CN113493767B - 利用人多潜能干细胞体外制备嗜酸性粒细胞 - Google Patents

利用人多潜能干细胞体外制备嗜酸性粒细胞 Download PDF

Info

Publication number
CN113493767B
CN113493767B CN202010250579.2A CN202010250579A CN113493767B CN 113493767 B CN113493767 B CN 113493767B CN 202010250579 A CN202010250579 A CN 202010250579A CN 113493767 B CN113493767 B CN 113493767B
Authority
CN
China
Prior art keywords
cells
eosinophils
induction medium
eosinophil
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010250579.2A
Other languages
English (en)
Other versions
CN113493767A (zh
Inventor
邓宏魁
王承艳
来威锋
谢皇帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202010250579.2A priority Critical patent/CN113493767B/zh
Publication of CN113493767A publication Critical patent/CN113493767A/zh
Application granted granted Critical
Publication of CN113493767B publication Critical patent/CN113493767B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0642Granulocytes, e.g. basopils, eosinophils, neutrophils, mast cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2305Interleukin-5 (IL-5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种嗜酸性粒细胞及其制备方法与应用。本发明提供了制备嗜酸性粒细胞的方法,包括以下步骤:(1)将多潜能干细胞在中胚层诱导培养基中培养,获得中胚层细胞;(2)将步骤(1)获得的中胚层细胞在生血内皮诱导培养基中培养,获得生血内皮细胞,所述生血内皮细胞为CD34+CDH5+细胞;(3)将步骤(2)获得的生血内皮细胞在造血祖细胞诱导培养基中培养,获得造血祖细胞,所述造血祖细胞为CD34+CD45+细胞;(4)将步骤(3)获得造血祖细胞在嗜酸性粒细胞诱导培养基中培养,获得嗜酸性粒细胞。本发明的制备方法中所使用的培养基成分明确,诱导过程简单,可高效制备出大量功能性嗜酸性粒细胞。

Description

利用人多潜能干细胞体外制备嗜酸性粒细胞
技术领域
本发明属于干细胞分化技术领域,更具体地,本发明涉及诱导多潜能干细胞制备嗜酸性粒细胞的方法。
背景技术
免疫效应细胞能成功迁移并高效地浸润到肿瘤是肿瘤免疫疗法能产生抗肿瘤疗效的前提条件(Guedan et al.,2019;Miller and Lanier,2019Newick et al.,2017)。当前,治疗实体瘤的多种免疫疗法,其疗效严重受到免疫细胞难以浸润到实体瘤中的限制(Grosser et al.,2019;Habif et al.,2019Rafiq et al.,2019)。虽已有大量的尝试,但至今依然很难促进免疫效应细胞高效浸润到肿瘤内部(Harrington et al.,2019Li et al.,2019Morel et al.,2020Nayyar et al.,2019Park et al.,2012)。因此,亟需开发新的策略来解决该难题。
大量的研究表明:嗜酸性粒细胞能够浸润到多种类型的肿瘤组织中,包括胃结直肠癌、食管癌、乳腺癌、卵巢癌和子宫癌等;同时,嗜酸性粒细胞能够浸润到肿瘤深层内部(Davis and Rothenberg,2014Reichman et al.,2016)。重要的是有研究指出,经过处理后约2天的时间,嗜酸性粒细胞能被趋化并主要浸润到肿瘤组织中(Carretero et al., 2015)。在肿瘤浸润过程中,嗜酸性粒细胞表达多种趋化因子受体和警报素受体(Davis and Rothenberg,2014Kvarnhammar and Cardell,2012Rothenberg and Hogan,2006Weller and Spencer,2017),这些特征使得嗜酸性粒细胞能够响应肿瘤坏死细胞释放的信号,在早期就能迁移浸润到肿瘤(Bertheloot and Latz,2017Cormier,2006Ito et al.,2007Lotfi et al.,2009Lotfi et al.,2007)。因此,这些研究表明嗜酸性粒细胞在肿瘤浸润方面具有诸多的优势。有意思的是,肿瘤浸润嗜酸性粒细胞能够招募其他类型的免疫效应细胞,从而增强抗肿瘤效果(Carretero et al.,2015Hollande et al.,2019)。嗜酸性粒细胞能够分泌趋化树突细胞和辅助T细胞的趋化因子(Carretero et al.,2015Lucarini et al.,2017Rosenberg et al.,2013),能够使肿瘤微环境中的血管网络正常化,也能促进CD8+T细胞的浸润(Carretero et al.,2015)。与上述研究一致,临床上已有大量的研究显示,肿瘤浸润的嗜酸性粒细胞数量与肿瘤治疗效果成正相关(Delyon et al.,2013Gebhardt et al.,2015Harbaum et al.,2015Martens et al.,2016Prizment et al., 2016Weide et al.,2016)。综上所述,这些研究都表明嗜酸性粒细胞可以成为一种新型的、有潜力的免疫细胞应用于肿瘤的治疗。
嗜酸性粒细胞在外周血中数量少,约占总白细胞数量的5%(Weller and Spencer,2017),同时其存活时间非常短,约18小时~几天(Rosenberg et al.,2013)。这些特征限制了嗜酸性粒细胞在肿瘤治疗中的抗肿瘤作用。其中,一个解决办法就是利用人多潜能干细胞产生大量的嗜酸性粒细胞作为新的、稳定的细胞来源。在本研究中,基于我们以往的研究基础(Wang et al.,2012),建立了高效诱导的、化学成分明确的分化方法,产生大量的功能性嗜酸性粒细胞。人多潜能干细胞来源的嗜酸性粒细胞表达杀伤特性的标志蛋白,并能在体内体外表现直接杀伤细胞的能力。因此,人多潜能干细胞来源的嗜酸性粒细胞为建立新的免疫疗法辅助肿瘤治疗带来希望。
发明内容
免疫细胞能高效地浸润到肿瘤是肿瘤免疫疗法能产生有效抗肿瘤疗效的前提条件。在多种免疫细胞中,嗜酸性粒细胞具有在早期阶段快速地浸润肿瘤的能力,也具有在浸润后进一步招募其他类型的免疫效应细胞增强抗肿瘤作用的能力。这些研究都提示嗜酸性粒细胞有望成为一种新的并极具潜力的免疫细胞来源,从而应用于肿瘤免疫治疗。
在本发明中,我们建立了一个逐级分化策略,以诱导多潜能干细胞(pluripotentstem cells,PSCs)产生大量功能性的嗜酸性粒细胞。产生的细胞接近100%都是EPX+的嗜酸性粒细胞。人多潜能干细胞来源的嗜酸性粒细胞具有嗜酸性粒细胞特异的表型,并表达嗜酸性粒细胞特异的细胞杀伤性颗粒蛋白。重要的是,人多潜能干细胞来源的嗜酸性粒细胞能在体外高效地杀伤肿瘤细胞,能快速地浸润肿瘤,并能在结直肠癌和卵巢癌异种肿瘤模型中有效地抑制肿瘤细胞的生长,为今后开发基于嗜酸性粒细胞免疫疗法开辟了新的道路。
具体地,本发明提供了以下技术方案:
1.嗜酸性粒细胞的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将多潜能干细胞在中胚层诱导培养基中培养,获得中胚层细胞;
(2)将步骤(1)获得的中胚层细胞在生血内皮诱导培养基中培养,获得生血内皮细胞,所述生血内皮细胞为CD34+CDH5+细胞;
(3)将步骤(2)获得的生血内皮细胞在造血祖细胞诱导培养基中培养,获得造血祖细胞,所述造血祖细胞为CD34+CD45+细胞;
(4)将步骤(3)获得造血祖细胞在嗜酸性粒细胞诱导培养基中培养,获得嗜酸性粒细胞;
其中,所述嗜酸性粒细胞诱导培养基包含IL-3和IL-5。
2.根据1所述的制备方法,其中,步骤(1)中所述中胚层诱导培养基包含BMP4;优选地,所述中胚层诱导培养基包含5-100ng/mlBMP4,更优选地包含20ng/mlBMP4。
3.根据1所述的制备方法,其中,步骤(2)中所述生血内皮诱导培养基包含BMP4、VEGF、bFGF和TGFβ受体/ALK5抑制剂(例如SB431542、LY-364947、SB-505或A-83-01);优选地,所述生血内皮诱导培养基包含5-50ng/ml BMP4、10-100ng/ml VEGF、10-100ng/ml bFGF和5-20uM SB431542,更优选地包含5ng/ml BMP4、50ng/ml VEGF、50ng/ml bFGF和10uMSB431542。
4.根据1所述的制备方法,其中,步骤(3)中所述造血祖细胞诱导培养基包含BMP4、VEGF和促造血祖细胞生成因子(例如SCF);优选地,所述造血祖细胞诱导培养基包含5-50ng/ml BMP4、10-100ng/ml VEGF和20-200ng/ml SCF,更优选地包含5ng/ml BMP4、10ng/ml VEGF和20-50ng/ml SCF,最优选地包含5ng/ml BMP4、10ng/ml VEGF和20ng/ml SCF。
5.根据1所述的制备方法,其中,步骤(4)中所述嗜酸性粒细胞诱导培养基包含促嗜酸细胞生成因子,如IL-3、IL-5和/或GM-CSF,例如包含5-100ng/ml IL3和5-100ng/mlIL5;优选包含10ng/ml IL3和10ng/ml IL5。
6.根据1所述的制备方法,其中所述多潜能干细胞为胚胎干细胞或诱导性多潜能干细胞,优选是哺乳动物细胞,更优选为小鼠或人细胞,最优选人细胞;其中,所述胚胎干细胞为可从商业途径获得的人胚胎干细胞,优选为下述任一种NIH编号的细胞系的细胞:BG01、BG02、BG03、BG04、SA01、SA02、SA03、ES01、ES02、ES03、ES04、ES05、ES06、TE03、TE32、TE33、TE04、TE06、TE62、TE07、TE72、UC01、UC06、WA01、WA07、WA09、WA13和WA14。在一些实施方案中,人胚胎干细胞可以为利用未经过体内发育的受精14天以内的人类胚胎分离或者获取的干细胞。
7.根据1-6任一项所述的制备方法所获得的嗜酸性粒细胞。
8.根据7所述的嗜酸性粒细胞在制备抑制肿瘤细胞的药物中的用途。
9.使多潜能干细胞分化为嗜酸性粒细胞的试剂盒,包括中胚层诱导培养基、生血内皮诱导培养基、造血祖细胞诱导培养基和嗜酸性粒细胞诱导培养基。
10.鉴定功能性嗜酸性粒细胞的方法,其特征在于,所述方法包括检测EPX在嗜酸性粒细胞中的表达的步骤。
11.EPX在制备用于鉴定功能性嗜酸性粒细胞的试剂盒中的应用。
本发明的各个方面及其优点进一步如下详述。
本发明制备嗜酸性粒细胞的方法可包括以下示例性步骤:
(1)将多潜能干细胞在中胚层诱导培养基中培养,获得中胚层细胞;
其中,所述中胚层诱导培养基包含BMP4;优选地,所述中胚层诱导培养基包含5-100ng/mlBMP4(例如10-30ng/ml、15-25ng/ml、20-40ng/ml),更优选地包含20ng/mlBMP4;
具体地,所述中胚层诱导培养基为在早期基础培养基中添加20ng/mlBMP4而获得的培养基;其中,所述早期基础培养基以RPMI1640为基础培养基,并在其中添加了不含维生素A的B27细胞培养基添加物,50ug/ml维生素C,1%谷氨酰胺,1%青霉素-链霉素细胞培养添加物,1%非必须氨基酸和0.1mM硫代甘油。
(2)将步骤(1)获得的中胚层细胞在生血内皮诱导培养基中培养,获得生血内皮细胞,所述生血内皮细胞为CD34+CDH5+细胞;
其中,所述生血内皮诱导培养基包含BMP4、VEGF、bFGF和SB431542;优选地,所述生血内皮诱导培养基包含5-50ng/ml BMP4(例如5-10ng/ml、5-20ng/ml)、10-100ng/ml VEGF(例如20-90ng/ml、40-60ng/ml)、10-100ng/ml bFGF(例如20-90ng/ml、40-60ng/ml)和5-20uM SB431542,更优选地包含5ng/ml BMP4、50ng/ml VEGF、50ng/ml bFGF和10uMSB431542;
具体地,所述生血内皮诱导培养基为在早期基础培养基中添加5ng/ml BMP4、50ng/ml VEGF、50ng/ml bFGF和10uM SB431542而获得的培养基(早期基础培养基的成分如上所述)。
(3)将步骤(2)获得的生血内皮细胞在造血祖细胞诱导培养基中培养,获得造血祖细胞,所述造血祖细胞为CD34+CD45+细胞;
其中,所述造血祖细胞诱导培养基包含BMP4、VEGF和SCF;优选地,所述造血祖细胞诱导培养基包含5-50ng/ml BMP4(例如5-20ng/ml、5-30ng/ml)、10-100ng/ml VEGF(例如10-20ng/ml、10-30ng/ml)和20-200ng/ml SCF(例如20-50ng/ml),更优选地包含5ng/mlBMP4、10ng/ml VEGF和20ng/ml SCF;
具体地,所述造血祖细胞诱导培养基为在后期基础培养基中添加5ng/ml BMP4、10ng/ml VEGF、20ng/ml SCF而获得的培养基;其中,所述后期基础培养基以IMDM为基础培养基,并在其中添加了不含维生素A的B27细胞培养基添加物,50ug/ml维生素C,1%谷氨酰胺,1%青霉素-链霉素细胞培养添加物,1%非必须氨基酸,0.1mM硫代甘油,2uMminocycline hydrochloride,30uM NAC。
(4)将步骤(3)获得造血祖细胞在嗜酸性粒细胞诱导培养基中培养,获得嗜酸性粒细胞,所述嗜酸性粒细胞为EPX+细胞;
其中,所述嗜酸性粒细胞诱导培养基包含IL-3和IL-5;
优选地,所述嗜酸性粒细胞诱导培养基包含5-100ng/ml IL3和5-100ng/ml IL5;优选包含10ng/ml IL3和10ng/ml IL5;
具体地,所述嗜酸性粒细胞诱导培养基为在后期基础培养基中添加10ng/ml IL3和10ng/ml IL5所获得的培养基。
在本发明中,成功开发了一种高效的方法,能够诱导人多潜能干细胞产生大量的功能性嗜酸性粒细胞,这些细胞表达嗜酸性粒细胞特异的颗粒蛋白和相关基因。重要的是,这些人多潜能干细胞来源的嗜酸性粒细胞表现出很强的体内体外杀伤多种肿瘤细胞的能力。
在本发明中,首次报道了人多潜能干细胞(hPSC)能够产生大量的功能性嗜酸性粒细胞。以6×105人多潜能干细胞起始,能产生大于4×107的嗜酸性粒细胞,其纯度接近100%EPX+(图1F和图1G)。这些细胞呈现嗜酸性粒细胞特有的特征,包括双叶核,嗜酸性染色(图1C),电镜分析显示致密电子颗粒(图1D);这些细胞也高表达嗜酸性粒细胞存活及信号转导受体如IL3RA、IL5RA、CCR3和Siglec-8(图2B和图2C)(Rosenberg et al.,2013)。人多潜能干细胞来源的嗜酸性粒细胞也高表达杀伤相关蛋白如EPX、PRG2、PRG3、RNASE2和RNASE3(图2B和图2C),而这些蛋白是非常重要的介导嗜酸性粒细胞杀伤肿瘤细胞的关键蛋白(Acharya and Ackerman,2014)。同时,该方法中所使用的培养基化学成分明确,这使得易于将所述诱导分化方法进行标准化,为今后临床治疗转化提供大量的、均一的功能性嗜酸性粒细胞。另外,嗜酸性粒细胞缺乏TCR(T cell receptor)不会导致移植物抗宿主反应(Depil et al.,2020),因此人多潜能干细胞来源的嗜酸性粒细胞有望提供大量的、通用型和即用型嗜酸性粒细胞,可同时应用于多个HLA(human leukocyte antigen)相合的病人。总的来讲,我们开发的化学成分明确的分化策略将为今后的应用提供大量的嗜酸性粒细胞。
在本发明中,我们首次报道了人多潜能干细胞来源的嗜酸性粒细胞具有肿瘤杀伤能力。人多潜能干细来源的嗜酸性粒细胞能快速浸润肿瘤,并具有较强的抗肿瘤活性。与之前报道嗜酸性粒细胞能杀伤多种肿瘤细胞类型一致(Gatault et al.,2015Legrand et al.,2010Lotfi et al.,2009Munitz et al.,2005;Reichman et al.,2016),人多潜能干细胞来源的嗜酸性粒细胞呈现出高效的杀伤多种肿瘤细胞的能力。经PMA激活后,人多潜能干细胞来源的嗜酸性粒细胞能达到约90%~100%杀伤效率(图3A-D;图3M-P)(Kita, 2011)。经过延长与肿瘤靶细胞的共孵育时间,人多潜能干细胞来源的嗜酸性粒细胞的肿瘤杀伤作用增强(图3E-L),这可能是由于肿瘤细胞能够特异性激活嗜酸性粒细胞(Gatault et al.,2015Legrand et al.,2010Lotfi et al.,2009)。重要的是,这些嗜酸性粒细胞在肿瘤小鼠模型中,能够非常显著地抑制肿瘤细胞的生长并延长荷瘤小鼠的存活时间(图4D-H)。尤其重要的是,本发明所制备的人多潜能干细胞来源的嗜酸性粒细胞能够在移植后48小时内浸润肿瘤组织(图4A-B),这与之前在小鼠模型中的研究一致(Carretero et al., 2015)。总的来说,人多潜能干细胞来源的嗜酸性粒细胞具有快速浸润肿瘤并具有强杀伤能力,这一特性使得它们将有望成为用于癌症治疗的最有潜力的新免疫细胞类型。
今后非常值得研究人多潜能干细胞来源的嗜酸性粒细胞是否具有招募杀伤性T细胞以及重塑肿瘤微环境的能力,是否能够辅助T细胞的杀伤功能从而协同实现提高抗肿瘤免疫疗法的效果(Carretero et al.,2015Hollande et al.,2019)。考虑到嗜酸性粒细胞能够直接裂解肿瘤细胞,非常值得研究嗜酸性粒细胞是否可以帮助暴露肿瘤相关抗原给抗原递呈细胞,从而促进新抗原特异性T细胞的激活和扩增(Demaria et al.,2019Majzner and Mackall,2019Yamamoto et al.,2019)。综上所述,本发明建立了一种能够产生功能性嗜酸性粒细胞的方法,为今后开发潜在的肿瘤免疫治疗新策略提高了无限的细胞来源。
本发明的技术效果
本发明公开了嗜酸性粒细胞的制备方法,该方法中所使用的培养基化学成分明确,诱导过程简单,分步骤逐级诱导,可高效制备出大量功能性嗜酸性粒细胞,且能进行标准化并易于规模化。
上述方法所获得的嗜酸性粒细胞具有强的体外杀伤肿瘤细胞能力,并且具有显著的抑制体内肿瘤生长的效果。其在体外能够高效杀伤结直肠癌、卵巢癌和肝癌细胞系,并能够在肿瘤小鼠模型中显著抑制结直肠癌、卵巢癌的小鼠肿瘤负荷,显著提高肿瘤小鼠的生存时间。
实验材料和操作方法
1.体外定向分化人胚胎干细胞(hESC)和人诱导性多潜能干细胞(hiPSC)为嗜酸性粒细胞
在本发明中,所使用的人胚胎干细胞系H1(NIH的编号为WA01)可商购,例如获自WiCell研究所。所使用的人诱导性多潜能干细胞iPS-#7商购于北京Cauliscell生物技术有限公司。
将人胚胎干细胞诱导分化为嗜酸性粒细胞的方法包括以下步骤:
(1)诱导多潜能干细胞,获得中胚层细胞;
具体地,将6×105的人胚胎干细胞使用含5uM Y27632的人多潜能干细胞培养基(购买于赛贝生物)接种于低贴附细胞培养板并培养一天后,形成拟胚体;
然后换成早期基础培养基添加20ng/mlBMP4(StemImmune LLC,Cat#HST-B4-0100)(即,中胚层诱导培养基)培养2天诱导中胚层产生;
其中,早期基础培养基使用RPMI1640为基础培养基,并在其中添加了不含维生素A的B27细胞培养基添加物,50ug/ml维生素C,1%谷氨酰胺,1%青霉素-链霉素细胞培养添加物(Gibco,Cat#15140-148),1%非必须氨基酸(Gibco,Cat#11140050),0.1mM硫代甘油。
(2)诱导中胚层细胞,获得生血内皮细胞;
之后将细胞培养基换成早期基础培养基添加5ng/ml BMP4、50ng/ml VEGF、50ng/ml bFGF和10uM SB431542(selleck,Cat#S1067)(即,生血内皮诱导培养基),培养4天,诱导生血内皮细胞产生(图2B中的CD34及CDH5基因);
(3)诱导生血内皮细胞,获得造血祖细胞;
然后,将细胞培养基换成后期基础培养基添加5ng/ml BMP4、10ng/ml VEGF、20ng/ml SCF(即,造血祖细胞诱导培养基),培养6天,诱导造血祖细胞(图5B中的CD34+CD45+细胞群)产生;
其中,所述后期基础培养基使用IMDM为基础培养基,并在其中添加了不含维生素A的B27细胞培养基添加物,50ug/ml维生素C,1%谷氨酰胺,1%青霉素-链霉素细胞培养添加物(Gibco,Cat#15140-148),1%非必须氨基酸(Gibco,Cat#11140050),0.1mM硫代甘油,2uMminocycline hydrochloride,30uM NAC。
(4)诱导造血祖细胞,获得嗜酸性粒细胞;
在第12天,将细胞培养基换成后期基础培养基添加10ng/ml IL3和10ng/ml IL5(即,嗜酸性粒细胞诱导培养基)培养至嗜酸性粒细胞(图1B中EPX阳性细胞)产生并成熟。
以上诱导过程每两天换液一次。根据需要取培养过程中的细胞进行嗜酸性粒细胞染色,电镜分析,流式细胞分析或者功能分析。
将人诱导性多潜能干细胞(hiPSC)分化为嗜酸性粒细胞的方法和上述人胚胎干细胞(hESC)的分化方法基本一致,不同之处在于步骤(3)的培养时间为2天。具体地,在hiPSC分化的策略中,步骤(1)和步骤(2)的方法与人胚胎干细胞的分化方法完全一致,在步骤(3)中hiPSC在造血祖细胞诱导培养基中培养2天,即在hiPSC分化第8天(D8)换成嗜酸性粒细胞诱导培养,然后进行步骤(4)。
2.流式细胞分析
收集不同培养阶段的细胞1800转/分钟,离心3分钟,去上清,使用含0.5%牛血清白蛋白(BSA)的磷酸盐缓冲液(PBS)重悬细胞成单细胞悬液。加入相应的抗体(每个抗体每个样品加0.2微升),室温避光孵育15分钟。PBS三遍后使用300微升PBS重悬细胞,使用40微米筛网过滤细胞,上机分析。使用的抗体如下:
7-AAD(BD Pharmingen,559925),
FITC anti-human CD19(Biolegend,Cat:302205),
PE anti-human CD3(Biolegend,Cat:300308),
PE-Cy7 anti-human CD16(Biolegend,Cat:302016),
APC anti-human CD56(Biolegend,Cat:318310),
APC anti-human CD14(Biolegend,Cat:325608),
BUV395 anti-human CD235a(BD HorizonTM,Cat:565973),
BV421 anti-human CD45(Biolegend,Cat:304032),
PE anti-human CD69(Biolegend,Cat:310906),
PE anti-human CD11b(Biolegend,Cat:301306),
PE-Cy7 anti-human Siglec-8(Biolegend,Cat:347112),
APC-Cy7 anti-human CD34(Biolegend,Cat:343614)。
细胞内染色:取单细胞悬液染色活细胞染料575V,之后使用BD Cytofix/CytopermTM Fixation/Permeabilization试剂盒固定细胞和破膜,染色组加入EPX抗体(Abcam,Cat:ab19075)进行染色,对照组加入EPX抗体的同型对照抗体小鼠IgG1,在37度染色15分钟,接下来染色组和对照组都加入Alexa Fluor 488-AffiniPure驴抗鼠IgG(1:200稀释,Jackson ImmunoResearch,Cat:715-24545-150)37度染色15分钟,使用40微米筛网过滤细胞,上机分析。流式细胞仪使用LSRFortessa(BD),数据分析使用FlowJo-V10(BD)软件。
3.嗜酸性粒细胞染色
收集分化过程中的嗜酸性粒细胞使用PBS重悬至5X106/毫升,取20-30微升细胞悬液加到阳离子载玻片上使用StatSpin CytoFuge 2离心将细胞固定在载玻片上。使用100%甲醇固定细胞5分钟,蒸馏水冲洗15秒;使用嗜酸性粒细胞染液A液染色5分钟,蒸馏水冲洗15秒,使用嗜酸性粒细胞染液B液染色5分钟,蒸馏水冲洗15秒。镜下观察嗜酸性粒细胞染色结果(olympus,BX-43),使用Cellsens软件(olympus Life Science)采集照片。
4.电镜
收集分化Day28的嗜酸性粒细胞使用2%PFA+2.5%GA+0.1M PB 37度染色5分钟,之后室温染色30分钟,4度过夜染色。使用0.1M PB漂洗细胞三次,使用2%饿酸+1.5%亚铁氰化钾避光室温染色2小时,蒸馏水漂洗6次,每次5分钟。2%UA 4度避光过夜染色,蒸馏水漂洗3次,每次10分钟。使用不同浓度的乙醇溶液处理细胞进行脱水,脱水后的细胞包埋到纯树脂中,使用ultramicrotome制备70纳米直径的超薄切片,使用铜网收集超薄切片,醋酸双氧铀和柠檬酸铅染色,使用电镜(Tecnai G2 Spirit,FEI)在120kV条件下观察。
5.转录组测序和生信分析
收集hESC不同分化天数的细胞(Day12,Day16,Day20,Day24,Day28,Day32),提取RNA。使用NEB Next,Ultra RNA Library Prep kit for Illumina试剂盒建库,建立的真核普通转录组文库使用Illumina HiSeq-PE150上机测序。hiPSC分化仅收集分化Day0,Day28的细胞提取RNA进行转录组测序。所有转录组测序均在诺和致远进行。
生信分析首先使用TopHat读取原始Fastq测序文件并与人类参照基因组(hg19)进行比对,读数和FPKM采用cuffquant和cuffnorm进行计算。图2A、图2B、图2D、图3F和图3H中的聚类分析和基因表达热图分析是基于FPKM进行计算的结果,不同样品间基因表达差异使用DESeq2进行评判,我们使用log2(倍数变化)>1或者<-1并且FDR<0.01作为阈值进行分析。GO分析使用DAVID(https://david.ncifcrf.gov/)进行。
6.QPCR分析
收集不同阶段培养的细胞提取RNA(QIAGEN,Cat:74034),使用反转录试剂盒(Transgene,Cat:AT311–03)进行cDNA合成,反应试剂使用FastStart Essential DNAGreen Master(Roche,Cat:06924204001),根据说明书配制20微升反应体系,在BIO-RADCFX ConnectTM Real-Time PCR Detection System(Bio-Rad,Cat:1855201)仪器上完成原始数据收集和质量检验。PCR具体程序如下:首先,95℃,10分钟;接下来95℃,10秒;60℃,10秒;72℃,10秒;反应40个循环;最后为退火程序。不同基因mRNA的表达值都是基因Actin基因进行归一化,所用到的引物信息在表1中展示。
表1
7.制备荧光素酶表达细胞系
慢病毒载体EF1a-GFP-2A-Luc2-SV40-puro(载体图谱参见图9)编码独立的GFP蛋白和荧光素酶,按照之前我们报道的方法进行病毒包装和滴度测试(Xiao et al.,2019)。将制备好的病毒感染HCT116细胞(人结直肠癌细胞系)(国家实验细胞资源共享平台)、MDA-MB-231细胞(人乳腺癌细胞系)(国家实验细胞资源共享平台)、HepG2细胞(人肝细胞癌细胞系)(Kuanhui Xiang,Peking University Health Science Center)和SK-hep-1细胞(人肝/腹水腺癌细胞系)(Fengming Lu,Peking University Health Science Center)等4种细胞系,使用流式细胞分选仪分选GFP阳性细胞进行培养,每种细胞的荧光素酶活性检测合格之后再进行功能试验。
8.嗜酸性粒细胞体外杀伤实验
1)取培养的肿瘤细胞消化,离心后用DMEM培养基重悬,进行细胞计数。
2)调整肿瘤细胞密度为10万/ml,取新的96孔白板,按每孔100ul加入细胞悬液,使每孔肿瘤细胞接种量为1万个。
3)将接种了肿瘤细胞的白板放回CO2培养箱,培养12小时。
4)取hESC分化的嗜酸性粒细胞用于杀伤实验,调整细胞密度为100万/ml,取另外3个新的15ml离心管,进行起始浓度倍比稀释,得到浓度为50万/ml、20万/ml、10万/ml的嗜酸性粒细胞悬液(hiPSC分化的嗜酸性粒细胞浓度梯度有三个分别为为50万/ml、20万/ml、10万/ml)。
5)按上面浓度梯度,每种浓度设三个平行孔,将hESC分化的嗜酸性粒细胞以每孔100ul加入铺好肿瘤细胞的96孔白板中,四个浓度梯度孔对应的杀伤效靶比分别为10、5、2、1(hIPSC分化的嗜酸性粒细胞三个浓度梯度孔对应的杀伤效靶比分别为5、2、1,)。
6)将96孔白板放回37℃的CO2细胞培养箱,共培养20小时。
7)往96孔白板添加luciferase发光底物:用PBS将储存底物(浓度为20mg/ml)按1:50稀释,使用排枪将稀释后的底物以每孔50ul快速添加到96孔白板待测孔中,注意避光操作。
8)加过底物的白板放振荡器上避光摇匀5分钟,使用multimode plate reader(PerkinElmer)发光检测仪,进行发光检测。
9)按下公式计算每孔杀伤效率:
杀伤效率%=(对照孔发光强度–待测孔发光强度)x100/对照孔发光强度。
在嗜酸性粒细胞杀伤人脐静脉内皮细胞和成纤维细胞的实验中,嗜酸性粒细胞和靶细胞共孵育后使用Annexin V和PI染色进行,Annexin V阳性的细胞被认为是被嗜酸性粒细胞杀伤的细胞。
9.嗜酸性粒细胞体内存活及肿瘤浸润实验
取人多潜能干细胞分化的嗜酸性粒细胞6×106细胞通过尾静脉注射进入NPG小鼠体内,48小时后,取受体小鼠的骨髓、脾脏、外周血制备成单细胞悬液,其中脾脏细胞和外周血细胞使用红细胞裂解液(BioLegend,Cat:420301)裂解红细胞,使用以下抗体进行流式细胞染色分析:PE抗小鼠CD45(Biolegend,Cat:103106);BV421抗人CD45(Biolegend,Cat:304032)。
嗜酸性粒细胞肿瘤浸润实验,向预先接种肿瘤的NPG小鼠通过尾静脉的方式注射6×106的嗜酸性粒细胞,48小时后去除肿瘤组织,切成小块后使用1ug/ml胶原酶Ⅳ(Sigma,Cat:17104019)和1mg/ml的核酸酶(Sigma,Cat:DN25-1G)在37度细胞培养箱中消化30分钟,使用1ml枪头反复吹打至单细胞悬液,1800转/分钟,离心5分钟。使用上面提到的抗体进行流式染色分析。
10.嗜酸性粒细胞体内杀伤能力检测
取5万个荧光素酶表达的癌细胞皮下接种于NPG小鼠中,癌细胞接种3天、6天时分别通过尾静脉注射20万嗜酸性粒细胞(重悬在培养基中),对照组小鼠注射等体积的培养基。使用Xenogen IVIS(Caliper Life Sciences)系统检测小鼠肿瘤负担,检测前尾静脉向小鼠注射300微升150mg/kg D-荧光素,10分钟后进行分析。肿瘤体积使用数码显示的游标卡尺进行测量,肿瘤体积计算方式为:长径×短经×短经/2。
11.统计学方法
数据统计使用GraphPad Prism软件,数据呈现为平均值和标准偏差(SD)或指和均值的标准误差(SEM)。不同组数据之间比较是unpaired t test或者two-tailed ANOVA分析方法。显著性分析一般在文中或者图中描述,P<0.05被认为是显著差异。所有的流式数据使用FlowJo v10软件进行分析,所有的图使用Adobe Photoshop and Adobe Illustrator处理。
附图说明
图1显示了由人胚胎干细胞(hESCs)高效产生嗜酸性粒细胞。其中,
(A)由hESCs分化产生嗜酸性粒细胞的流程示意图;
(B)EPX+细胞比例随H1定向分化嗜酸性粒细胞诱导过程的变化的代表性流式图;
(C)E21收集的细胞的吉姆萨染色图,标尺=20μm;
(D)E16收集的细胞的电镜图,标尺=2μm;
(E)E20收集的H1来源的嗜酸性粒细胞的表面抗原染色的代表性流式图;
(F-G)由6×105个H1细胞起始分化的EPX+细胞的比例(F)和数目(G)随嗜酸性粒细胞诱导过程的变化的统计图(n=4)。
所有数据显示为平均值±标准差。
图2显示了H1来源的嗜酸性粒细胞的转录谱分析。
(A)H1和诱导E0、E4、E8、E12、E16及E20收集的细胞在整个基因表达层面的树状聚类分析。E0收集的细胞为分选所得的CD34+细胞,E4、E8、E12、E16和E20收集的细胞为培养的全部细胞。每个时间点的细胞都设置了两个重复。
(B)基于由FPKM计算的Z-scores值绘制的iPS-#7及分化E20的细胞中指定基因的表达热图,包括细胞毒性介导因子、免疫活化介导因子、发育调节因子、内皮基因和多能性基因。
(C)嗜酸性粒细胞重要基因在D0、E0、E16及E20的细胞中表达的qPCR分析结果(n=3)。
(D)H1来源的E20收集的嗜酸性粒细胞相比H1细胞表达上调的GO term和KEGG途径的分析图。
所有数据显示为平均值±标准差。
图3显示了人多潜能干细胞(hPSC)来源的嗜酸性粒细胞对实体瘤细胞系具备强烈的体外细胞毒性。
(A-D)H1来源的嗜酸性粒细胞同HCT116(A)、MDA-MB-231(B)、HepG2(C)或SK(D)靶细胞按照指定的效应细胞和靶细胞比例(E:T)共培养20h,培养过程分别设置添加PMA(0.05μM)或不添加PMA的对照组。靶细胞的杀伤比例显示为平均值±标准差(n=3)。
(E-L)H1来源的嗜酸性粒细胞同HCT116(E和F)、MDA-MB-231(G和H)、HepG2(I和J)或SK(K和L)靶细胞按照指定的效应细胞和靶细胞比例(E:T)共培养20h或72h。对于(F)、(H)、(J)、(L),E:T=10:1。靶细胞的杀伤比例显示为平均值±标准差(n=3)。数据显著性分析采用非配对t检验,其中*p<0.05,**p<0.01,和***p<0.001。
(M-P)iPS-#7来源的嗜酸性粒细胞同HCT116(M)、MDA-MB-231(N)、HepG2(O)或SK(P)靶细胞按照指定的效应细胞和靶细胞比例(E:T)共培养20h,培养过程分别设置添加PMA(0.05μM)或不添加PMA的对照组。靶细胞的杀伤比例显示为平均值±标准差(n=3)。
图4显示了人多潜能干细胞(hPSC)来源的嗜酸性粒细胞对实体瘤细胞系具备强烈的体内细胞毒性。
(A)人CD45+细胞占注射H1来源的嗜酸性粒细胞的HCT116荷瘤小鼠的肿瘤组织的比例的代表性流式图;
(B)人CD45+细胞占注射H1来源的嗜酸性粒细胞的HCT116荷瘤小鼠的肿瘤组织的比例的统计图(n=5);数据显示为平均值±标准误;
(C)体内肿瘤实验的流程示意图,细节详见实验材料和操作方法;
(D)利用荧光素酶强度分析每组小鼠受体中MDA-MB-231肿瘤大小(每组小鼠n=5)。数据显著性分析采用双尾ANOVA,其中***p<0.001;数据显示为平均值±标准误;
(E)MDA-MB-231肿瘤移植小鼠模型的Kaplan-Meier生存曲线分析(每组小鼠n=5);
(F)利用荧光素酶强度分析每组小鼠受体中HCT116肿瘤大小(对照组小鼠n=5;“HCT116+E”组小鼠n=4)。数据显著性分析采用双尾ANOVA,其中*p<0.05,***p<0.001;数据显示为平均值±标准误;
(G)HCT116肿瘤移植小鼠模型的Kaplan-Meier生存曲线分析(对照组小鼠n=5;“HCT116+E”组小鼠n=4);
(H)HCT116肿瘤细胞注射后,每组移植小鼠中肿瘤大小的分析(每组小鼠n=4)。数据显著性分析采用双尾ANOVA,其中**p<0.01,****p<0.0001;数据显示为平均值±标准误;
对于(D)和(E),“231”表示只注射MDA-MB-231肿瘤细胞、但不注射嗜酸性粒细胞的对照组;“231+E”表示注射嗜酸性粒细胞的已移植MDA-MB-231肿瘤细胞的小鼠的实验组。对于(F)和(G),“HCT116”表示只注射HCT116肿瘤细胞、但不注射嗜酸性粒细胞的对照组;“HCT116+E”表示注射嗜酸性粒细胞的已移植HCT116肿瘤细胞的小鼠的实验组。
图5显示了人胚胎干细胞(hESC)来源的嗜酸性粒细胞定向分化结果总结。
(A)细胞的流式检测侧向角比例随H1定向分化嗜酸性粒细胞诱导过程的变化的代表性流式图。
(B)CD34+CD45+细胞比例随H1定向分化嗜酸性粒细胞诱导过程(E0至E20)的变化的代表性流式图。
(C)E20收集的细胞的表面抗原染色的代表性流式图。
(D和E)E20分析的指定细胞类群占总细胞数的比例(D)和数目(E)统计图。所有的细胞类群都在CD45+细胞群体中,每个点代表一个实验样本。
(F)E20的嗜酸性粒细胞数目和E0收集的CD34+细胞数目的比值统计(n=4)。
所有数据显示为平均值±标准差。
图6显示了由人诱导性多潜能干细胞(hiPSCs)高效分化产生嗜酸性粒细胞。
(A)由hiPSCs分化产生嗜酸性粒细胞的流程示意图。
(B)EPX+细胞比例随iPS-#7定向分化嗜酸性粒细胞诱导过程的变化的代表性流式图。
(C)E20收集的iPS-#7来源的嗜酸性细胞的表面抗原染色的代表性流式图。
(D-E)由6×105颗iPS-#7细胞起始分化的EPX+细胞的比例(D)和数目(E)随嗜酸性粒细胞诱导过程的变化的统计图(n=4)。
(F)基于由FPKM计算的Z-scores值绘制的iPS-#7及分化E20的细胞中指定基因的表达热图,包括细胞毒性介导因子、免疫活化介导因子、发育调节因子和多能性基因。
(G)嗜酸性粒细胞重要基因在iPS-#7细胞和由iPS-#7分化E20的细胞中表达的qPCR分析结果(n=3)。
(H)iPS-#7来源的E20收集的嗜酸性粒细胞相比iPS-#7细胞表达上调的GO term和KEGG途径的分析图。
所有数据显示为平均值±标准差。
图7显示了人多潜能干细胞(hPSC)来源的嗜酸性粒细胞的细胞毒性分析。
(A)H1来源的嗜酸性粒细胞同人胚胎成纤维细胞(HEFs)或人脐静脉内皮细胞(HUVECs)按照指定的效应细胞和靶细胞比例(E:T)共培养20h。靶细胞的杀伤比例显示为平均值±标准差(n=3)。
(B)iPSC来源的嗜酸性粒细胞同人胚胎成纤维细胞(HEFs)或人脐静脉内皮细胞(HUVECs)按照指定的效应细胞和靶细胞比例(E:T)共培养20h。靶细胞的杀伤比例显示为平均值±标准差(n=3)。
(C)H1来源的嗜酸性粒细胞同HCT116、MDA-MB-231、HepG2或SK靶细胞按照指定的效应细胞和靶细胞比例(E:T)共培养20h。靶细胞的杀伤比例显示为平均值±标准差(n=3)。
所有数据显示为平均值±标准差。
图8显示了H1来源的嗜酸性粒细胞在受体体内的分布情况。
(A)H1来源的嗜酸性粒细胞体内注射48h后人CD45+细胞在受体小鼠骨髓、脾脏和外周血中分布的代表性流式图。
(B)H1来源的嗜酸性粒细胞体内注射48h后人CD45+细胞在受体小鼠骨髓、脾脏和外周血中占总CD45+细胞数比例的统计(n=5)。
所有数据显示为平均值±标准差。
图9显示了慢病毒载体EF1a-GFP-2A-Luc2-SV40-puro的图谱。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
实施例1由人胚胎干细胞(hESCs)高效分化得到嗜酸性粒细胞
之前,我们研究了从hPSCs产生造血细胞(Wang et al.,2012)。在本发明中,为了从hESCs产生嗜酸性粒细胞,我们通过改善先前建立的逐步分化策略,开发了一种新的分化方法,通过暴露于特定的分化培养基中以逐步生成中胚层细胞、生血内皮细胞和造血祖细胞(参见图1A和“实验材料和操作方法”部分)。第12天后,引入支持嗜酸性粒细胞发育和存活的白介素3(IL-3)和白介素5(IL-5)(Reichman et al.,2016),以诱导嗜酸性粒细胞分化和成熟(具体方法和参数参见“实验材料和操作方法”的“体外定向分化人胚胎干细胞(hESC)和人诱导性多潜能干细胞(hiPSC)为嗜酸性粒细胞”部分)。
为了监测嗜酸性粒细胞的产生,我们选择了仅在嗜酸性粒细胞中表达的EPX蛋白作为流式细胞分析中使用的特异性标记(Acharya and Ackerman,2014)。我们使用“E0”标记嗜酸性粒细胞诱导的第0天,即整个分化过程的第12天。EPX+细胞最早在E4产生(图1B)。在分化过程中,EPX+细胞的百分比逐渐增加,在E20时EPX+细胞占细胞培养物的98%以上(图1B)。为了进一步表征EPX+细胞,我们进行了吉姆萨染色和电子显微镜成像。这些细胞表现出嗜酸性粒细胞的典型特征,其细胞核呈双叶形且胞质中富含颗粒(图1C)。这些细胞的颗粒表现出高电子密度,呈现颗粒蛋白的特征(图1D)。此外,这些细胞表达了活化的成熟嗜酸性粒细胞标志物Siglec-8、CD69和CD11b(图1E)(Davis and Rothenberg,2014)。综上所述,这些结果表明我们建立了可以从hESCs大量产生高纯度嗜酸性粒细胞的方法。
为了进一步追踪嗜酸性粒细胞诱导的动力学,我们检测了嗜酸性粒细胞诱导的E0,E4,E8,E12,E16,E20和E24时EPX+细胞的百分比和数量。如图1F和1G所示,EPX+细胞在E4出现,在随后直到E12的时间内,其百分比和数量陡然增加。那时,近80%的细胞为EPX+,每块培养板产生2.50×107个细胞。这样的增加在E20后进入平台期,但此时纯度接近100%,每块培养板的细胞数量为4.00×107。有趣的是,我们发现在嗜酸性粒细胞诱导过程中,细胞的流式检测侧向角百分比从E0时的21.5%逐渐增加到E20时的94.3%,这类似于嗜酸性粒细胞随着细胞组分的日益复杂而成熟的过程(图5A)(Hogan et al.,2008;Rosenberg etal.,2013;Rothenberg and Hogan,2006)。我们进一步证实,这些血细胞经过了CD34+CD45+造血祖细胞中间阶段(图5A和B)。在E20时,我们未在培养物中发现其他主要的造血谱系,包括红细胞(CD235a+)、B细胞(CD19+)、T细胞(CD3+)、NK细胞(CD56+)、巨噬细胞(CD14+)和嗜中性粒细胞(CD16+)(图5C,D和E)。总的来说,这些结果表明嗜酸性粒细胞可以随着培养物的扩增而进一步成熟。随后我们计算了本方法的诱导效率,发现E0时的一个CD34+细胞对应于E20时大约50个嗜酸性粒细胞(图5F)。总之,我们建立了一个简单有效的分化策略,可以从H1 ESCs产生大量嗜酸性粒细胞。
实施例2 hESC衍生的嗜酸性粒细胞的转录分析
我们对亲本H1细胞以及在D12(E0)、D16(E4)、D20(E8)、D24(E12)、D28(E16)和D32(E20)时收获的分化细胞进行了RNA测序。数据显示,分化过程经历了由PSC向嗜酸性粒细胞的转变,并具有阶段特异性的聚类模式(图2A和B)。在造血诱导过程中,多能基因被下调,比如NANOG和POU5F1;而HE相关基因CD34和CD45在造血诱导过程中被上调,在嗜酸性粒细胞诱导阶段被下调(图2B)。嗜酸性粒细胞关键发育调节因子,例如转录因子CEBPA、CEBPE、SPI1和GATA1(Reichman et al.,2016)以及受体IL5RA、CSF2RB、ADGRE1和CD52(Davis andRothenberg,2014)在从H1到D32(E20)嗜酸性粒细胞过程中表达逐渐增加;值得注意的是,成熟标记物SIGLEC8的表达(Rosenberg et al.,2013)仅在晚期才被诱导(图2B)。与H1细胞相比,D32(E20)时的嗜酸性粒细胞显示颗粒蛋白EPX、RNASE2、RNASE3、PRG2和PRG3的高表达(图2B);这些蛋白质在嗜酸性粒细胞的细胞毒性中起关键作用(Acharya and Ackerman,2014)。免疫活性调节因子,例如信号转导因子LYNN和SYK,C3和C5的激活受体以及泛免疫活性标记CD69(Davis and Rothenberg,2014),在诱导的嗜酸性粒细胞中高度转录(图2B)。抗体依赖性的细胞介导的细胞毒性受体FCGR2A和MS4A2(FCER1B)(Jensen-Jarolim et al.,2008)在诱导的嗜酸性粒细胞也高度富集(图2B)。为了进一步确认分化细胞的嗜酸性粒细胞特异性基因表达,我们在第0天(H1)、第12天(E0)、第28天(E16)和第32天(E20)对诱导的细胞进行了实时定量PCR检测。结果显示,EPX、PRG2、PRG3、RNASE2、RNASE3、CCR3、IL3RA和IL5RA在晚期诱导的细胞中高表达(图2C)。
接下来,我们对RNAseq数据进行了Gene Ontology(GO)和KEGG通路分析。在第32天(E20)嗜酸性粒细胞中,上调程度最高的GO项目和通路如图2D所示。结果显示,“Fc-γR介导的吞噬作用”,“NF-κB转录活性的正调控”,“Toll样受体信号传导途径”,“脂多糖介导的信号传导途径”和“Fc-εRI信号传导途径”都是天然免疫反应的典型特征(Janeway andMedzhitov,2002;Nimmerjahn and Ravetch,2007;Qian and Cao,2013),这表明我们诱导的嗜酸性粒细胞具有天然免疫特征。GO项目“溶酶体”和“溶酶体膜”表明这些诱导的细胞高度表达溶酶体相关基因,这是具有大量外泌颗粒的细胞的特征(Blott and Griffiths,2002)。总体而言,GO项目分析揭示了诱导的嗜酸性粒细胞的先天免疫特性和颗粒丰度。
综上,这些结果表明嗜酸性粒细胞的分化涉及从ESC特异性到嗜酸性粒细胞特异性基因表达谱的转变。
实施例3由人iPSCs高效分化产生嗜酸性粒细胞
为了研究我们的方案是否可以应用于其他hPSC品系,我们使用人诱导性多潜能干细胞(induced pluripotent stem cells,iPSCs)进行嗜酸性粒细胞分化(图6A)。iPSCs比H1细胞显示出更快的造血祖细胞分化,因此我们在第8天(E0)将培养基更换嗜酸性粒细胞诱导培养基,以诱导获得嗜酸性粒细胞(见“实验材料与操作方法”部分)(图6A)。对EPX+细胞的追踪显示,嗜酸性粒细胞诱导后4天开始产生EPX+细胞,其数量逐渐增加并在E20时达到100%,每块培养板产生近6.00×107个细胞,这些细胞表达Siglec-8、CD69和CD11b(图6B-E)。iPSC衍生的EPX+细胞的百分比和数目在第28天(E20)达到稳定水平。
接下来,我们利用RNA-seq和实时qPCR研究了人iPSC衍生的嗜酸性粒细胞的基因表达谱。与未分化的iPSCs相比,在E20时诱导的细胞显示多能基因的下调和嗜酸性粒细胞特异性基因的上调(图6F和G),并且表现出先天免疫细胞和溶酶体特征的GO项目上调(图6H)。
实施例4人多潜能干细胞衍生的嗜酸性粒细胞靶向肿瘤的的体外功能评估
为了评估人多潜能干细胞(hPSC)衍生的嗜酸性粒细胞的肿瘤杀伤功能,我们选择了四种肿瘤细胞系作为靶细胞:HCT116细胞(人结直肠癌细胞系)(国家实验细胞资源共享平台)、MDA-MB-231细胞(人乳腺癌细胞系)(国家实验细胞资源共享平台)、HepG2细胞(人肝细胞癌细胞系)(Kuanhui Xiang,Peking University Health Science Center)和SK-hep-1细胞(人肝/腹水腺癌细胞系)(Fengming Lu,Peking University Health ScienceCenter)。这四个细胞系带有稳定的GFP-荧光素酶转基因,可用于区分肿瘤细胞和效应细胞,而利用荧光素酶则可通过荧光素酶活性检测来检测肿瘤细胞的存活率。为了便于命名,我们分别将这些细胞称为HCT116、MDA-MB-231、SK和HepG2细胞。
我们首先评估了H1来源的嗜酸性粒细胞的体外抗肿瘤活性。将嗜酸性粒细胞与HCT116、MDA-MB-231、SK或HepG2细胞孵育20小时后,根据荧光素酶活性确定肿瘤细胞的裂解速率。结果表明,当效靶比(E:T)为10:1时,嗜酸性粒细胞可杀伤约10%的HCT116细胞,25%的MDA-MB-231细胞,25%的HepG2细胞和44%的SK细胞(图3A-D)。令人惊讶的是,当在孵育过程中用佛波醇12-肉豆蔻酸13-乙酸盐(PMA)刺激时,嗜酸性粒细胞在E:T=10:1时可杀伤近100%的HCT116,HepG2和SK细胞以及80%的MDA-MB-231靶细胞(图3A-D)。有趣的是,在没有被PMA激活且E:T=10:1的情况下,当孵育时长延长至72小时时,HCT116、MDA-MB-231、HepG2和SK细胞的裂解率分别提高到了近60%,50%,50%和60%(图3E-L)。
接下来,我们评估了iPSC衍生的嗜酸性粒细胞的体外抗肿瘤活性。类似于H1衍生的嗜酸性粒细胞,iPSC衍生的嗜酸性粒细胞显示出轻度细胞毒性,在E:T=5:1的情况下,共培养20小时后,杀伤情况为HCT116 10%裂解,MDA-MB-231 32%裂解,HepG2 32%裂解,SK9%裂解。而当用PMA刺激后,其表现出对HCT116(83%裂解),MDA-MB-231(80%裂解),HepG2(75%裂解)和SK(58%裂解)的高细胞毒性(图3M-P)。总体而言,以上数据表明,hPSC衍生的嗜酸性粒细胞对肿瘤细胞具有足够的体外细胞毒性。
我们进一步研究了hPSC衍生的嗜酸性粒细胞是否对包括人胚胎成纤维细胞(HEF)(购自lonza)和人脐静脉内皮细胞(HUVEC)(购自Lonza,Cat#C2519A)在内的正常细胞具有潜在的细胞毒性。将hPSC衍生的嗜酸性粒细胞与HEF、HUVEC或肿瘤细胞以指定的E:T比孵育20小时后,通过流式细胞术分析靶细胞的凋亡细胞群。在两个独立实验中,无论E:T比如何,与嗜酸性粒细胞共孵育的HEF和HUVEC都没有显示出比对照组(其中,对照组为不与嗜酸性粒细胞共培养的组)更多的凋亡细胞群(图7A-B)。相反,MDA-MB-231、HCT116、HepG2和SK靶细胞发生了明显的凋亡(图7C)。这些结果证明,hPSC衍生的嗜酸性粒细胞对正常人类细胞如HEF和HUVEC没有明显的细胞毒性。根据这些结果还可推断出癌细胞可能分泌某些正常细胞不分泌的信号,以刺激嗜酸性粒细胞的细胞毒性(Legrand et al.,2010;Lotfi et al.,2009;Stenfeldt and Wenneras,2004)。
实施例5人多潜能干细胞衍生的嗜酸性粒细胞靶向肿瘤的体内功能评估
接下来,本发明研究了人多潜能干细胞(hPSC)衍生的嗜酸性粒细胞的体内抗肿瘤活性。为了探究嗜酸性粒细胞在体内的存活和分布,我们通过流式细胞术检测了免疫缺陷型NPG小鼠受体外周血(Herron et al.)、脾脏和骨髓(BM)中嗜酸性粒细胞的存在。在注射H1衍生的嗜酸性粒细胞48小时后,我们发现受体外周血、脾脏和骨髓中的人CD45+细胞分别占0.18%,0.20%和0.02%的比例(图8A和B)。这些结果表明,H1衍生的嗜酸性粒细胞可以在受体的主要免疫器官中存活并重新分布。为了分析嗜酸性粒细胞在肿瘤中的浸润,将HCT116肿瘤细胞皮下移植到免疫缺陷的NPG小鼠受体中,然后将H1衍生的嗜酸性粒细胞注射到负荷HCT116细胞的受体中。注射48小时后,对受体的肿瘤组织进行流式分析。结果表明,受体小鼠的肿瘤组织中存在明显的人CD45+细胞群(图4A),在总体细胞中的平均比例为0.26%(图4B)。代表肿瘤细胞的GFP+细胞也可以检测到(图4A)。这些结果表明,hPSC衍生的嗜酸性粒细胞可以快速迁移并浸润已建立的肿瘤组织。
随后,我们将肿瘤细胞(HCT116或MDA-MB-231细胞)接种到免疫缺陷的NPG小鼠受体中,每只小鼠接种5×104个细胞。3天和6天后,将H1衍生的嗜酸性粒细胞以每只受体鼠2×106个细胞的剂量注射到接种的小鼠中,而对照组(其中,对照组为不注射嗜酸性粒细胞但接种肿瘤细胞的小鼠的组)则注射相同体积的培养基。然后我们开始追踪肿瘤细胞移植后14天内肿瘤大小和荧光素酶强度的变化(图4C)。嗜酸性粒细胞有效地抑制了肿瘤细胞的生长。早在接种后40天,MDA-MB-231肿瘤细胞的荧光素酶活性就开始急剧增加,而注射嗜酸性粒细胞组的荧光素酶活性仍然很低(图4D)。值得注意的是,存活曲线显示了在接种MDA-MB-231细胞的小鼠中,注射嗜酸性粒细胞组的中位生存期比对照组长约20天(图4E)。HCT116肿瘤细胞的生长速度比MDA-MB-231肿瘤细胞快,对照组在接种后21天后荧光素酶活性陡然增加,而注射嗜酸性粒细胞组的荧光素酶活性并未显著增加(图4F)。存活曲线还显示注射嗜酸性粒细胞可将HCT116细胞移植受体的中位生存期延长约15天(图4G)。我们还追踪了HCT116细胞接种小鼠的肿瘤大小变化。与生物发光数据中观察到的动力学相似(图4F),在注射肿瘤后26天,嗜酸性粒细胞注射组的肿瘤大小显著小于对照组,在肿瘤注射后第32天仅为对照组的约1/5(图4H)。综上所述,这些结果揭示了H1衍生的嗜酸性粒细胞在体内具有强大的肿瘤杀伤能力。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
参考文献
Acharya,K.R.,and Ackerman,S.J.(2014).Eosinophil granule proteins:formand function.The Journal of biological chemistry 289,17406-17415.
Bertheloot,D.,and Latz,E.(2017).HMGB1,IL-1alpha,IL-33 andS100proteins:dual-function alarmins.Cell Mol Immunol 14,43-64.
Blott,E.J.,and Griffiths,G.M.(2002).Secretory lysosomes.NatureReviews Molecular Cell Biology 3,122-131.
Carretero,R.,Sektioglu,I.M.,Garbi,N.,Salgado,O.C.,Beckhove,P.,andHammerling,G.J.(2015).Eosinophils orchestrate cancer rejection by normalizingtumor vessels and enhancing infiltration of CD8(+)T cells.Nat Immunol 16,609-617.
Cormier,S.A.(2006).Pivotal Advance:Eosinophil infiltration of solidtumors is an early and persistent inflammatory host response.Journal ofleukocyte biology 79,1131-1139.
Davis,B.P.,and Rothenberg,M.E.(2014).Eosinophils and cancer.Cancerimmunology research 2,1-8.
Delyon,J.,Mateus,C.,Lefeuvre,D.,Lanoy,E.,Zitvogel,L.,Chaput,N.,Roy,S.,Eggermont,A.M.,Routier,E.,and Robert,C.(2013).Experience in daily practicewith ipilimumab for the treatment of patients with metastatic melanoma:anearly increase in lymphocyte and eosinophil counts is associated withimproved survival.Annals of oncology:official journal of the European Societyfor Medical Oncology 24,1697-1703.
Demaria,O.,Cornen,S.,Daeron,M.,Morel,Y.,Medzhitov,R.,and Vivier,E.(2019).Harnessing innate immunity in cancer therapy.Nature 574,45-56.
Depil,S.,Duchateau,P.,Grupp,S.A.,Mufti,G.,and Poirot,L.(2020).'Off-the-shelf'allogeneic CAR T cells:development and challenges.Nature reviewsDrug discovery.
Gatault,S.,Delbeke,M.,Driss,V.,Sarazin,A.,Dendooven,A.,Kahn,J.E.,Lefevre,G.,and Capron,M.(2015).IL-18Is Involved in Eosinophil-MediatedTumoricidal Activity against a Colon Carcinoma Cell Line by Upregulating LFA-1 and ICAM-1.Journal of immunology 195,2483-2492.
Gebhardt,C.,Sevko,A.,Jiang,H.,Lichtenberger,R.,Reith,M.,Tarnanidis,K.,Holland-Letz,T.,Umansky,L.,Beckhove,P.,Sucker,A.,et al.(2015).MyeloidCells and Related Chronic Inflammatory Factors as Novel Predictive Markers inMelanoma Treatment with Ipilimumab.Clinical cancer research:an officialjournal of the American Association for Cancer Research 21,5453-5459.
Grosser,R.,Cherkassky,L.,Chintala,N.,and Adusumilli,P.S.(2019).Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for theTreatment of Solid Tumors.Cancer cell 36,471-482.
Guedan,S.,Ruella,M.,and June,C.H.(2019).Emerging Cellular Therapiesfor Cancer.Annu Rev Immunol 37,145-171.
Habif,G.,Crinier,A.,Andre,P.,Vivier,E.,and Narni-Mancinelli,E.(2019).Targeting natural killer cells in solid tumors.Cell Mol Immunol 16,415-422.
Harbaum,L.,Pollheimer,M.J.,Kornprat,P.,Lindtner,R.A.,Bokemeyer,C.,andLangner,C.(2015).Peritumoral eosinophils predict recurrence in colorectalcancer.Modern pathology:an official journal of the United States and CanadianAcademy of Pathology,Inc 28,403-413.
Harrington,K.,Freeman,D.J.,Kelly,B.,Harper,J.,and Soria,J.C.(2019).Optimizing oncolytic virotherapy in cancer treatment.Nature reviews Drugdiscovery 18,689-706.
Herron,T.J.,Rocha,A.M.,Campbell,K.F.,Ponce-Balbuena,D.,Willis,B.C.,Guerrero-Serna,G.,Liu,Q.,Klos,M.,Musa,H.,Zarzoso,M.,et al.(2016).Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and ElectrophysiologicalFunction.Circulation Arrhythmia and electrophysiology 9,e003638.
Hogan,S.P.,Rosenberg,H.F.,Moqbel,R.,Phipps,S.,Foster,P.S.,Lacy,P.,Kay,A.B.,and Rothenberg,M.E.(2008).Eosinophils:biological properties and rolein health and disease.Clinical and experimental allergy:journal of theBritish Society for Allergy and Clinical Immunology 38,709-750.
Hollande,C.,Boussier,J.,Ziai,J.,Nozawa,T.,Bondet,V.,Phung,W.,Lu,B.,Duffy,D.,Paradis,V.,Mallet,V.,et al.(2019).Inhibition of the dipeptidylpeptidase DPP4(CD26)reveals IL-33-dependent eosinophil-mediated control oftumor growth.Nat Immunol 20,257-264.
Ito,N.,DeMarco,R.A.,Mailliard,R.B.,Han,J.,Rabinowich,H.,Kalinski,P.,Stolz,D.B.,Zeh,H.J.,3rd,and Lotze,M.T.(2007).Cytolytic cells induce HMGB1release from melanoma cell lines.Journal of leukocyte biology 81,75-83.
Janeway,C.A.,and Medzhitov,R.(2002).Innate Immune Recognition.AnnualReview of Immunology 20,197-216.
Jensen-Jarolim,E.,Achatz,G.,Turner,M.C.,Karagiannis,S.,Legrand,F.,Capron,M.,Penichet,M.L.,Rodriguez,J.A.,Siccardi,A.G.,Vangelista,L.,et al.(2008).AllergoOncology:the role of IgE-mediated allergy in cancer.Allergy 63,1255-1266.
Kita,H.(2011).Eosinophils:multifaceted biological properties androles in health and disease.Immunological reviews 242,161-177.
Kvarnhammar,A.M.,and Cardell,L.O.(2012).Pattern-recognition receptorsin human eosinophils.Immunology 136,11-20.
Legrand,F.,Driss,V.,Delbeke,M.,Loiseau,S.,Hermann,E.,Dombrowicz,D.,and Capron,M.(2010).Human eosinophils exert TNF-alpha and granzyme A-mediatedtumoricidal activity toward colon carcinoma cells.Journal of immunology 185,7443-7451.
Li,D.,Li,X.,Zhou,W.L.,Huang,Y.,Liang,X.,Jiang,L.,Yang,X.,Sun,J.,Li,Z.,Han,W.D.,et al.(2019).Genetically engineered T cells for cancerimmunotherapy.Signal transduction and targeted therapy 4,35.
Lotfi,R.,Herzog,G.I.,DeMarco,R.A.,Beer-Stolz,D.,Lee,J.J.,Rubartelli,A.,Schrezenmeier,H.,and Lotze,M.T.(2009).Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells.Journal ofimmunology 183,5023-5031.
Lotfi,R.,Lee,J.J.,and Lotze,M.T.(2007).Eosinophilic granulocytes anddamage-associated molecular pattern molecules(DAMPs):role in the inflammatoryresponse within tumors.Journal of immunotherapy(Hagerstown,Md:1997)30,16-28.
Lucarini,V.,Ziccheddu,G.,Macchia,I.,La Sorsa,V.,Peschiaroli,F.,Buccione,C.,Sistigu,A.,Sanchez,M.,Andreone,S.,D'Urso,M.T.,et al.(2017).IL-33restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearingmice through eosinophils.Oncoimmunology 6,e1317420.
Majzner,R.G.,and Mackall,C.L.(2019).Clinical lessons learned from thefirst leg of the CAR T cell journey.Nat Med 25,1341-1355.
Martens,A.,Wistuba-Hamprecht,K.,Geukes Foppen,M.,Yuan,J.,Postow,M.A.,Wong,P.,Romano,E.,Khammari,A.,Dreno,B.,Capone,M.,et al.(2016).BaselinePeripheral Blood Biomarkers Associated with Clinical Outcome of AdvancedMelanoma Patients Treated with Ipilimumab.Clinical cancer research:anofficial journal of the American Association for Cancer Research 22,2908-2918.
Miller,J.S.,and Lanier,L.L.(2019).Natural Killer Cells in CancerImmunotherapy.Annual Review of Cancer Biology 3,77-103.
Morel,D.,Jeffery,D.,Aspeslagh,S.,Almouzni,G.,and Postel-Vinay,S.(2020).Combining epigenetic drugs with other therapies for solid tumours-pastlessons and future promise.Nature reviews Clinical oncology 17,91-107.
Munitz,A.,Bachelet,I.,Fraenkel,S.,Katz,G.,Mandelboim,O.,Simon,H.U.,Moretta,L.,Colonna,M.,and Levi-Schaffer,F.(2005).2B4(CD244)is expressed andfunctional on human eosinophils.Journal of immunology 174,110-118.
Nayyar,G.,Chu,Y.,and Cairo,M.S.(2019).Overcoming Resistance toNatural Killer Cell Based Immunotherapies for Solid Tumors.Frontiers inOncology 9.
Newick,K.,O'Brien,S.,Moon,E.,and Albelda,S.M.(2017).CAR T CellTherapy for Solid Tumors.Annual Review of Medicine 68,139-152.
Nimmerjahn,F.,and Ravetch,J.V.(2007).Fc-Receptors as Regulators ofImmunity.In Advances in Immunology(Academic Press),pp.179-204.
Park,J.,Wrzesinski,S.H.,Stern,E.,Look,M.,Criscione,J.,Ragheb,R.,Jay,S.M.,Demento,S.L.,Agawu,A.,Licona Limon,P.,et al.(2012).Combination deliveryof TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhancestumour immunotherapy.Nature materials 11,895-905.
Prizment,A.E.,Vierkant,R.A.,Smyrk,T.C.,Tillmans,L.S.,Lee,J.J.,Sriramarao,P.,Nelson,H.H.,Lynch,C.F.,Thibodeau,S.N.,Church,T.R.,et al.(2016).Tumor eosinophil infiltration and improved survival of colorectal cancerpatients:Iowa Women's Health Study.Modern pathology:an official journal ofthe United States and Canadian Academy of Pathology,Inc 29,516-527.
Qian,C.,and Cao,X.(2013).Regulation of Toll-like receptor signalingpathways in innate immune responses.Annals of the New York Academy ofSciences 1283,67-74.
Rafiq,S.,Hackett,C.S.,and Brentjens,R.J.(2019).Engineering strategiesto overcome the current roadblocks in CAR T cell therapy.Nature reviewsClinical oncology.
Reichman,H.,Karo-Atar,D.,and Munitz,A.(2016).Emerging Roles forEosinophils in the Tumor Microenvironment.Trends in cancer 2,664-675.
Rosenberg,H.F.,Dyer,K.D.,and Foster,P.S.(2013).Eosinophils:changingperspectives in health and disease.Nat Rev Immunol 13,9-22.
Rothenberg,M.E.,and Hogan,S.P.(2006).The eosinophil.Annu Rev Immunol24,147-174.
Stenfeldt,A.L.,and Wenneras,C.(2004).Danger signals derived fromstressed and necrotic epithelial cells activate human eosinophils.Immunology112,605-614.
Wang,C.,Tang,X.,Sun,X.,Miao,Z.,Lv,Y.,Yang,Y.,Zhang,H.,Zhang,P.,Liu,Y.,Du,L.,et al.(2012).TGFbeta inhibition enhances the generation ofhematopoietic progenitors from human ES cell-derived hemogenic endothelialcells using a stepwise strategy.Cell research 22,194-207.
Weide,B.,Martens,A.,Hassel,J.C.,Berking,C.,Postow,M.A.,Bisschop,K.,Simeone,E.,Mangana,J.,Schilling,B.,Di Giacomo,A.M.,et al.(2016).BaselineBiomarkers for Outcome of Melanoma Patients Treated withPembrolizumab.Clinical cancer research:an official journal of the AmericanAssociation for Cancer Research 22,5487-5496.
Weller,P.F.,and Spencer,L.A.(2017).Functions of tissue-residenteosinophils.Nat Rev Immunol 17,746-760.
Xiao,X.,Lai,W.,Xie,H.,Liu,Y.,Guo,W.,Liu,Y.,Li,Y.,Li,Y.,Zhang,J.,Chen,W.,et al.(2019).Targeting JNK pathway promotes human hematopoietic stem cellexpansion.Cell discovery 5,2.
Yamamoto,T.N.,Kishton,R.J.,and Restifo,N.P.(2019).Developingneoantigen-targeted T cell-based treatments for solid tumors.Nat Med 25,1488-1499.

Claims (12)

1.嗜酸性粒细胞的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将多潜能干细胞形成拟胚体,然后在中胚层诱导培养基中培养,获得中胚层细胞;其中所述中胚层诱导培养基包含BMP4;
(2)将步骤(1)获得的中胚层细胞在生血内皮诱导培养基中培养,获得生血内皮细胞,所述生血内皮细胞为CD34+CDH5+细胞;其中所述生血内皮诱导培养基包含BMP4、VEGF、bFGF和SB431542;
(3)将步骤(2)获得的生血内皮细胞在造血祖细胞诱导培养基中培养,获得造血祖细胞,所述造血祖细胞为CD34+CD45+细胞;其中所述造血祖细胞诱导培养基包含BMP4、VEGF和SCF;
(4)将步骤(3)获得造血祖细胞在嗜酸性粒细胞诱导培养基中培养,获得嗜酸性粒细胞;其中所述嗜酸性粒细胞诱导培养基包含促嗜酸细胞生成因子IL-3和IL-5;
其中,所述多潜能干细胞为人胚胎干细胞或人诱导性多潜能干细胞。
2. 根据权利要求1所述的制备方法,其中,步骤(1)中所述中胚层诱导培养基包含5-100 ng/ml BMP4。
3. 根据权利要求2所述的制备方法,其中,步骤(1)中所述中胚层诱导培养基包含20ng/ml BMP4。
4. 根据权利要求1所述的制备方法,其中,步骤(2)中所述生血内皮诱导培养基包含5-50 ng/ml BMP4、10-100ng/ml VEGF、10-100 ng/ml bFGF和5-20 uM SB431542。
5. 根据权利要求4所述的制备方法,其中,步骤(2)中所述生血内皮诱导培养基包含5ng/ml BMP4、50ng/ml VEGF、50ng/ml bFGF和10uM SB431542。
6. 根据权利要求1所述的制备方法,其中,步骤(3)中所述造血祖细胞诱导培养基包含5-50 ng/ml BMP4、10-100 ng/ml VEGF和20-200 ng/ml SCF。
7. 根据权利要求6所述的制备方法,其中,步骤(3)中所述造血祖细胞诱导培养基包含5 ng/ml BMP4、10 ng/ml VEGF和20-50 ng/ml SCF。
8. 根据权利要求6所述的制备方法,其中,步骤(3)中所述造血祖细胞诱导培养基包含5ng/ml BMP4、10 ng/ml VEGF和20 ng/ml SCF。
9. 根据权利要求1所述的制备方法,其中,步骤(4)中所述嗜酸性粒细胞诱导培养基包含5-100 ng/ml IL3和5-100 ng/ml IL5。
10. 根据权利要求9所述的制备方法,其中,步骤(4)中所述嗜酸性粒细胞诱导培养基包含10ng/ml IL3和10ng/ml IL5。
11.根据权利要求1所述的制备方法,其中,所述胚胎干细胞为可从商业途径获得的人胚胎干细胞。
12.使多潜能干细胞分化为嗜酸性粒细胞的试剂盒,包括中胚层诱导培养基、生血内皮诱导培养基、造血祖细胞诱导培养基和嗜酸性粒细胞诱导培养基;其中,
所述中胚层诱导培养基包含BMP4;
所述生血内皮诱导培养基包含BMP4、VEGF、bFGF和SB431542;
所述造血祖细胞诱导培养基包含BMP4、VEGF和SCF;
所述嗜酸性粒细胞诱导培养基包含促嗜酸细胞生成因子IL-3和IL-5。
CN202010250579.2A 2020-04-01 2020-04-01 利用人多潜能干细胞体外制备嗜酸性粒细胞 Active CN113493767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010250579.2A CN113493767B (zh) 2020-04-01 2020-04-01 利用人多潜能干细胞体外制备嗜酸性粒细胞

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010250579.2A CN113493767B (zh) 2020-04-01 2020-04-01 利用人多潜能干细胞体外制备嗜酸性粒细胞

Publications (2)

Publication Number Publication Date
CN113493767A CN113493767A (zh) 2021-10-12
CN113493767B true CN113493767B (zh) 2024-04-26

Family

ID=77993906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010250579.2A Active CN113493767B (zh) 2020-04-01 2020-04-01 利用人多潜能干细胞体外制备嗜酸性粒细胞

Country Status (1)

Country Link
CN (1) CN113493767B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074106A1 (ja) * 2010-12-03 2012-06-07 国立大学法人京都大学 多能性幹細胞からの好酸球の製造方法
CN102732483A (zh) * 2011-03-31 2012-10-17 北京大学 造血祖细胞的制备方法及其专用培养基
WO2019113139A1 (en) * 2017-12-05 2019-06-13 Children's Hospital Medical Center Eosinophil culture system using human induced pluripotent stem cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846395B2 (en) * 2005-06-01 2014-09-30 Wisconsin Alumni Research Foundation Generation of mature myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+progenitors
MX366900B (es) * 2013-03-13 2019-07-30 Wisconsin Alumni Res Found Métodos y materiales para diferenciación hematoendotelial de células germinales pluripotentes humanas bajo condiciones definidas.
WO2017192708A1 (en) * 2016-05-03 2017-11-09 The Children's Medical Center Corporation Hematopoietic stem and progenitor cells derived from hemogenic endothelial cells
EP3510145A4 (en) * 2016-09-06 2020-03-25 The Children's Medical Center Corporation IMMUNCELLS FROM INDUCED PLURIPOTENT STEM CELLS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074106A1 (ja) * 2010-12-03 2012-06-07 国立大学法人京都大学 多能性幹細胞からの好酸球の製造方法
CN102732483A (zh) * 2011-03-31 2012-10-17 北京大学 造血祖细胞的制备方法及其专用培养基
WO2019113139A1 (en) * 2017-12-05 2019-06-13 Children's Hospital Medical Center Eosinophil culture system using human induced pluripotent stem cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Human pluripotent stem cell-derived eosinophils reveal potent cytotoxicity against solid tumors;Weifeng Lai等;《Stem Cell Reports》;20210701;第16卷;1697-1704 *
N-乙酰半胱氨酸对转化生长因子β1诱导人胚肺成纤维细胞向肌成纤维细胞转化的影响;王峙等;《中华临床免疫和变态反应杂志》;第1卷(第2期);146-149 *
The Peripheral Blood Eosinophil Proteome;Emily M. Wilkerson等;《Journal of Proteome Research》;20160531;第15卷(第5期);1524-1533 *

Also Published As

Publication number Publication date
CN113493767A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
AU2018211351B2 (en) Method for isolation and purification of microvesicles from cell culture supernatants and biological fluids
Knezevic et al. Engineering blood and lymphatic microvascular networks in fibrin matrices
Amati et al. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use
Heidari et al. Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue
JP2021164461A (ja) キメラ抗原受容体及び他の受容体の発現に対するt細胞
Ebert et al. Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy
JP2022512810A (ja) 造血系統細胞を製造するための方法およびシステム
US20120295347A1 (en) Methods and Compositions for Producing Endothelial Progenitor Cells from Pluripotent Stem Cells
WO2014138793A1 (en) A method of isolating cells for therapy and prophylaxis
WO2014100806A1 (en) Muse cells isolation and expansion
Amiri et al. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression
KR20070099054A (ko) 세포
CN113493767B (zh) 利用人多潜能干细胞体外制备嗜酸性粒细胞
EP2454363B1 (en) Method for using directing cells for specific stem/progenitor cell activation and differentiation
CN110669732B (zh) 组合物在将造血祖细胞重编程为造血干细胞中的用途
Li et al. Isolation of swine bone marrow lin-/CD45-/CD133+ cells and cardio-protective effects of its exosomes
CN112159790B (zh) 从围产期组织中纯化多能血管祖细胞的方法
KR20070111570A (ko) 인간의 뇌 암 조직으로부터 확립된 신규 암 줄기 세포주gbm 2
Hendawy et al. Heterogeneity of adipose stromal vascular fraction cells from the different harvesting sites in rats
CN114752688A (zh) 鉴定人类胚胎骨髓来源的间充质干细胞的方法、探针和试剂盒及其用途
EP1751661B1 (en) Method for selectively expanding, selecting and enriching stem/progenitor cell populations
EP3818145A1 (fr) Cellules stromales neonatales presentant une faible expression du cmh-i et leurs utilisations
Renou et al. Humanized in vivo bone marrow models orchestrate multi-lineage human hematopoietic cell development
WO1996015259A2 (en) Assay for the measurement of multilineage stem cells and methods of use thereof
Milani et al. Effect of Myeloma-Derived Microparticles on in Vitro Proliferation and Viability of Alloimmune Human Peripheral Blood Mononuclear Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20211012

Assignee: Beijing Beiqi Biomedical Co.,Ltd.

Assignor: Peking University

Contract record no.: X2023990000885

Denomination of invention: Preparation of eosinophils using human pluripotent stem cells in vitro

License type: Exclusive License

Record date: 20231023

GR01 Patent grant
GR01 Patent grant