,但这种支持HOHPS的触摸屏幕也有缺点。例如,2.3mm厚的支持HOHPS的玻璃衬底也支持许多其它的声模式,包括其它次的HOHPS波,ZOHPS波,瑞利波和大量的Lamb波。这些附加的声模式会导致不需要的寄生声信号。基于HOHPS波的声触摸屏幕还需在市场上展示。于是,还有一种需要尚待满足,即提供一种价廉而耐用的触摸屏幕衬底,它能支持所需要的防水剪切波,同时支持最少的其他额外声模式。
和瑞利波触摸屏幕不同,即使在有大量表面杂质时剪切波触摸屏幕也能适当再构建触摸位置。即使触摸表面完全浸入水下,工作继续进行。以下说明水平偏振剪切波对水和其他杂质比较不敏感的物理机理。和瑞利波不同,剪切波在衬底中只引发水平运动,在触摸屏幕衬底表面上没有垂直运动。结果,瑞利波和剪切波具有明显不同的触摸传感特性。与瑞利波相关联的衬底表面的垂直运动通过压力波辐射到接触介质中而产生吸收。手指触摸和同样接触区域的水滴的吸收是类似的。但是,剪切波不会将压力波辐射到接触介质中,而是主要通过粘滞衰减被吸收。由于水的粘性比手指肌肉小得多,所以剪切波对水滴的反应就比对手指的反应小很多。对于会受水或其他液体显著污染的声触摸屏幕应用,水平偏振剪切波就比使用瑞利波具有重大的优越性。
虽然剪切波对水和其他杂质的敏感度较低,但剪切波对触摸的敏感度也比瑞利波差很多。对于实际的触摸屏幕衬底厚度,给定的触摸所吸收的截取能量的百分比,瑞利波可比相比拟的ZOHPS剪切波大五倍。为了补偿这种基本声敏感性方面的差异,利用ZOHPS波的触摸屏幕就需要特殊的控制器。这些控制器比瑞利波触摸屏幕所需要的控制器更复杂,于是控制器设计的成本增加。因此,最好又有剪切波触摸屏幕的优点,又不相应减少原始触摸信号的强度,这样就可使用不太复杂和不太昂贵的控制器。
洛夫波触摸屏幕在业界也已共知,但还有待作商用开发。通常,洛夫波是一种水平偏振剪切波,它在衬底的一个表面上有波能量,而在相对的表面上能量少得多。和瑞利波一样,洛夫波限于触摸表面并随深度成指数型衰减。和瑞利波不同的是,洛夫波不存在于均匀介质中。数学上,支持洛夫波的最简单的衬底是与呈现快速体剪切波速度的下部半无限介质相接合的有限厚度的上层。实际上,所述下介质可以是有限厚度的层,只要它足够厚、足以包含许多倍的波幅指数衰减长度。具有多层的更复杂的结构也可支持洛夫波。
使用洛夫波作为在有低粘度液体时进行工作的手段在声化学传感器领域已众所周知。可参阅,例如,Gizeli等的“Novel洛夫波-plate acoustic sensor utilizing polymer overlays”,Trans.UFFCSeptember 1992,p.657;Jakoby and Vellekoop,“Analysis ofand Optimization of洛夫波Wave sensors”,Trans.UFFCSeptember 1998,p.1293;Jakoby and Vellekoop,“Analysis ofViscous Losses in the Chemical Interface Layer of洛夫波Wavesensors”Trans.UFFC May 2000,p。696。虽然这些文章说明了基本原理,但从实际工程意义上来说,它们与触摸屏幕技术还相距甚远。化学传感器的活性区一般非常小,例如一个平方英寸的几分之几,而且透明度不相干(irrelevant)。化学传感器的洛夫波衬底通常是压电型的,以便能使用叉指式换能器。而触摸屏幕通常有数十到数百平方英寸的面积。从经济原因考虑,商用声触摸屏幕的衬底不用压电材料制作,而透明度对许多应用却至关重要。因此,对于如何成本低廉地设计和制造用于声触摸屏幕的洛夫波衬底,先有技术的化学传感器所提供的线索有限。
在先有技术中,或含蓄或明确地披露过洛夫波触摸屏幕。例如,授予Knowles的美国专利No.5329070可以解释为公开了一种将剪切速度较慢的介质接合到剪切速度较快的背板上的一种洛夫波衬底。授予Kent的美国专利No.5591945公开了使用由2mm或3mm厚的硼硅玻璃接合到3mm厚的钠钙玻璃上的支持洛夫波的衬底。此外,授予Kent的美国专利No.5854450公开了洛夫波衬底可以含有多于两层的叠层结构。美国专利No.5854450公开了包括在2mm厚的玻璃上的100微米的铅基熔接层、铝上的珐琅和陶瓷上的釉的各种可能的洛夫波衬底结构。
设置在显示装置前面的触摸屏幕的衬底必须是透明的。在触摸显示系统中,最理想的是提供对用户看到的显示图象影响最小的触摸输入功能。但对于某些应用,触摸输入装置不必是透明的。例如,考虑像鼠标一样可以允许用户控制光标的跟踪垫。对于某些市场应用,改进的声衬底设计也会有机会,即使它们是不透明的。
如美国专利No.5854450所讨论的,声传感器可以设计成各种形状供多种应用场合使用,除了用户控制基于计算机的系统外还可有其它用途。例如,在美国专利No.5854450的图19所示的圆柱形传感器可能是机器人手臂的部分金属外壳。这样,大暴露面积能提供触摸敏感性并用作碰撞检测。传感器的信息在机器人系统中可用来确定什么时候停止或修改机器人手臂的运动。如果应用要求拒斥因水杂质等的虚假碰撞信息,那么最好使用剪切模式。这是另一种可以从改进的触感衬底获益的触摸传感器的应用。
于是,普遍认为需要一种改进的声触摸屏幕衬底,它们支持瑞利波和洛夫波、耐用、并对触摸有较高的敏感性,但对水和其他杂质又相对不敏感。而且普遍认为需要的这种触摸屏幕衬底应制造简易且成本低廉。
发明的详细说明
参阅图1,本发明的触摸屏幕衬底1具有作为触摸表面的上微型片3、中间聚合物片5和底板7。上微型片3具有上表面9和下表面11,通常是一种支持剪切波的坚硬且抗划伤的材料,能对整个衬底提供表面强度和耐用性。但是,如果平板7的平整度有偏差,那么,微型片3必须足够薄以保持一定的柔性,以便在层叠过程中与平板7相适应。薄的微型片在提供理想的声特性方面也是很有利的并考虑到触摸屏幕衬底的廉价制造。
微型片可以是玻璃、金属、陶瓷和任何具有类似声特性的其他材料以及它们的合成物。在优选实施例中,微型片的厚度小于300微米。对于触摸屏幕设置在显示器前面的应用,微型片必须透明,可以用玻璃制成。适合于形成微型片的玻璃包括钠钙玻璃,冕玻璃,硼硅玻璃,以及含钡,锶,和铅的玻璃。对于诸如键盘,跟踪垫,以及水下机器人外壳等的触摸屏幕应用,微型片可以是一种不透明材料,例如金属,包括但不限于铝和钢。适合使用在本发明的优选微型片的实例列示于下表1。
表1
微型片商标名 |
额定厚度(微米) |
质量密度(g/cm3) |
组成 |
Corning0211 |
66,145,或220 |
2.53 |
钠钙(低钠含量) |
SchottD-263 |
100 |
2.51 |
硼硅酸盐 |
SchottAF-45 |
100 |
2.72 |
改进的硼硅酸盐,包括高含量的BaO |
对于表1的所有微型片厚度,包括220微米厚的Corning 0211,微型片都具有必要的柔性,在压力和温度粘接过程中与下面的玻璃平板的形状相适应。由于微型片的刚性与厚度的立方成正比,所以,220微米厚的玻璃微型片的柔性大约比1mm厚的玻璃片强100倍。100微米厚的玻璃微型片的柔性大约比220微米厚的玻璃片强10倍。所以,我们认为厚度小于300微米的玻璃微型片具有可以支持叠层过程的柔性,但1mm厚的玻璃片没有足够的柔性来与下面的玻璃板相适应。
底版7是触摸屏幕衬底的主要结构层,它有上表面13和下表面15。和微型片3类似,平板7也是一种支持剪切波的材料。此外,平板7最好具有比较低的声衰减。当衬底1用在透明触摸屏幕的应用场合时,平板7可以用多种玻璃形成,包括对微型片3所讨论的那些玻璃。最好平板7用钠钙玻璃形成,因为价格便宜。虽然钠钙玻璃板标称是平整的,但当没有下游的玻璃研磨和抛光时,它们距理想的平整度还有些微差距。对于诸如键盘,机器人外壳传感器等不透明的触摸屏幕应用,平板7可以用具有可接受的声损耗的金属制成,例如铝、钢或其组合以及陶瓷。
不论平板7是玻璃、金属或其他材料,平板7应足够厚,以使整个触摸屏幕衬底具有刚度。如果平板是玻璃的,则平板厚度应大于2mm,以提供必要的刚度。在优选实施例中,平板是3mm厚的钠钙玻璃板。如果平板是金属的,则平板应有提供必要的机械刚度所需的厚度。在优选实施例中,平板是3mm厚的铝板或钢板。
微型片3和平板7相互不直接接合,而是各接合到中间聚合物片5,形成多层触摸屏幕衬底1。聚合物片5具有上表面17和下表面19,而且,在隔离时,支持体剪切波,或简称“支持剪切”。最好聚合物片所用的聚合物具有高透明度,玻璃转变温度至少为260°K,并且有低的声衰减。此外,如果聚合物具有低吸湿性和环境稳定性就更为有利。这类聚合物包括结晶型和玻璃型聚合物。
与先有技术的两层聚合物/玻璃触摸屏幕衬底相比,三层玻璃/聚合物/玻璃衬底的优点是“埋置”了聚合物片,因此就可以使用较脆以及耐冲击较差的聚合物。而且,由于聚合物设置在微型片3和平板7之间,所以不用担心聚合物的抗划伤问题。这样,对于用做聚合物片5的聚合物类型就可有更多的选择。
适合于作聚合物片5的聚合物包括聚苯乙烯,聚丙烯酸脂,聚醚砜(sulfones),多环烯烃(olefin)和它们的组合。应当指出,硅橡胶是一种非剪切波耦合的材料,因此不能用作本发明的中间层。厚度均匀的薄聚合物片材市场上就能买到且价格便宜。适合的聚合物片包括Dow制造的聚苯乙烯薄膜,商品名为Styron。在优选实施例中,聚合物片的厚度小于300微米,能确保聚合物片有足够的柔性来适应平板可能发生的任何偏差。在另一个优选实施例中,聚合物是一种通用的聚苯乙烯,而不是含有橡胶范畴的高冲击聚苯乙烯。通用的聚苯乙烯特别适合,因为它便宜,对声波的衰减效果很小,并且可允许有合适的在1150m/s范围内的波速。用于本发明的一种优选的聚合物片是32微米厚的聚苯乙烯片,由Kama公司制造,在加州,Santa Fe Springs的MultiPlastics可购得。除了市售的预成型聚合物片外,也可考虑用“现场”聚合的方法形成聚合物片5,见以下实例3的详细讨论。
为了提供均匀的声特性,中间聚合物片5最好具有均匀的厚度,而不管平板7的平整度的偏差。为此,聚合物片5应有柔性以便在叠层过程中与平板相适应。选择一种叠层温度,使之高于聚合物的玻璃转变温度但低于聚合物的熔融温度,就可容易地提高聚合物片5的柔性。另外,通过选择高于聚合物熔融温度的温度并利用所述高度粘滞的熔融物来维持基本上均匀的厚度同时使之适应平板7的变化,可以大大提高所述聚合物的柔性。
微型片3、聚合物片5和平板7叠置在一起形成触摸屏幕衬底。由于在使用时衬底会受到温度、湿度和各种机械力的变化的影响,在微型片3、聚合物片5和平板7之间要有牢固的接合是很重要的。微型片、聚合物片和平板的物理叠加可以用业界已知的任何方法实现,包括但不限于利用压力、利用加热和压力、以及利用加热和压力以及接合剂。
在聚合物片5、微型片3和平板7之间的界面的共价接合对于许多触摸屏幕应用特别适合。利用一种接合剂就可形成牢固的共价接合。将聚合物接合到玻璃或金属衬底上的适合的接合剂业界已熟知,从许多化学品公司都可购得,包括Gelest.Inc.in Tullytown,Pa.。在一个优选实施例中,使用硅烷偶联剂在聚合物片5的上表面17和微型片3的下表面11之间、以及在聚合物片的下表面19和平板7的上表面13之间形成共价接合。使用硅烷化学共价接合的优点在于:不象典型的接触粘接剂会强烈吸收声波,硅烷薄膜不会影响声波的传播。此外,在低成本的触摸屏幕衬底叠加过程中,硅烷化学物可以支持使用较低的温度和压力。
实例1
图1所示的本发明的三层触摸屏幕衬底是用表1的全部三种微型片:3mm厚的钠钙玻璃片作平板7、32微米厚的聚苯乙烯片构成的。微型片3的一侧和平板7的一侧浸入0.1%叠氮砜硅烷(azido sulfonesilane)丁酮涂渍溶液中。或者,可以考虑将整个聚合物片浸入到硅烷涂渍溶液中。然后微型片和平板在空气中干燥,并在炉中110℃下固化足够的时间,以便使硅烷分子共价接合到玻璃微型片和平板上。在干燥过程中,涂渍溶液中的溶剂蒸发掉,留下几个分子厚的硅烷涂层在微型片和平板上。硅烷涂层的厚度可以忽略,所以不会增加衬底的厚度。然后将触摸屏幕衬底的各层叠加在一起、使得聚合物片5位于微型片3和平板7的硅烷涂覆侧之间。然后将Teflon片设置在微型片的上表面9和平板7的下表面15上。然后把带有Teflon片的叠层衬底置于硅橡胶片之间并插到两片钢片之间,在热压机中在200℃和10,000磅压力下热压5分钟,以牢固接合触摸屏幕衬底的各层。接合的衬底在5000磅压力下冷却3分钟。没有间隙或气泡的衬底成功叠层表明在叠层过程中玻璃微型片确实有弯曲以适应玻璃平板的形状。
为了测试按实例1制作的衬底,构建了换能器,在5.53MHz(EloTouchSystem公司的瑞利波IntelliTouch声触摸屏幕的标准工作频率)来激励和检测洛夫波。换能器组件通过7.4mm长的窄钢边缘与衬底相接触。在发射方式下,窄边缘被激励,作与边缘平行的剪切运动,并产生与边缘垂直的传播剪切波。以不同的间隔距离处设置一对发射/接收换能器进行行程时间以及衰减长度实验,在对应表1的三种类型的微型片的每种衬底中都确实观察到了洛夫波。
一个样品特别支持具有有意义的声特性的洛夫波。所述样品的声特性列于表2。
表2
层 |
厚度(μm) |
剪切速度(mm/μsec) |
密度(g/cm3) |
AF-45微型片 |
100 |
3.07 |
2.27 |
聚苯乙烯薄膜 |
32 |
1.15 |
1.05 |
钠钙玻璃板 |
3000 |
3.40 |
2.24 |
在此优选实施例中,洛夫波的能量高度集中在触摸表面的微型片,致使其触膜敏感度比通常观察到的水平偏振剪切波的触膜敏感度高得多。有限厚度聚合物的存在通过降低平板中的消失波而在提高敏感度方面起着至关重要的声作用。事实上,表2中衬底的敏感度与先有技术的瑞利波衬底可相比拟。虽然敏感度提高,但是,所述衬底基本不受水或其他杂质存在的影响,和利用剪切波的先有技术的两层衬底的情况相同。
为了更好地理解导致本发明中剪切波的惊人的高触摸敏感度的机理,对于本发明的各种三层衬底的洛夫波幅和深度曲线作了数学计算。计算表明,所述样品确实应有高触摸敏感度,即:是1mm厚的钠钙玻璃衬底的ZOPHS波的敏感度的8.4倍。表3将实验观察结果与理论预测进行了比较。
表3
特性 |
实验 |
理论 |
触摸敏感度 |
“非常高的触摸敏感度” |
1mm玻璃中ZOPHS波的敏感度的8.4倍 |
拒水 |
“不受水影响” |
使用洛夫波 |
相速 |
3.10mm/μsec |
3.13mm/μsec |
群速 |
2.87mm/μsec |
2.93mm/μsec |
群速分散 |
在频率变化±5%的情况下<1/2% |
在频率变化±5%的情况下<0.1% |
即使在理论计算中所使用的参数不精确,但计算的和测量的相速和群速却非常一致。而且,观察到的群速不随频率变化起初令人吃惊,但后来理论计算表明群速作为频率的函数其变化很小,也就讲得通了。结合实验观察和理论计算,就能更好地理解其中的机理并得出以下见解。
当微型片中的体剪切速度显著低于玻璃板中的体剪切速度时,声能量高度集中在薄微型片中,导致所观察到的高触摸敏感度。对于表2所列的衬底,计算表明83%的声能量包含在微型片中,6%的声能量在聚合物片中,11%的声能量在钠钙玻璃中。在采用洛夫波触摸屏幕衬底的优选实施例中,微型片的剪切速度比玻璃板的剪切速度至少低5%。
有趣的是,以上触摸敏感度显著超过了两层洛夫波衬底可能达到的触摸敏感度。对AF-45微型片直接与钠钙玻璃板相接合的假想两层结构进行了计算。触摸敏感度降为1mm厚玻璃衬底的ZOPHS波的敏感度的1/3.643。这说明聚合物起了重要的作用。由于聚合物片比较软,它可使波的幅度在到达平板之前快速减小。改变(假想)微型片的厚度,直到找到最大的触摸敏感度(表面上的声能量密度)。当厚度为170微米时,触摸敏感度大约为1mm厚玻璃衬底的ZOPHS波的敏感度的4.0倍。这仍然是表2的三层洛夫波衬底所得到的触摸敏感度的1/2。聚合物片不仅在制造过程中起重要作用,而且有助于增强能提高触摸敏感度的波导效果。
如上所述,只有比较小百分比(6%)的洛夫波的声能在聚苯乙烯层中传播。聚合物通常比玻璃的声吸收性强得多。但是,即使聚合物以数倍于玻璃的速度吸收体剪切波,此效应也不过占6%。因此,如前所讨论的,使用聚合物材料,例如聚丙烯酸脂(它被认为用于触摸屏幕衬底时其声吸收太强),在本发明中可以使用。
实例2
在按实例1的过程制作的触摸屏幕衬底上进行了破坏性冲击强度测试。触摸屏幕衬底由100微米厚的Shott D-263微型片、32微米厚的聚苯乙烯片和3mm厚的钠钙玻璃板构成。钠钙玻璃板的尺寸大约为19cm×24cm,微型片和聚苯乙烯片略小于玻璃板。5cm直径的钢球从不断增加的高度跌落在两个样品中的每个样品上。跌落高度从15cm开始,每次增加5cm。两个样品都经受住了跌落钢球的冲击,没有明显的影响,直到跌落高度达到40cm。两个样品都未通过40cm。有趣的是,看来失效发生在3mm厚的钠钙玻璃板上,而不是在100微米厚的玻璃微型片上。3mm厚的钠钙玻璃板的碎片仍接合在聚苯乙烯层上,聚苯乙烯层仍与未碎裂的微型片相接合。此叠层仅在3mm厚的钠钙玻璃板碎裂时才被破坏。因此,可以预期,增加玻璃板的厚度可以进一步增加本发明触摸屏幕衬底的抗冲击强度。
本发明的三层触摸屏幕衬底的前表面的抗冲击强度的实验证明是惊人的。在装配和叠层触摸屏幕衬底之前,玻璃微型片相当易碎,必须小心处理。但在叠层之后,微型片被很好地支撑和制约,避免了会引起玻璃微型片碎裂的小半径弯折。
实例3
图2示出本发明的触摸屏幕衬底的另一实施例。衬底21包括如图1所示的微型片3和平板7。但中间层23不是如实例所述的单独的柔性聚合物片。而是,中间聚合物片23是通过现场聚合而形成的。
将未固化的聚合物基料形成为聚合物母体。聚合物母体可包括聚苯乙烯、聚丙烯酸脂,聚醚砜、多环烯烃或它们的组合,可以是液体或带有填充料的液体。在优选实施例中,聚合物母体是聚丙烯酸脂基的液体系统。这种聚丙烯酸脂系统具有良好的接合性能,价格不贵,并有良好的环境稳定性和很高的光透明度。而且,不需要单独的耦合剂使衬底层与丙烯酸脂系统接合。
为了确保在现场形成的聚合物片具有均匀的厚度,从而上微型片3能与平板7的任何变化相适应,可在聚合物母体中加入小的间隔粒子25。间隔粒子25的直径决定了聚合物片的实际厚度,所以聚合物片的厚度可以根据需要采用较小或较大的间隔粒子来改变。间隔粒子可以是玻璃珠或聚合物珠,其熔点应高于现场聚合过程的峰值温度。在优选实施例中,间隔粒子具有与聚合物相同或类似的声特性。如果需要透明的洛夫波触摸屏幕衬底,间隔粒子最好是透明的,且其折射率类似于固化聚合物的折射率。
聚合物母体可以旋涂到微型片3或平板7上形成一均匀层,或用刀、例如医生用的刀片,涂覆到微型片3或平板7上形成一均匀层,然后将衬底的各层叠加,使聚合物母体层的暴露表面被覆盖。然后将叠层衬底放入热压机中,如在实例1中所讨论的那样使各层叠加。然后用以下任一种方法进行聚合物母体的现场聚合。例如,可以在聚合物母体中加入UV激活剂,使平板和聚合物受UV照射来聚合母体。或者,也可以使用由温度激活的单一或多成分热固化聚合系统。此外,在环境温度下混合反应成分或使聚合物母体在平板表面上或在空气中与环境湿度反应来实现聚合。或者,也可以用任何能阻挡与环境空气接触的叠层工艺来实现聚合。如果使用聚丙烯酸脂基的聚合物系统,则叠层衬底可以进行UV固化来实现聚合。或者,可使衬底经过一对加热的轧制辊轮来实现层叠,然后进行UV固化。
当聚合物片在现场形成时,“柔性”就不再是对叠层过程的要求了。不过,在现场形成的聚合物片,薄而有柔性,提供了所需的声特性和制造便利。
实例4
图3示出本发明的五层触摸屏幕衬底,提高了强度和更为安全的防碎裂机制。这些触摸屏幕衬底在要求耐水和高强度的应用中特别有用,例如在无人监管的位置处的室外信息或售票亭等。
触摸屏幕衬底27包括微型片3、聚合物片5和平板7,这些和图1所示相同。但是,触摸屏幕衬底27还包括:粘接剂层29,它具有上表面31,通常是一种非剪切波耦合材料;以及第二平板33。粘接剂层29可以是任何类型的接触粘接剂。在一个实施例中,粘接剂是一种聚乙烯丁酸盐基的粘接剂,一般称为安全玻璃粘接剂。在平板7的下表面15和粘接剂层的上表面31之间的界面处,第一平板7中波的渐消失尾部基本上是零振幅。所以,粘接剂层29对于声波在衬底上三层的传播没有影响。但是,粘接剂层29对于除平板7中需要的波外可能被激励的额外的平板波却有衰减作用,从而提供了声学方面的优势。第二平板33可以用与平板7相同的或不同的材料构成,可以用玻璃、金属、陶瓷、聚合物或具有所需的机械和光学特性的任何固体材料制成。第二平板33的厚度可以与平板7相同或不同,在优选实施例中,大约在1到12mm之间。但是,平板33的构成和厚度主要取决于所需的应用。
实例5
本发明也考虑了用于水下机器人的不透明的触摸传感器。由于水具有很强的辐射衰减效果而不能使用瑞利波传感器。相反,本发明的触感衬底由于水平偏振剪切波(例如洛夫波)的抗水性(不受水影响)而非常适合于水下应用。
用于水下机器人传感器的适合的三层触摸屏幕衬底包括薄金属微型片、薄聚合物片和金属平板。在此实例中,考虑聚合物片是32微米厚的聚苯乙烯片,如实例1中所述。对于暴露于成海水的水下机器人外壳,微型片需要用一种抗腐蚀和坚固的材料。一种这类材料是镍-铜合金,可从Special Metals Corporation购得,商品名为Monel400。Monel400的体剪切波速度非常接近实例1中SchottAF-45玻璃微型片的体剪切波速度。金属平板可以是体剪切波速度为3.1mm/微秒的3mm厚不锈钢板。同样,不锈钢板的体剪切波速度非常接近实例1中触摸屏幕衬底的钠钙玻璃平板的体剪切波速度。相应地,所述水下触摸屏幕衬底的微型片剪切波速度与平板剪切波速度之比与实例1中的触摸屏幕衬底相类似,因此,应当支持洛夫波。
实例6
图4示出能用于15英寸液晶显示器的洛夫波触摸屏幕。所述触摸屏幕用实例1中的衬底并对所有声通路部分使用洛夫波来构建。这是一个洛夫波-洛夫波-洛夫波传感器的实例。
具体地说,触摸屏幕34包括:衬底35;X和Y发射换能器37和39;X和Y接收换能器41和43;以及四个反射阵列45,47,49和51。与计算机主机通讯的触摸屏幕控制器(未示出,可包括微处理器等),发起触摸屏幕的扫描周期。控制器通过X驱动器(未示出)对X发射换能器37加驱动信号。加在换能器37上的驱动信号是能产生洛夫波脉冲的突发驱动信号。洛夫波沿X发射阵列47传输,直到被45°反射器53反射90°。在传播通过衬底表面36之后,接收阵列51又利用45°反射器55将洛夫波散射90°。接收换能器41然后将入射的洛夫波转换为含有触摸信息的电信号。
箭头57、59和61代表X信号的典型声通路。箭头63、65和67代表触摸屏幕最长的声通路。对于具有标准视频矩形宽高比(大约为3比4)的15英寸触摸屏幕,所述最大声通路包括沿X发射阵列47的大约12英寸长度,通过衬底表面36的大约9英寸长度,沿接收阵列51的大约12英寸长度,总长度大约为33英寸或大约840mm。这是洛夫波在所述实例的传感器中传播的最大距离。
已知有各种类型的超声换能器可用于传播洛夫波。换能器是一个物理元件或一组元件,它可将能量从一种形式转换成另一种形式,包括在声波模式之间转换以及在电声能量之间转换。本发明中使用的换能器可以是如图5所示的楔形洛夫波换能器。或者,也可以使用其它已知类型的超声换能器,包括利用剪切模式压电元件的光栅换能器和边缘换能器。
如图5所示,典型的楔形换能器由塑料楔71(斜边为73,侧边75(未示出))和安装在楔的侧边75上的压电元件77构成。楔的斜边73附着在衬底35上。压电元件77是剪切波模式元件,其中运动为水平方向运动。压电元件可以是铌酸锂,一种压电陶瓷、例如PZT,或聚合压电材料。在发射方式下,压电元件77向楔形材料发射体剪切波。楔形角θ以标准方式与楔形材料的体剪切(横向)波速VT以及洛夫波的相速VP有关:即cosθ=VT/VP。对于实例1的三层衬底,计算出5.53MHz时的洛夫波相速为3.13mm/μsec。楔形材料中的体剪切波速必定小于此数值,正如诸如聚苯乙烯等聚合材料,一些玻璃和诸如青铜等金属的情况。例如,用Dow Plastics制造的Styron666聚苯乙烯构成的楔形,其剪切波速为1.15mm/μsec,即大约68°的楔形角。
45°反射器阵列45、47、49和51可以用以下任何一种方法制造(但不限于这些方法):授予Rinde等的美国专利No.5883457(已作为参考资料包含在本文中)中所述的玻璃熔料等高温固化材料的丝网印刷,复合聚合物墨水的丝网印刷;授予Knowles等的美国专利No.5648643(已作为参考资料包含在本文中)中所述的化学刻蚀;以及激光烧蚀等。考虑的因素包括反射器散射剪切波90°的能力以及制造步骤的顺序。在优选实施例中,阵列45,47,49,和51是用化学刻蚀而成的。化学刻蚀是一种低温工艺,可以使反射器在本发明的衬底叠层之前或之后在玻璃微型片中形成。化学刻蚀的反射器以前在剪切波声触摸屏幕中已有应用,已知可有效地反射剪切波90°。
本实例的触摸屏幕有两个理由可以和标准触摸屏幕控制器产品、例如Elo TouchSystem公司的2500系列IntelliTouch控制器相媲美。第一,尽管相对瑞利波来说剪切波的敏感度会大大降低,但是所述触摸屏幕仍具有很高的触摸敏感度。第二,本发明的触摸屏幕衬底具有低的色散特性。
均匀衬底中的瑞利波是不色散的,因此当波传播时瑞利波的脉冲波形是稳定的。而洛夫波衬底具有固有的色散性,即,脉冲的不同频率成分以不同的速度传播,导致脉冲波形失真。对于实例1的衬底,有一个惊人的发现。在工作频率附近,例如,在控制器电子电路的带宽范围内,有可能构建洛夫波群速基本与频率无关的因而声脉冲波形是稳定的衬底。此发现得到表2中的实验和理论数值的支持。用本发明的衬底有可能构成低色散的洛夫波-洛夫波-洛夫波传感器。
以下详细说明本发明的触摸屏幕的色散效应。考虑起始长度为Δx的声脉冲在传播距离L后的情况。分布在Δx上的色散比提供了色散效应强度的一种量度。假定Δf是声脉冲的带宽。起始脉冲的持续时间Δt与Δf成反比。因而Δx与Vg/Δf成正比。而且,由于有限带宽Δf,群速的变化量为ΔVg=Δf*δVg/δf。经过距离L之后,脉冲的扩展大致为:L*(ΔVg/Vg)=L*(Δf/Vg)*δVg/δf。故脉冲扩展与起始脉冲长度Δx之比提示了以下色散参数:
D∝L*(Δf/Vg)2*Vg/f
根据在声脉冲的频谱内相位误差失真的更严格的理论分析(此处未提供),我们定义的色散参数如下:
D ≡πL(Δf/Vg)2Vg/f
此色散参数D是以弧度表示的频率成分(与额定工作频率相差+/-Δf而变化)的相位误差。当D小于1时,分散效应很小,当D大于1时,控制器电子线路所见的触摸倾斜(dip)波形严重失真。
设计触摸屏幕时,最大声通路长度提供了适合的L值可用在上述色散参数的公式中。如上所述,对于本实例中15英寸对角线的触摸屏幕,最大声通路长度大约为840mm。
Δf的适合数值主要由控制器的带宽决定,所述带宽又与接收电路的带宽以及突发电路的功率频谱有关。在此实例中,我们考虑的情况是:Δf/f=2.7%。所述带宽处于目前市售的触摸屏幕控制器产品的通常范围之内。
如上所述,色散参数不仅是基本衬底设计的函数,也是传感器尺寸大小以及电子电路带宽的函数。这促使我们将上述色散参数分解成无单位的色散参数D’加上取决于工程选择的因素(与衬底的基本设计无关)。
我们定义无单位色散参数D’如下。
D’≡π(VT0/Vg)(f/Vg)Vg/f
式中f是工作频率,VT0是在含有主要洛夫波功率的最深层(即本实例中的一块钠钙玻璃平板)中的体剪切波速度。D’和D的关系如下。
D=(L/λT0)(Δf/f)2D’
λT0是最深层中的体剪切波长,与频率f和剪切波速度VT0的关系可用方程λT0=VT0/f表示。对于本实例的钠钙玻璃平板和5.53MHz的工作频率,VT0和λT0的数值分别为3.40mm/μsec和0.615mm。
对于本实例的L=840mm,λT0=3.40mm/μsec,以及Δf/f=2.7%,系数(L/λT0)(Δf/f)2等于1。因而,在本实例中,D’和D的数值相等。对于其他的控制器设计,根据同样的衬底结构,利用比例系数(L/λT0)(Δf/f)2可以很容易的从D’计算出D。
图6的曲线示出实例1中计算的群速随衬底频率的变化,不过聚合物片的厚度t1也在改变。在5到6MHz之间,30和40微米厚的聚苯乙烯的曲线特别平。当工作频率在5.53MHz和聚苯乙烯厚度为32微米时,实例1的衬底处于低色散区内。计算的D值小于0.1,确实比1要小。如图6所示,实例1中支持洛夫波的衬底改成具有20微米厚的聚苯乙烯层,就可以用来构成在8MHz工作的低色散洛夫波触摸屏幕。
通常,如果选择了用来构建本发明三层衬底的材料,就可计算出在选择不同层厚时群速和频率之间的关系曲线。从这些曲线就可识别低群速色散区。如果求出了在所需频率时提供低色散的衬底厚度组合,就可用色散参数D量化设计的低色散特性。用此方法可以设计各种低色散洛夫波-洛夫波-洛夫波传感器。
实例7
触摸屏幕衬底,例如实例1中的衬底,不仅支持洛夫波,也支持具有运动的纵向和垂直剪切分量的类瑞利波模式。在实例6的洛夫波-洛夫波-洛夫波传感器中,类瑞利波模式没有什么用处,而且会导致不需要的寄生声信号通路。理解并控制类瑞利波的特性对于设计洛夫波衬底十分必要。
特别麻烦的是对水敏感的类瑞利波模式通过触摸区的寄生声通路。来自发射换能器的洛夫波可能被散射且被模式转换成横过触摸区的类瑞利波模式。这些寄生的类瑞利波模式可能又被接收阵列反向转换成洛夫波并由接收换能器检测。或者,洛夫波换能器有可能像与洛夫波一样与类瑞利波模式有某种耦合,此时在发射和接收换能器之间就会有全瑞利波寄生声通路。这种寄生声信号可以用适当配置吸收类瑞利波比吸收洛夫波更强的声衰减器来抑制。但是,常常最节约成本的方法是首先限制寄生声信号的产生。如果存在这种寄生信号并且干扰了控制器的电子电路所接收的洛夫波信号,而且如果类瑞利波对水敏感,那么,所接收的触摸屏幕信号也会对水敏感。则洛夫波衬底的抗水性优势就不复存在。
调整反射阵列的设计,以便固有地散射所需的模式而抑制不需要的模式。模式选择机理通常取决于相速差异。反射器间隔选择沿阵列轴线传输的模式的所需的相速。反射器角选择以90°向出触摸区散射和从触摸区散射的模式的相速。当寄生模式的相速接近所需模式的相速时,寄生模式的抑制就更加困难。
根据以上讨论,在洛夫波-洛夫波-洛夫波触摸屏幕衬底上最好具有最小数量的额外类瑞利波模式,且其余类瑞利波模式的相速应与洛夫波的相速大不相同。图7示出实例1中衬底的计算相速与洛夫波的频率以及两种最低的类瑞利波声模式的关系曲线。
对于上述实例6的洛夫波-洛夫波-洛夫波衬底,工作频率为5.53MHz而且有两个类瑞利波声模式。洛夫波的相速更接近第二个类瑞利波模式,与第一个类瑞利波模式差距较大。在本实例中,把工作频率从5.53MHz降到4.5MHz,就消除了第二个类瑞利波模式,留下只有一个与洛夫波模式在相速上能很好区分的类瑞利波模式的干净的系统。最低类瑞利波模式具有零的截止频率,而且总是存在的。所述实例代表了最小数量(即1)的限于表面的额外声模式。关于处理导致所述工作频率变化的增加的洛夫波色散的方法,在以下实例8中将作详细讨论。
作为上述数学分析的结果,发现了一个通用的比例法则。以某一给定的系数增加层厚对模式速度的影响与以同一系数减少工作频率的作用相同。例如,现在这个4.5MHz的实例和在5.53MHz工作且玻璃微型片和聚合物厚度分别减少到81和26微米的传感器具有相同的模式和波速。
如果实例1的衬底形成实例4中安全玻璃叠层的一部分,那么,安全玻璃粘接剂会衰减玻璃板中任何平板波。在这种情况下,4.5MHz工作仅提供一种任何类型的寄生模式。实际在工程上,这类只有一个限于表面的寄生模式的衬底设计是可以普遍应用的。根据以下理由,寄生模式愈接近其截止频率就愈不重要,因此甚至实例6的5.53MHz的传感器也近似于只有一个限于表面的寄生模式的传感器。
当一个模式接近其截止频率时,第二模式频率接近玻璃平板的体剪切速度,且模式的穿透深度成为无限。这具有两种降低限于表面的寄生模式的模式重要性的效果。深度穿透的模式在表面上具有比较小的能量密度。低表面能量密度导致对表面上的反射阵列和换能器结构的较弱的耦合。另外,实际上对于实例4的安全玻璃叠层的情况,深度穿透的模式会被安全玻璃粘接剂衰减。
对于给定的叠层衬底设计,第二个类瑞利波模式的截止频率可利用复杂的计算机代码的数字计算来确定。但如下述,我们发现用少得多的工作就可能将截止频率估算到一定的精确度。
当一个模式接近其截止频率时,第二个类瑞利波模式基本上与衬底平面中的坐标无关,且运动成为垂直于表面方向的一维运动。玻璃微型片和聚合物片非常近似于简单的“弹簧上的质量”(“mass-on-a-spring”)振荡器。每单位面积上,密度为ρ2且厚度为t2的玻璃微型片具有质量m=ρ2t2。厚度为t1密度为ρ1压力波速为VL1的聚合物片近似于弹簧系数为k=ρ1VL1 2/t1的弹簧。根据基本物理原理,相应的谐振频率以及对第二模式截止频率的估算可用下式确定:
fcut-off≈(VL1/2π)*√(ρ1/(ρ2t1t2))
此估算假定玻璃板是不运动的“砖墙”。事实上,接近截止频率的第二个类瑞利波模式涉及玻璃板上部的运动,所述运动与玻璃微型片的运动的相位相差180°,且在聚合物片内有零运动的波节平面。对于“弹簧上的质量”的计算,正是这个波节平面最近似于不运动的“砖墙”,因而波节平面上方聚合物的厚度也是如此,而不是属于上述方程中的较大的量t1。为此,上述估算是一个下限。对于实例1的衬底,此公式估算的截止频率为4.2MHz,接近于,但有些低于,在上述曲线中看到的大约5.0MHz的截止频率。
如果以两个质量用弹簧相连的模型来模拟系统(其中第二个质量是玻璃板的有效质量),那么,就可大大改进上述的谐振估算。玻璃板的有效质量的合理估算是在谐振频率时相对等于压力波的四分之一波长的深度的那个质量,即M=(1/4)ρ0V1.0/f)。利用参与谐振振荡的所述估算的玻璃板质量,实例1中衬底的截止频率计算为4.97MHz。对于许多不同的衬底设计,这种更精细的估算截止频率的方法与详细的数字模拟非常一致,相差不到10%。
实例8
如同在实例7,再次考虑在本发明的叠层衬底中传播的类瑞利波。但在此实例中,我们考虑的是类瑞利波用作触摸传感所需模式的触摸传感器。也就是说,用本发明的叠层衬底制作瑞利波-瑞利波-瑞利波触摸屏幕。
初看起来,这种瑞利波-瑞利波-瑞利波触摸屏幕好象没有什么价值。与洛夫波-洛夫波-洛夫波触摸屏幕不同的是,没有利用不受水影响的洛夫模式。而且,商业上可接受的瑞利波-瑞利波-瑞利波触摸屏幕可以利用均匀衬底更简单的制造出来。但是,对于某些应用,利用叠层衬底中瑞利波的改进特性是有利的。
图8a和8b示出在两个不同衬底中对于瑞利波的粒子运动的深度曲线。图8a示出在均匀衬底中标准瑞利波的深度曲线,这是在先有技术的声触摸屏幕中最常用的声模式。图8b示出在实例1的优选衬底中最低次类瑞利波的深度曲线。纵轴是垂直于触摸表面的坐标。原点定义在132微米的深度处,即叠层衬底的玻璃板上部。横轴为粒子速度。粒子速度的垂直和纵向分量分别对应于粗和细的曲线。表面上的粒子速度的垂直分量归一化为1。在本发明的衬底中瑞利波的能量比标准衬底中的瑞利波更多集中在靠近触摸表面处,这对许多应用提供了优越性。
在此实例中,利用实例1的衬底的修改型构造了一个工作在5.53MHz的15英寸的触摸屏幕。玻璃板的厚度从3mm减少到0.7mm,使得到的衬底不到1mm厚。如在实例6中所讨论的,反射器阵列和换能器可用多种方法设置。这种触摸屏幕衬底比起先有技术的声触摸屏幕有许多优点。
先有技术的瑞利波触摸屏幕所用的均匀衬底需要至少大约2mm厚(3到4瑞利波波长)才能干净地传播瑞利波。对于5.53MHz的工作,随深度衰减最慢的瑞利波分量具有大约230微米的指数衰减长度。为了隔离玻璃板的上表面和下表面,需要许多个衰减长度。对于实例1中的多层衬底,此指数衰减长度缩减到78微米,因此玻璃板厚度可以减少到三分之一。这些深度曲线的差别在图8a和8b中可以清楚看见。这样,所述实例提供了一种厚度显著减小的瑞利波-瑞利波-瑞利波触摸屏幕。由于厚度的减小,瑞利波-瑞利波-瑞利波触摸屏幕也减轻了重量。本发明可使瑞利波-瑞利波-瑞利波触摸屏幕衬底的重量减少二分之一或更多,这对手提计算机的应用特别有利。最后,减少的厚度由于瑞利波声能量较浅的深度曲线而可获得增加的敏感度。这样,本发明提供了不改变工作频率而增加类瑞利波模式敏感度的手段。
不利的是所述瑞利波-瑞利波-瑞利波触摸屏幕的色散参数大约是3,这就过强了。但有好几种途径来处理此大数值的色散参数。色散使接收信号中的触摸倾斜的形状失真。虽然这使提取触摸信息变得复杂,但触摸信息仍然包含在接收信号中。如果将此接收信号以比5.53MHz的工作频率要快的取样速度数字化,那么,接收信号的全部信息内容就可保留。然后用数字电子技术的尖端数学处理就可提取触摸信息。所述实例中的触摸屏幕就是用具有这种数字化和数字处理能力的电子技术来工作的。
另一种途径就是重新设计衬底来降低色散参数的数值。如图9所示,类似于图6的洛夫模式曲线,图9绘出群速作为频率的函数曲线。同样,不同曲线对应于不同的聚合物片厚度。垂直方向的比例变化是为了适应瑞利波群速的强变化。色散参数最小为零。随着聚合物片厚度减小,所述最小值向较高频率移动。当聚合物片厚度小于10微米时,群速的最小值移向5.53MHz。或者,可以利用诸如微型片厚度以及各层的声特性等其它设计参数将色散参数在所需工作频率时调到零。
此外,也可以任选地采用调节工作频率或工作频率与衬底设计参数的组合的方法来调整色散参数。对于实例1的衬底,将工作频率降到3.5MHz附近,就可以调到群速的最小值。或者,将工作频率降到4.0MHz并将聚合物片厚度降到大约20微米,就可使色散参数为零。
根据产品设计目标,可用的材料以及制造工艺,触摸屏幕工程师可以探索各种设计途径来控制色散效应。例如,如图10所示,基于实例1的衬底的衬底90可以包括附加的微型片91和附加的聚合物片93。这样就增加了触摸屏幕工程师可用的可调衬底设计参数的数量。在一个实施例中,衬底包括20微米厚的第一微型片,25微米厚的第一聚合物片,90微米厚的第二微型片,10微米厚的二聚合物片,以及玻璃板。
图11是所述衬底的类瑞利波群速与频率的关系曲线,此图基于这样一种假设,即:衬底的每一层具有同样的声特性,如表2所列。在5到6MHz之间群速基本恒定,且在此频率范围内只有一个类瑞利波模式。因此,如图11所示,用这种衬底构成的类瑞利波触摸屏幕工作在5.53MHz并具有非常低的色散。
实例9
在此实例中,考虑类似于实例6中的触摸屏幕。用实例1的衬底构建一个15英寸的透明触摸屏幕,利用不受水影响的洛夫波来检测触摸。但是,如图12所示,所述触摸屏幕79是一个瑞利波-瑞利波-瑞利波而不是洛夫波-洛夫波-洛夫波传感器。
虽然是用洛夫波来检测触摸,换能器81和83却是用来发射和接收类瑞利波的。最低类瑞利波具有沿阵列85和87的计算相速2124m/sec。洛夫波具有大不相同的计算相速:在5.53MHz时为3134m/sec。由于需要模式转换,所以反射器角不是45°,而是设定为等于相速比的反正切,即arctan(3134/2124)或大约56°。
既可以通过实例6的洛夫波-洛夫波-洛夫波触摸屏幕又可以通过此瑞利波-瑞利波-瑞利波实例来提供触摸屏幕79的触摸区89中不受水影响的基本优点。这两种途径的最佳选择取决于制造过程的细节以及产品设计的所需特性。因此这两种选择在本发明中都考虑到了。
在优选实施例中,使用了工作频率为5.53MHz的实例1的衬底。但是,如在实例7所讨论的,最好除了洛夫模式和最低瑞利波模式外消除所有限于表面的声模式。降低工作频率或重新设计叠层衬底就可做到这一点。
另一个设计考虑是色散。在前述各实例中考虑的所有选择方案都与此有关。这包括能校正色散效应的灵活电子电路,工作频率的改动以及衬底的重新设计。
对于瑞利波-瑞利波-瑞利波触摸屏幕衬底,洛夫模式和类瑞利波模式的色散参数是相关的。理论研究表明:设计在所需频率下色散参数对两种模式都为零的三层衬底是有可能的。对这种设计的可行性可进行评估,以了解在可方便获得的材料的声性能范围方面有否实际限制。对于一些可方便获得的材料,图10所示的附加层可提供一些附加选择。洛夫波-洛夫波-洛夫波和瑞利波-瑞利波-瑞利波设计方案之间的最佳选择受同时实现两种模式的低分散的难易程度的影响。最后,如果是色散参数对于两种模式都不是零且具有相反的代数符号的瑞利波-瑞利波-瑞利波传感器,那么,两种模式的色散效果会抵消。
虽然上述的描述构成了本发明的各优选实施例,但是,应当指出,在不背离所附权利要求的适当范围和完整意义的情况下,可以对本发明进行修改、变化和替换。