CN111766687A - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN111766687A CN111766687A CN202010916864.3A CN202010916864A CN111766687A CN 111766687 A CN111766687 A CN 111766687A CN 202010916864 A CN202010916864 A CN 202010916864A CN 111766687 A CN111766687 A CN 111766687A
- Authority
- CN
- China
- Prior art keywords
- lens
- lens element
- image
- ttl
- curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,所述摄像光学镜头共包含九片透镜,所述九片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,第八透镜,以及第九透镜;所述第二透镜具有负屈折力;其中,摄像光学镜头的焦距为f,第一透镜的焦距为f1,第二透镜的轴上厚度为d3,第二透镜的像侧面到第三透镜的物侧面的轴上距离为d4,且满足下列关系式:2.00≤f1/f≤5.00;2.00≤d3/d4≤10.00。本发明提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device, CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,九片式透镜结构逐渐出现在镜头设计当中,常见的九片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含九片透镜,所述九片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,第八透镜,以及第九透镜;所述第二透镜具有负屈折力;
其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:2.00≤f1/f≤5.00;2.00≤d3/d4≤10.00。
优选地,根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,且满足下列关系式:1.50≤f6/f≤5.00。
优选地,所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-22.67≤(R1+R2)/(R1-R2)≤-3.33;0.03≤d1/TTL≤0.09。
优选地,所述第二透镜的焦距为f2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式: f2/f≤-2.39;3.19≤(R3+R4)/(R3-R4)≤60.59;0.02≤d3/TTL≤0.11。
优选地,所述第三透镜的焦距为f3,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.90≤f3/f≤6.47;-28.31≤(R5+R6)/(R5-R6)≤-3.51;0.02≤d5/TTL≤0.06。
优选地,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-57.47≤f4/f≤27.56;-35.82≤(R7+R8)/(R7-R8)≤28.73;0.01≤d7/TTL≤0.04。
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的中心曲率半径为R9,所述第五透镜像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-81.41≤f5/f≤37.80;-12.49≤(R9+R10)/(R9-R10)≤20.10;0.02≤d9/TTL≤0.09。
优选地,所述第六透镜物侧面的中心曲率半径为R11,所述第六透镜像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.81≤(R11+R12)/(R11-R12)≤2.00;0.04≤d11/TTL≤0.13。
优选地,所述第七透镜的焦距为f7,所述第七透镜物侧面的中心曲率半径为R13,所述第七透镜像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-4.45≤f7/f≤-0.50;0.64≤(R13+R14)/(R13-R14)≤3.64;0.03≤d13/TTL≤0.15。
优选地,所述第八透镜的焦距为f8,所述第八透镜物侧面的中心曲率半径为R15,所述第八透镜像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.28≤f8/f≤1.31;-2.51≤(R15+R16)/(R15-R16)≤-0.75;0.04≤d15/TTL≤0.12。
优选地,所述第九透镜的焦距为f9,所述第九透镜物侧面的中心曲率半径为R17,所述第九透镜像侧面的中心曲率半径为R18,所述第九透镜的轴上厚度为d17,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.51≤f9/f≤-0.48;0.00≤(R17+R18)/(R17-R18)≤0.84;0.04≤d17/TTL≤0.12。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包含九个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序为:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9。第九透镜L9和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力。可以理解的是,在其他实施例中,第三透镜L3,第六透镜L6,第七透镜L7,第八透镜L8和第九透镜L9也可以具有其他屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质,第九透镜L9为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:2.00≤f1/f≤5.00,规定了第一透镜焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。
定义所述第二透镜L2的轴上厚度为d3,所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,满足下列关系式:2.00≤d3/d4≤10.00,规定了第二透镜L2轴上厚度与第二第三透镜空气间隔的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。优选地,满足2.13≤d3/d4≤9.93。
定义所述第六透镜的焦距为f6,且满足下列关系式:1.50≤f6/f≤5.00。规定了第六透镜L6焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述第一透镜L1物侧面的中心曲率半径为R1,所述第一透镜L1像侧面的中心曲率半径为R2,满足下列关系式:-22.67≤(R1+R2)/(R1-R2)≤-3.33,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-14.17≤(R1+R2)/(R1-R2)≤-4.16。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d1/TTL≤0.07。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,满足下列关系式: f2/f≤-2.39,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足f2/f≤-2.98。
所述第二透镜L2物侧面的中心曲率半径为R3,所述第二透镜L2像侧面的中心曲率半径为R4,满足下列关系式:3.19≤(R3+R4)/(R3-R4)≤60.59,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足5.10≤(R3+R4)/(R3-R4)≤48.47。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.11,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.08。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第三透镜L3的焦距为f3,满足下列关系式:0.90≤f3/f≤6.47,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足1.44≤f3/f≤5.17。
所述第三透镜L3物侧面的中心曲率半径为R5,第三透镜L3像侧面的中心曲率半径为R6,满足下列关系式:-28.31≤(R5+R6)/(R5-R6)≤-3.51,规定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-17.70≤(R5+R6)/(R5-R6)≤-4.39。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.06,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.05。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第四透镜L4的焦距为f4,满足下列关系式:-57.47≤f4/f≤27.56,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-35.92≤f4/f≤22.05。
所述第四透镜L4物侧面的中心曲率半径为R7,以及所述第四透镜L4像侧面的中心曲率半径为R8,且满足下列关系式:-35.82≤(R7+R8)/(R7-R8)≤28.73,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-22.39≤(R7+R8)/(R7-R8)≤22.98。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.01≤d7/TTL≤0.04,在条件式范围内,有利于实现超薄化。优选地,满足0.02≤d7/TTL≤0.03。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:-81.41≤f5/f≤37.80,对第五透镜L5的限定可有效的使得摄像光学镜头的光线角度平缓,降低公差敏感度。优选地,满足-50.88≤f5/f≤30.24。
所述第五透镜L5物侧面的中心曲率半径为R9,所述第五透镜L5像侧面的中心曲率半径为R10,且满足下列关系式:-12.49≤(R9+R10)/(R9-R10)≤20.10,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-7.81≤(R9+R10)/(R9-R10)≤16.08。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d9/TTL≤0.07。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
所述第六透镜L6物侧面的中心曲率半径为R11,所述第六透镜L6像侧面的中心曲率半径为R12,且满足下列关系式:-1.81≤(R11+R12)/(R11-R12)≤2.00,规定了第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.13≤(R11+R12)/(R11-R12)≤1.60。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d11/TTL≤0.13,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d11/TTL≤0.10。
本实施方式中,所述第七透镜L7的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第七透镜L7的焦距为f7,满足下列关系式:-4.45≤f7/f≤-0.50,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-2.78≤f7/f≤-0.63。
所述第七透镜L7物侧面的中心曲率半径为R13,所述第七透镜L7像侧面的中心曲率半径为R14,满足下列关系式:0.64≤(R13+R14)/(R13-R14)≤3.64,规定了第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.02≤(R13+R14)/(R13-R14)≤2.91。
所述第七透镜L7的轴上厚度为d13,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d13/TTL≤0.15,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d13/TTL≤0.12。
本实施方式中,所述第八透镜L8的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第八透镜L8的焦距为f8,满足下列关系式:0.28≤f8/f≤1.31,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.44≤f8/f≤1.05。
所述第八透镜L8物侧面的中心曲率半径为R15,所述第八透镜L8像侧面的中心曲率半径为R16,满足下列关系式:-2.51≤(R15+R16)/(R15-R16)≤-0.75,规定了第八透镜的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.57≤(R15+R16)/(R15-R16)≤-0.94。
所述第八透镜L8的轴上厚度为d15,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d15/TTL≤0.12,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d15/TTL≤0.09。
本实施方式中,所述第九透镜L9的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第九透镜L9的焦距为f9,满足下列关系式:-1.51≤f9/f≤-0.48,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-0.95≤f9/f≤-0.60。
所述第九透镜L9物侧面的中心曲率半径为R17,所述第九透镜L9像侧面的中心曲率半径为R18,满足下列关系式:0.00≤(R17+R18)/(R17-R18)≤0.84,规定了第九透镜的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.00≤(R17+R18)/(R17-R18)≤0.67。
所述第九透镜L9的轴上厚度为d17,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d17/TTL≤0.12,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d17/TTL≤0.10。
本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤1.62,从而有利于实现超薄化。
本实施方式中,所述摄像光学镜头10视场角FOV大于或等于78°,从而实现大广角,摄像光学镜头成像性能好。
本实施方式中,所述摄像光学镜头10光圈值FNO小于或等于1.90,从而实现大光圈,摄像光学镜头成像性能好。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:第五透镜L5的物侧面的中心曲率半径;
R10 :第五透镜L5的像侧面的中心曲率半径;
R11:第六透镜L6的物侧面的中心曲率半径;
R12:第六透镜L6的像侧面的中心曲率半径;
R13:第七透镜L7的物侧面的中心曲率半径;
R14:第七透镜L7的像侧面的中心曲率半径;
R15:第八透镜L8的物侧面的中心曲率半径;
R16:第八透镜L8的像侧面的中心曲率半径;
R17:第九透镜L9的物侧面的中心曲率半径;
R18:第九透镜L9的像侧面的中心曲率半径;
R19:光学过滤片GF的物侧面的中心曲率半径;
R20:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到第九透镜L9的物侧面的轴上距离;
d17:第九透镜L9的轴上厚度;
d18:第九透镜L9的像侧面到光学过滤片GF的物侧面的轴上距离;
d19:光学过滤片GF的轴上厚度;
d20:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
nd9:第九透镜L9的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
v9:第九透镜L9的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x2/R)/{1+[1-(k+1)(x2/R2)]1/2}+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A18x18
+A20x20 (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面,P9R1、P9R2分别代表第九透镜L9的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
图2、图3分别示出了波长为650nm、610nm、555nm、510nm及470nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为2.877mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.00°,所述摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图5所示为本发明第二实施方式的摄像光学镜头20,本实施方式中,第四透镜L4具有正屈折力。
本实施方式中,第五透镜L5的像侧面于近轴处为凹面,第六透镜L6的物侧面于近轴处为凸面。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
【表8】
图6、图7分别示出了波长为650nm、610nm、555nm、510nm及470nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为2.967mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.10°,所述摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图9所示为本发明第三实施方式的摄像光学镜头30,在本实施方式中,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
本实施方式中,第五透镜L5的像侧面于近轴处为凹面,第六透镜L6的物侧面于近轴处为凸面。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
图10、图11分别示出了波长为650nm、610nm、555nm、510nm及470nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为2.939mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.20°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (11)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含九片透镜,所述九片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,第八透镜,以及第九透镜;所述第二透镜具有负屈折力;
其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
2.00≤f1/f≤5.00; 2.00≤d3/d4≤10.00。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,且满足下列关系式:
1.50≤f6/f≤5.00。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-22.67≤(R1+R2)/(R1-R2)≤-3.33;
0.03≤d1/TTL≤0.09。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
f2/f≤-2.39;
3.19≤(R3+R4)/(R3-R4)≤60.59;
0.02≤d3/TTL≤0.11。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.90≤f3/f≤6.47;
-28.31≤(R5+R6)/(R5-R6)≤-3.51;
0.02≤d5/TTL≤0.06。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-57.47≤f4/f≤27.56;
-35.82≤(R7+R8)/(R7-R8)≤28.73;
0.01≤d7/TTL≤0.04。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的中心曲率半径为R9,所述第五透镜像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-81.41≤f5/f≤37.80;
-12.49≤(R9+R10)/(R9-R10)≤20.10;
0.02≤d9/TTL≤0.09。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜物侧面的中心曲率半径为R11,所述第六透镜像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.81≤(R11+R12)/(R11-R12)≤2.00;
0.04≤d11/TTL≤0.13。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的中心曲率半径为R13,所述第七透镜像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-4.45≤f7/f≤-0.50;
0.64≤(R13+R14)/(R13-R14)≤3.64;
0.03≤d13/TTL≤0.15。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜物侧面的中心曲率半径为R15,所述第八透镜像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.28≤f8/f≤1.31;
-2.51≤(R15+R16)/(R15-R16)≤-0.75;
0.04≤d15/TTL≤0.12。
11.根据权利要求1所述的摄像光学镜头,其特征在于,所述第九透镜的焦距为f9,所述第九透镜物侧面的中心曲率半径为R17,所述第九透镜像侧面的中心曲率半径为R18,所述第九透镜的轴上厚度为d17,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.51≤f9/f≤-0.48;
0.00≤(R17+R18)/(R17-R18)≤0.84;
0.04≤d17/TTL≤0.12。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010916864.3A CN111766687B (zh) | 2020-09-03 | 2020-09-03 | 摄像光学镜头 |
PCT/CN2020/125702 WO2022047983A1 (zh) | 2020-09-03 | 2020-10-31 | 摄像光学镜头 |
JP2020211731A JP7082177B2 (ja) | 2020-09-03 | 2020-12-21 | 撮像光学レンズ |
US17/134,165 US11947077B2 (en) | 2020-09-03 | 2020-12-25 | Camera optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010916864.3A CN111766687B (zh) | 2020-09-03 | 2020-09-03 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111766687A true CN111766687A (zh) | 2020-10-13 |
CN111766687B CN111766687B (zh) | 2020-11-13 |
Family
ID=72729199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010916864.3A Active CN111766687B (zh) | 2020-09-03 | 2020-09-03 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11947077B2 (zh) |
JP (1) | JP7082177B2 (zh) |
CN (1) | CN111766687B (zh) |
WO (1) | WO2022047983A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014954B (zh) * | 2020-10-14 | 2021-01-01 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
US20210173180A1 (en) * | 2019-12-09 | 2021-06-10 | Sintai Optical (Shenzhen) Co., Ltd. | Wide-Angle Lens Assembly |
TWI733628B (zh) * | 2020-12-01 | 2021-07-11 | 大陸商信泰光學(深圳)有限公司 | 成像鏡頭(四十九) |
CN113933965A (zh) * | 2021-10-13 | 2022-01-14 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
CN114114617A (zh) * | 2021-11-15 | 2022-03-01 | 江西晶超光学有限公司 | 光学系统、镜头模组和电子设备 |
WO2022047983A1 (zh) * | 2020-09-03 | 2022-03-10 | 诚瑞光学(深圳)有限公司 | 摄像光学镜头 |
CN114326059A (zh) * | 2022-03-07 | 2022-04-12 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
CN114355574A (zh) * | 2022-01-12 | 2022-04-15 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
WO2023283871A1 (zh) * | 2021-07-15 | 2023-01-19 | 欧菲光集团股份有限公司 | 光学系统、取像模组及电子设备 |
WO2023085869A1 (ko) * | 2021-11-11 | 2023-05-19 | 엘지이노텍 주식회사 | 광학계 및 이를 포함하는 카메라 모듈 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10353563A1 (de) * | 2003-11-14 | 2005-06-30 | Jos. Schneider Optische Werke Gmbh | Projetionsobjektiv für die Projektion digitaler Bilddaten |
JP2016065906A (ja) * | 2014-09-24 | 2016-04-28 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JPWO2014046126A1 (ja) * | 2012-09-21 | 2016-08-18 | オリンパス株式会社 | 光学系及びそれを用いた光学機器、撮像装置及び撮像システム |
CN111381350A (zh) * | 2018-12-29 | 2020-07-07 | 康达智株式会社 | 摄像镜头 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2676400B2 (ja) * | 1988-06-03 | 1997-11-12 | 日東光学株式会社 | 高倍率なコンパクトズームレンズ |
JPH05100166A (ja) * | 1991-10-04 | 1993-04-23 | Nikon Corp | 小型のズームレンズ |
JP3161246B2 (ja) * | 1994-09-06 | 2001-04-25 | キヤノン株式会社 | カメラ |
JP3070592B2 (ja) * | 1998-12-08 | 2000-07-31 | キヤノン株式会社 | 防振機能を有した変倍光学系 |
JP2002098894A (ja) * | 2000-09-26 | 2002-04-05 | Canon Inc | ズームレンズ及びそれを有した光学機器 |
JP5129520B2 (ja) * | 2007-06-29 | 2013-01-30 | 株式会社エルモ社 | ズームレンズ |
JP6643024B2 (ja) * | 2015-09-30 | 2020-02-12 | キヤノン株式会社 | エクステンダレンズ群、ズームレンズおよび撮像装置 |
JP6858469B2 (ja) * | 2019-01-28 | 2021-04-14 | カンタツ株式会社 | 撮像レンズ |
JP6861458B2 (ja) * | 2019-02-26 | 2021-04-21 | カンタツ株式会社 | 撮像レンズ |
TWI691751B (zh) * | 2019-06-14 | 2020-04-21 | 大立光電股份有限公司 | 光學攝影鏡頭組、取像裝置及電子裝置 |
CN111443465A (zh) * | 2020-05-26 | 2020-07-24 | 浙江舜宇光学有限公司 | 光学摄像系统 |
CN111427134A (zh) * | 2020-05-26 | 2020-07-17 | 浙江舜宇光学有限公司 | 光学成像透镜组 |
CN111766687B (zh) * | 2020-09-03 | 2020-11-13 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111812809B (zh) * | 2020-09-03 | 2020-11-27 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111812811B (zh) * | 2020-09-03 | 2020-11-27 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111766688B (zh) * | 2020-09-03 | 2020-11-17 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111812810B (zh) * | 2020-09-03 | 2020-11-27 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111766685B (zh) * | 2020-09-03 | 2020-11-17 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
-
2020
- 2020-09-03 CN CN202010916864.3A patent/CN111766687B/zh active Active
- 2020-10-31 WO PCT/CN2020/125702 patent/WO2022047983A1/zh active Application Filing
- 2020-12-21 JP JP2020211731A patent/JP7082177B2/ja active Active
- 2020-12-25 US US17/134,165 patent/US11947077B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10353563A1 (de) * | 2003-11-14 | 2005-06-30 | Jos. Schneider Optische Werke Gmbh | Projetionsobjektiv für die Projektion digitaler Bilddaten |
JPWO2014046126A1 (ja) * | 2012-09-21 | 2016-08-18 | オリンパス株式会社 | 光学系及びそれを用いた光学機器、撮像装置及び撮像システム |
JP2016065906A (ja) * | 2014-09-24 | 2016-04-28 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
CN111381350A (zh) * | 2018-12-29 | 2020-07-07 | 康达智株式会社 | 摄像镜头 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210173180A1 (en) * | 2019-12-09 | 2021-06-10 | Sintai Optical (Shenzhen) Co., Ltd. | Wide-Angle Lens Assembly |
US12105355B2 (en) * | 2019-12-09 | 2024-10-01 | Sintai Optical (Shenzhen) Co., Ltd. | Wide-angle lens assembly |
WO2022047983A1 (zh) * | 2020-09-03 | 2022-03-10 | 诚瑞光学(深圳)有限公司 | 摄像光学镜头 |
US11947077B2 (en) | 2020-09-03 | 2024-04-02 | Changzhou Raytech Optronics Co., Ltd. | Camera optical lens |
CN112014954B (zh) * | 2020-10-14 | 2021-01-01 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
TWI733628B (zh) * | 2020-12-01 | 2021-07-11 | 大陸商信泰光學(深圳)有限公司 | 成像鏡頭(四十九) |
WO2023283871A1 (zh) * | 2021-07-15 | 2023-01-19 | 欧菲光集团股份有限公司 | 光学系统、取像模组及电子设备 |
CN113933965A (zh) * | 2021-10-13 | 2022-01-14 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
CN113933965B (zh) * | 2021-10-13 | 2023-07-04 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
WO2023085869A1 (ko) * | 2021-11-11 | 2023-05-19 | 엘지이노텍 주식회사 | 광학계 및 이를 포함하는 카메라 모듈 |
CN114114617B (zh) * | 2021-11-15 | 2024-07-09 | 江西晶超光学有限公司 | 光学系统、镜头模组和电子设备 |
CN114114617A (zh) * | 2021-11-15 | 2022-03-01 | 江西晶超光学有限公司 | 光学系统、镜头模组和电子设备 |
CN114355574A (zh) * | 2022-01-12 | 2022-04-15 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN114326059B (zh) * | 2022-03-07 | 2022-07-08 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
CN114326059A (zh) * | 2022-03-07 | 2022-04-12 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JP7082177B2 (ja) | 2022-06-07 |
US11947077B2 (en) | 2024-04-02 |
WO2022047983A1 (zh) | 2022-03-10 |
JP2022042926A (ja) | 2022-03-15 |
CN111766687B (zh) | 2020-11-13 |
US20220066153A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111929854B (zh) | 摄像光学镜头 | |
CN111766687B (zh) | 摄像光学镜头 | |
CN111812818B (zh) | 摄像光学镜头 | |
CN111812813B (zh) | 摄像光学镜头 | |
CN111812814B (zh) | 摄像光学镜头 | |
CN111929849B (zh) | 摄像光学镜头 | |
CN111812816B (zh) | 摄像光学镜头 | |
CN111812821B (zh) | 摄像光学镜头 | |
CN112014953B (zh) | 摄像光学镜头 | |
CN111812823B (zh) | 摄像光学镜头 | |
CN111929836B (zh) | 摄像光学镜头 | |
CN111929839B (zh) | 摄像光学镜头 | |
CN112014951B (zh) | 摄像光学镜头 | |
CN111929838B (zh) | 摄像光学镜头 | |
CN111812817B (zh) | 摄像光学镜头 | |
CN111913285B (zh) | 摄像光学镜头 | |
CN111812822B (zh) | 摄像光学镜头 | |
CN111929831B (zh) | 摄像光学镜头 | |
CN111929833B (zh) | 摄像光学镜头 | |
CN111929837B (zh) | 摄像光学镜头 | |
CN111812824B (zh) | 摄像光学镜头 | |
CN111929852B (zh) | 摄像光学镜头 | |
CN111929835B (zh) | 摄像光学镜头 | |
CN111929851B (zh) | 摄像光学镜头 | |
CN111929832B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |