CN100380701C - 有机电致发光器件 - Google Patents

有机电致发光器件 Download PDF

Info

Publication number
CN100380701C
CN100380701C CNB991112156A CN99111215A CN100380701C CN 100380701 C CN100380701 C CN 100380701C CN B991112156 A CNB991112156 A CN B991112156A CN 99111215 A CN99111215 A CN 99111215A CN 100380701 C CN100380701 C CN 100380701C
Authority
CN
China
Prior art keywords
layer
organic electroluminescence
electroluminescence device
organic
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991112156A
Other languages
English (en)
Other versions
CN1241893A (zh
Inventor
石桥义
市村真理
田村真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1241893A publication Critical patent/CN1241893A/zh
Application granted granted Critical
Publication of CN100380701C publication Critical patent/CN100380701C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

包含具有发光区的有机层的有机电致发光器件,其特征在于,有机层包括下面通式(1)表示的联苯乙烯化合物:通式(1):其中通式(1)中的R1,R2,R3,和R4是可相同或不同的基团,分别表示苯基或下列通式(2)的芳基:通式(2):在通式(2)中,R13,R14,R15,R16和R17分别代表氢原子,条件是其中的至少一个基团是饱和或不饱和烷氧基或烷基,以及R5,R6,R7,R8,R9,R10,R11和R12中至少一个基团代表氰基,硝基或卤素原子。

Description

有机电致发光器件
本发明涉及一种有机电致发光器件(有机EL器件),其中,一个具有发光区的有机层设置在阳极和阴极之间。
轻型高效的平板显示器已经得到广泛地研究和开发,例如它们可以用作计算机和电视机的显象管。
由于布老恩管(阴极射线管CRT)发光强度高并且具有良好的彩色再现性,因而目前被广泛用于显示。但是,仍旧存在各种问题,例如管体笨重、功耗大。
作为高效率的轻型平板显示器,已经在市场上推出了有源矩阵驱动式的液晶显示器。但是,液晶显示器存在如下问题,其视场角窄,不依靠自发光,因而当置于暗环境时需要较大功耗用于背光,对将来可能使用的高精度的高速视频信号缺乏足够的响应。特别是,制造大图象尺寸的液晶显示器存在难度,同时在高的制造成本上也存在问题。
使用发光二极管的一类显示器可以作为一种代替,但是这种显示器的制造成本也很高,同时还有其它问题,例如难以在一个衬底上形成发光二极管的矩阵结构。因此,考虑作为代替阴极射线管使用的低成本显示器的选择时,这种类型的显示器在投入实用之前必须解决很多问题。
作为有可能解决这些问题的平板显示器,使用有机发光材料的有机电致发光器件(有机EL器件)近来已经得到关注。更具体地讲,通过使用有机化合物作为发光材料,已经可以实现使用自发光的平板显示器,它具有高响应速度并且不依赖于视场角。
有机电致发光器件是这样配置的,在透光阳极和金属阴极之间形成有机薄膜,其含有借助于电流的电荷能够发光的发光材料。在公开于《应用物理文集》“Applied Physics Letters”,Vol.51,No.12,pp.913-915(1987)的研究报告中,C.W.Tang和S.A.VanSlyke提出了一种器件结构(具有单异质结构的有机EL器件),它具有一个双层结构,包括作为有机薄膜的由空穴传输材料组成的薄膜和由电子传输材料组成的薄膜。该器件中,通过从各个电极注入有机膜的空穴和电子的复合而产生发光。
在这种器件结构中,无论是空穴传输材料还是电子传输材料均用作发光材料。在对应于发光材料的基态和激励状态之间的能隙的波段产生发光。当使用这种双层结构时,可以显著降低驱动电压,同时改善发光效率。
此后,又有人开发了由空穴传输材料、发光材料和电子传输材料构成的三层结构(具有双异质结构的有机EL器件),见C.Adachi,S.Tokita,T.Tsutsui和S.Saito的研究报告,公开于《日本应用物理期刊》“Japanese Journal ofApplied Physics”,Vol.27,No.2,pp.L269-L271(1988)。此外,公开在《应用物理期刊》“Journal of Applied Physics”,Vol.65,No.9,pp.3610-3616(1989)的C.W.Tang,S.A.VanSlyke和C.H.Chen的研究报告提出了一种包括存在于电子传输材料中的发光材料的器件结构。通过这些研究,已经证实了在低电压发出强光的可能性,由此引起了近来极为广泛的研究和开发。
用作发光材料的有机化合物被认为是有利的,因为其种类多种多样,通过改变其分子结构在理论上可以随意地改变发光色彩。因此,与使用无机材料的薄膜EL器件相比,借助适当的分子设计可以容易地提供具有全色显示所必需的良好色纯度的R(红)、G(绿)和B(蓝)三色。
但是,有机电致发光器件仍旧存在需要解决的问题。更具体地讲,开发具有高亮度的稳定红色发光器件存在困难。在用作近来报导的电子传输材料的三(8-羟基喹啉)铝(以下缩写为Alq3)中掺杂DCM[4-二氰基亚甲基-6-(对二甲氨基苯乙烯基)-2-甲基-4H-吡喃]而获得红光的情形中,就最大发光和可靠性而言这种材料不足以作为显示材料。
在有机和无机电致发光会议(柏林,1996)上由T.Tsutsui和D.U.Kim报导的BSB-BCN能够实现1000cd/m2以上的高亮度,但是就用作全色显示的红色的色度而言并不总是良好的。
目前需要解决的问题是如何实现亮度高、稳定和色纯度高的红色发光的器件。
在日本未审专利公报平7-188649(日本专利平6-148798)中,已经提出使用特定类型的二苯乙烯基化合物作为有机电致发光材料。但是,预计的发光色彩是蓝色,而不是红色。
因此,需要开发一种能够保证高亮度和稳定红色发光的有机电致发光器件。
为了解决上述问题,已经进行了充分的研究,结果发现,当使用一种特定类型的联苯乙烯化合物作为发光材料时,能够提供一种高可靠性的红光发光器件,这种器件有利于实现高亮度的稳定全色显示,这样完成了本发明。
更具体地说,本发明涉及包含有机层的有机电致发光器件,其中,该有机层具有发光区,并设置在阴极和阳极之间,且含有作为基本组分的能通过施加电流产生发光的有机材料,其特性在于,该有机层包括作为有机发光材料的至少一种由下列通式(1)或通式(3)表示的联苯乙烯化合物:
通式(1):
Figure C9911121500051
在上述通式(1)中,R1,R2,R3,和R4可相同或不同,分别代表苯基或下列通式(2)的芳基:
通式(2):
Figure C9911121500052
在上述通式(2)中,R13,R14,R15,R16和R17可相同或不同,分别代表氢原子,或者其中至少一个基团是饱和或不饱和烷氧基或烷基(优选甲基或叔丁基),以及R5,R6,R7,R8,R9,R10,R11和R12分别代表相同或不同的基团,并且其中至少一个基团代表氰基,硝基或卤素原子(包括F,Cl,Br或I),
通式(3):
在上述通式(3)中,R18,R19,R20,R21,R22,R23,R24和R25分别代表相同或不同的基团,并且其中至少一个基团代表氰基,硝基或卤素原子(包括F,Cl,Br或I)。
作为一种发光材料,使用上述通式(1)和/或(3)的联苯乙烯化合物不但能够获取高亮度的稳定红光发光,而且能制成具备良好电学、热学、化学稳定性的器件。通式(1)或(3)的二苯乙烯基化合物可以单独或联合使用。
本发明的有机电致发光器件使用的联苯乙烯化合物将在下文中叙述。
由通式(1)表示的且作为本发明有机电致发光器件的发光材料的联苯乙烯化合物,例如可以是具有下列结构通式中的至少一种,通式(4)-1,(4)-2,(4)-3,(4)-4,(4)-5,(4)-6,(4)-7,(4)-8,(4)-9和(4)-10。这些都是具有烷氧基(或烷基)苯基或未被取代的苯基的双(氨基苯乙烯基)萘基化合物。
结构式(4)-1:
结构式(4)-2:
Figure C9911121500062
结构式(4)-3:
Figure C9911121500071
结构式(4)-4:
Figure C9911121500072
结构式(4)-5:
Figure C9911121500073
结构式(4)-6:
Figure C9911121500074
结构式(4)-7:
Figure C9911121500075
结构式(4)-8:
Figure C9911121500081
结构式(4)-9:
Figure C9911121500082
结构式(4)-10:
Figure C9911121500083
通过阅读下列详细描述和附加权利要求并参考附图,本发明的其它目的和优点将会变得明了。
图1是本发明的有机电致发光器件的主要部分的简略剖面图。
图2是本发明的另一种类型有机电致发光器件的主要部分的简略剖面图。
图3是本发明的其它类型有机电致发光器件的主要部分的简略剖面图。
图4是本发明的又一种类型有机电致发光器件的主要部分的简略剖面图。
图5是使用本发明有机电致发光器件的全色平板显示器结构示意图。
图6是本发明实施例1中的有机电致发光器件的发射光谱图。
图7是本发明实施例2中的有机电致发光器件的发射光谱图。
图8是本发明实施例5中的有机电致发光器件的发射光谱图。
图9是本发明实施例6中的有机电致发光器件的发射光谱图。
图10是本发明实施例1中的有机电致发光器件的电压-亮度特征曲线图。
图11是本发明实施例2中的有机电致发光器件的电压-亮度特征曲线图。
图12是本发明实施例5中的有机电致发光器件的电压-亮度特征曲线图。
图13是本发明实施例6中的有机电致发光器件的电压-亮度特征曲线图。
应该理解附图未必按比例绘制,实施方案有时通过图标、虚线、图示法及局部图阐明。在某些例子中,有可能已经省略了对理解本发明不必要或使其它细节难以看到的部分内容。当然也应该理解,本发明不局限于在此阐述的具体方案。
图1-4分别展示了根据本发明的有机电致发光器件的实施方案。
图1展示了透射式有机电致发光器件A,其中发光20穿过阴极3,也可以从保护层4一侧观察发光20。图2展示了反射式有机电致发光器件B,其中在阴极3反射的光也可以作为发光20获得。
图中,参考标号1代表形成有机电致发光器件的衬底,可以由玻璃、塑料和其它适合的材料制成。在有机电致发光器件与其它类型显示器件组合使用时,可以共同使用衬底1。参考标号2代表透明电极(阳极),它可以使用ITO(氧化铟锡)、SnO2等。
参考标号5代表有机发光层,含有上述二苯乙烯基化合物作为发光材料。对于获得有机电致发光20的层配置,发光层可以具有迄今已知的各种类型的层配置。正如以下所述,如果用于空穴传输层或者电子传输层的材料具有发光特性,例如可以使用这些薄膜的组合结构。并且,为了在满足本发明的目的的范围内提高电荷传输性,空穴传输层或电子传输层或者两者可以具有多种类型材料制成的薄膜的组合结构,或者可以使用多种类型材料的混合物构成的薄膜,对此并无限制。此外,为了改善发光特性,可以使用至少一种荧光材料来提供其中荧光材料薄膜夹在空穴传输层和电子传输层之间的结构。另外,可以使用其它类型结构,其中至少一种荧光材料存在于空穴传输层或电子传输层中,或者存在于两者之中。在这些情形下,为了改善发光效率,可以在层配置中引入用于控制空穴或电子传输的薄膜。
由结构式(4)表示的二苯乙烯基化合物具有电子传输性和空穴传输性,并且可以在器件配置中用作也起电子传输层作用的发光层,或者用作也起空穴传输层作用的发光层。此外,还可以提供其中二苯乙烯基化合物形成夹在电子传输层和空穴传输层之间的发光层的配置。
在图1和2中,可以注意到参考标号3表示阴极,电极材料可以由活性金属例如Li、Mg、Ca等和金属例如Ag、Al、In等的合金制成。另外,也可以采用这些金属的薄膜的组合结构。在透射式有机电致发光器件中,通过控制阴极厚度可以获得预计应用所需的光透射。图中,参考标号4表示密封/保护层,当有机电致发光器件被其整体覆盖时,其效果增大。对此可以使用适当材料,只要能够保证气密性即可。参考标号8表示用于加载电流的驱动电源。
在本发明的有机电致发光器件中,有机层可以具有如下的有机组合结构(单异质结构),其中设有空穴传输层和电子传输层,并且其中上述二苯乙烯基化合物用作形成空穴传输层或者电子传输层的材料。另外,有机层也可以具有如下有机组合结构(双异质结构),其中空穴传输层、发光层和电子传输层被依次形成,发光层由上述二苯乙烯基化合物形成。
本发明展示了具有这种有机组合结构的有机电致发光器件。更具体地讲,图3展示了具有由组合结构构成的单异质结构的有机电致发光器件C,在透光衬底1上,所述组合结构包括按如下顺序依次层叠的透光阳极2、由空穴传输层6和电子传输层7构成的有机层5a,和阴极3,用保护层4密封组合的层结构。
采用如图3所示层配置(其中省略了发光层),具有给定波长的发光20从空穴传输层6和电子传输层7之间的界面发射。从衬底1一侧观察到这种光。
图4展示了具有由组合结构构成的双异质结构的有机电致发光器件D,在透光衬底1上,所述组合结构包括按如下顺序依次层叠的透光阳极2、由空穴传输层10、发光层11和电子传输层12构成的有机层5b,和阴极3。用保护层4密封组合结构。
在如图4所示的有机电致发光器件D中,在阳极2和阴极3之间施加DC电压时,从阳极2注入的空穴借助空穴传输层10到达发光层11,从阴极3注入的电子借助电子传输层12也到达发光层11。最终,电子/空穴在发光层复合产生单态激子,从而导致从单态激子产生具有给定波长的光。
在上述有机电致发光器件C和D中,衬底1可以适当地采用透光材料,例如玻璃、塑料等。在该器件与其它类型显示器件组合使用时,或者在如图3和4所示组合结构配置成矩阵形式时,可以共同使用衬底。器件C和D两者均可具有透射式或者反射式的结构。
透明电极组成的阳极2可以采用ITO(氧化铟锡)、SnO2等。为了改善电荷注入效率,可以在阳极2和空穴传输层6(或者空穴传输层10)之间设置有机材料或者有机金属化合物制成的薄膜。应注意在保护层4由导体材料例如金属形成时,可以在阳极2一侧设置绝缘膜。
有机电致发光器件C的有机层5a由空穴传输层6和电子传输层7的组合有机层构成。上述二苯乙烯基化合物可以包含在这两层之一或者两者中,提供发光空穴传输层6或者电子传输层7。有机电致发光器件D的有机层5b由空穴传输层10、包含上述二苯乙烯基化合物的发光层11和电子传输层12的组合有机层构成。层5b可以采用其它类型的组合结构。例如,空穴传输层和电子传输层之一或者两者可以具有发光特性。
特别是,优选空穴传输层6或者电子传输层7以及发光层11分别由本发明所用的二苯乙烯基化合物制成的层构成。这些层可以仅由上述二苯乙烯基化合物形成,或者通过上述二苯乙烯基化合物和其它类型的空穴或电子传输材料(例如芳族胺、吡唑啉等)的共淀积形成。此外,为了改善空穴传输层中的空穴传输性,可以形成多种可以组合的空穴传输材料构成的空穴传输层。
在有机电致发光器件C中,发光层可以是电子传输发光层7。此时,根据从电源8施加的电压,光可以从空穴传输层6或者其界面发射。与此类似,在有机电致发光器件D中,发光层除了层11之外,还可以是电子传输层12或者空穴传输层10。为了改善发光性能,最好提供在空穴传输层和电子传输层之间夹置含至少一种荧光材料的发光层11的结构。另外,荧光材料可以包含在空穴传输层或者电子传输层中,或者包含在这两层中。在这方面,为了改善发光效率,可以在层配置中设置一层用于控制空穴传输或电子传输的薄膜(空穴阻挡层或者激子发生层)。
用作阴极3的材料可以是活性金属例如Li、Mg、Ca等和金属例如Ag、Al、In等的合金。另外,也可以使用这些金属的层的组合结构。适当选择阴极厚度和合金类型,能够制造适于其应用的有机电致发光器件。
保护层4起密封膜作用,配置成用其整体覆盖有机电致发光器件,从而确保提高电荷注入效率和发光效率。应注意,如果要保证气密性,则针对此目的可以适当地选择材料,包括单一金属例如铝、金、铬等及其合金。
施加于以上指出的各个有机电致发光器件的电流通常是直流电,但是也可以采用脉冲电流或者AC电流。电流值和电压值的要求并不严格,只要处于器件不被击穿的范围内即可。尽管如此,考虑到有机电致发光器件的功耗和寿命,最好使用尽可能小的电能来产生有效的发光。
接着,图5展示了平板显示器的配置,其中使用了本发明的有机电致发光器件。如图所示,例如在全色显示的情形中,能够产生红(R)、绿(G)和蓝(B)三原色发光的有机层5(5a、5b)配置在阴极3和阳极2之间。阴极3和阳极2可以设置成相互交叉的条状,利用亮度信号电路14和内置有移位寄存器的控制电路15适当选择,对其施加信号电压。结果,位于被选择的阴极3和阳极2的交叉位置(象素)的有机层发光。
更具体地讲,图5展示了例如8×3RGB简单矩阵,其中由空穴传输层,以及发光层和电子传输层至少之一组成的组合体5设置在阴极3和阳极2之间(见图3或4)。阴极和阳极按条状布图,在矩阵中相互交叉,按时间序列从内置有移位寄存器的控制电路15和14施加信号电压,从而在交叉位置产生电致发光或者光发射。具有这种配置的EL器件不仅可以用于字母/符号的显示,而且还可以用于图象再生设备。此外,阳极3和阴极2的条状图形可以配置以用于红(R)、绿(G)和蓝(B)色的每一种,由此可以制造多色或全色式的固态平板显示器。
通过实施例更具体地说明本发明,但本发明并不限于此。
实施例1
本例说明了使用下面结构式(4)-1表示的化合物作为空穴传输发光材料制备具有单异质结构的有机电致发光器件,结构式(4)-1表示其中的R2和R3分别代表3-甲氧苯基、R7和R11分别代表氰基的通式(1)的联苯乙烯化合物。
结构式(4)-1:
Figure C9911121500121
将30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的金属掩模,作为淀积掩模紧邻衬底放置。在10-4Pa或更低气压的真空状态下,将上面结构式(4)-1表示的化合物进行真空淀积,形成如50nm厚的空穴传输层(还充当发光层)。淀积速率是0.1nm/秒。
此外,提供下面结构式表示的Alq3[三(8-羟基喹啉)铝]作为电子传输材料,并与空穴传输层相接触进行淀积。例如将由Alq3制成的电子传输层的厚度设定为50nm,此时淀积速率是0.2nm/秒。
Alq3
Figure C9911121500131
使用作为阴极材料的Mg和Ag的细合膜。为此,Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成了如50nm厚度(Mg膜)和150nm厚度(Ag膜)的组合膜。以这种方式,就制成例1的如图3所示的有机电致发光器件。
通过在氮气氛围中,对例1中所制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后对器件进行光谱分析,结果如图6所示,得到在680nm处有发光峰值的光谱。使用Otuska ElectronicCo.Ltd制造的光谱仪进行光谱分析,同时用光电二极管阵列作为检测仪。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可以得到3000cd/m2亮度,已经在图10中特别示出。
完成有机电致发光器件的制作后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持一定值电流,以300cd/m2的初始亮度进行连续光发射,结果,在亮度降至一半之前经过1500小时。
实施例2
本例说明了使用下面结构式(4)-1表示的化合物作为电子传输发光材料制备具有单异质结构的有机电致发光器件。结构式(4)-1表示其中的R2和R3分别代表3-甲氧苯基,R7和R11分别代表氰基通式(1)的联苯乙烯化合物。
30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的金属掩模作为淀积掩模紧邻衬底放置。在10-4Pa或更低气压的真空状态下,将下面结构式表示的α-NPD(α-萘基苯二胺)进行真空淀积,形成如50nm厚的空穴传输层。淀积速率为0.1nm/秒。
α-NPD:
Figure C9911121500141
此外,结构式(4)-1表示的化合物作为电子传输材料,并与空穴传输层相接触进行淀积。将由结构式(4)-1表示的化合物构成的电子传输层(也充当发光层)的厚度设定为如50nm,此时淀积速率为0.2nm/秒。
使用作为阴极材料的Mg、Ag的组合膜。此时Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成例如50nm厚度(Mg膜)和150nm厚度(Ag膜)的组合膜。以这种方式,就制成例2的如图3所示的有机电致发光器件。
通过在氮气氛围中,对例2中制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后象例1一样对器件进行光谱分析,结果如图7所示,得到680nm处有发光峰值的光谱。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可得到2500cd/m2亮度,已在图11中特别表示出。
完成有机电致发光器件的制作以后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持给一定值电流,以300cd/m2的初始亮度进行连续光发射,结果,在亮度降至一半之前经过1000小时。
实施例3:
本例说明了使用下面结构式(4)-1表示的化合物作为发光材料制备具有双异质结构的有机电致发光器件,结构式(4)-1表示其中的R2和R3分别代表3-甲氧苯基,R7和R11分别代表氰基的通式(1)的联苯乙烯化合物。
将30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的金属掩模作为淀积掩模放置在衬底附近。在10-4Pa或更低气压的真空状态下,对前面提到的结构式表示的α-NPD进行真空淀积,形成如30nm厚的空穴传输层。淀积速率是0.2nm/秒。
此外,前面提到的结构式(4)-1表示的化合物作为发光材料,并与空穴传输层相接触进行淀积。将由结构式(4)-1表示的化合物构成的发光层的厚度设定为如30nm,此时淀积速率是0.2nm/秒。
将作为电子传输材料的Alq3与发光层相接触进行淀积。将Alq3层的厚度设定为30nm淀积速率为0.2nm/秒。
使用作为阴极材料的Mg、Ag的细合膜。Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成如50nm厚度(Mg膜)和150nm厚度(Ag膜)的组合膜。以这种方式,就制成例3中如图4所示的有机电致发光器件。
通过在氮气氛围中,对例3中制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后对器件进行光谱分析,结果得到680nm处有发光峰值的光谱。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可得到2500cd/m2亮度。
完成有机电致发光器件的制作以后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持一定值电流,以300cd/m2初始亮度进行连续光发射,结果,在亮度降至一半之前经过2200小时。
实施例4
本例重复例2中的层结构和膜形成步骤,只是用下面结构式表示的TPD(三苯基二胺衍生物)代替α-NPD作为空穴传输材料,从而制成一种有机电致发光器件。
Figure C9911121500161
本例的有机电致发光器件同例2一样呈现红色发光。光谱分析表明,光谱同例2中的有机电致发光器件的光谱一致。
实施例5
本例说明了使用下面结构式(4)-6表示的化合物作为空穴传输发光材料制备具有单异质结构的有机电致发光器件。结构式(4)-6表示其中的R20和R24分别代表氰基的通式(3)的联苯乙烯化合物。
结构式(4)-6:
Figure C9911121500162
将30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的金属掩模作为淀积掩模放置在衬底附近。在10-4Pa或更低气压的真空状态下,对上面结构式(4)-6表示的化合物进行真空淀积,形成如50nm厚的空穴传输层(还充当发光层)。淀积速率是0.1nm/秒。
此外,提供前面提到的结构式表示的Alq3[三(8-羟基喹啉)铝]作为电子传输材料,并与空穴传输层相接触进行淀积。将由Alq3制成的电子传输层的厚度设定为如50nm,此时淀积速率是0.2nm/秒。
使用作为阴极材料的Mg、Ag的组合膜。Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成如50nm厚度(Mg膜)和150nm厚度(Ag膜)的组合膜。以这种方式,就制成例5中如图3所示的有机电致发光器件。
通过在氮气氛围中,对例5中制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后对器件进行光谱分析,结果得到670nm处有发光峰值的光谱。使用Otuska Electronic Co.Ltd制造的光谱仪进行光谱测量,同时用光电二极管阵列作为检测仪。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可得到4000cd/m2亮度,已在图12中示出。
完成有机电致发光器件的制作以后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持一定值电流,以300cd/m2的初始亮度进行连续光发射,结果,在亮度降至一半之前经过2000小时。
实施例6
本例说明了使用下面结构式(4)-6表示的化合物作为电子传输发光材料制备具有单异质结构的有机电致发光器件。结构式(4)-6表示其中的R20和R24分别代表代表氰基的通式(3)的联苯乙烯化合物。
将30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的的金属掩模作为淀积掩模紧邻衬底放置。在10-4Pa或更低气压的真空状态下,对上面提到的结构式表示的α-NPD(α-萘基苯二胺)进行真空淀积,形成如50nm厚的空穴传输层。淀积速率为0.1nm/秒。
此外,结构式(4)-6表示的化合物作为电子传输材料,并与空穴传输层相接触进行淀积。将由结构式(4)-6表示的化合物构成的电子传输层(也充当发光层)的厚度设定为如50nm,此时淀积速率为0.2nm/秒。
使用作为阴极材料的Mg、Ag的组合膜。此时Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成如50nm厚度(Mg膜)和150nm厚度(Ag膜)的组合膜。以这种方式,就制成例6中如图3所示的有机电致发光器件。
通过在氮气氛围中,对例6中制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后象例1一样对器件进行光谱分析,结果如图9所示,得到670nm处有发光峰值的光谱。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可得到3500cd/m2亮度,已在图13中特别表示出。
完成有机电致发光器件的制作以后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持一定值电流,以300cd/m2的初始亮度进行连续光发射,结果,在亮度降至一半之前经过1500小时。
实施例7
本例说明了使用下面结构式(4)-6表示的化合物作为发光材料制备具有双异质结构的有机电致发光器件。结构式(4)-6表示其中的R20和R24分别代表氰基的通式(3)的联苯乙烯化合物。
将30mm×30mm玻璃衬底放置在真空淀积设备中,其中衬底的一面为ITO制成的100nm厚阳极。将一个具有许多2.0mm×2.0mm单元孔的的金属掩模作为淀积掩模放置在衬底附近。在10-4Pa或更低气压的真空状态下,对上面提到的结构式表示的α-NPD进行真空淀积,形成如30nm厚的空穴传输层。淀积速率为0.2nm/秒。
此外,上面提到的结构式(4)-6表示的化合物作为发光材料,并与空穴传输层相接触进行淀积。将由结构式(4)-6表示的化合物构成的发光层的厚度设定为如30nm,此时淀积速率为0.2nm/秒。
前面提到的结构式表示的Alq3作为电子传输材料,并与发光层相接触进行淀积。将Alq3的厚度设定为如30nm,此时淀积速率是0.2nm/秒。
使用作为阴极材料的Mg、Ag的组合膜。此时Mg和Ag分别以1nm/秒的淀积速率进行淀积,形成如50nm厚度(Mg膜)和150nm厚度(Ag膜)的结构膜。以这种方式,就制成例7中如图4所示的有机电致发光器件。
通过在氮气氛围中,对例7中制成的有机电致发光器件施加正偏直流电压来评估器件的发光特性。发光颜色是红色,然后对器件进行光谱分析,结果得到670nm处有发光峰值的光谱。此外,当对器件进行电压-亮度测量时,在电压为8伏时,可得到5000cd/m2亮度。
完成有机电致发光器件的制作以后,使该器件在氮气氛围中保持一个月,没有观察到器件老化。而且,当器件受到强制老化时,其中保持给一定值电流,以300cd/m2的初始亮度进行连续光发射,结果,在亮度降至一半之前经过2400小时。
实施例8
本例重复了例6中的层结构和膜形成步骤,只是用TPD(三苯基二胺衍生物)代替α-NPD作为空穴传输材料,从而制成一种有机电致发光器件。
本例的有机电致发光器件同例6一样呈现红色发光。光谱分析结果表明,光谱同例6中的有机电致发光器件的光谱一致。
根据本发明的有机电致发光器件,其中在阳极和阴极之间设置具有发光区的有机层,该有机层包括通式(1)或(3)表示的至少一种联苯乙烯化合物,从而提供了具有高亮度且能够保证稳定红色发光的有机电致发光器件。
从以上描述中可以明显看出本发明的目的已经达到。尽管仅列出一些具体的实施方案,对于本领域的技术人员来说,通过上述说明,其它的实施方案和各种变化是显然的。这些和其它实施方案被认为是等同的并且在本发明的范围和精神内。

Claims (4)

1.一种有机电致发光器件,包括:
阴极和阳极,
具有发光区并设置在阴极和阳极间的有机层,该有机层包括由下列通式(1)代表的至少一种联苯乙烯化合物:
通式(1):
Figure C991112150002C1
其中,R1,R2,R3和R4选自苯基和下面通式(2)代表的芳基:
通式(2)
Figure C991112150002C2
其中,R13,R14,R15,R16和R17选自氢原子、饱和烷氧基、不饱和烷氧基、饱和烷基、不饱和烷基,R5,R6,R7,R8,R9,R10,R11和R12选自氰基,硝基和卤素原子。
2.根据权利要求1的有机电致发光器件,其中所述有机层包括空穴传输层和电子传输层,该空穴传输层中含有所述联苯乙烯化合物。
3.根据权利要求1的有机电致发光器件,其中所述有机层包括空穴传输层和电子传输层,该电子传输层中含有所述联苯乙烯化合物。
4.根据权利要求1的有机电致发光器件,其中所述有机层包括空穴传输层、发光层和电子传输层,该发光层中含有所述联苯乙烯化合物。
CNB991112156A 1998-06-26 1999-06-25 有机电致发光器件 Expired - Fee Related CN100380701C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP180582/1998 1998-06-26
JP180582 1998-06-26
JP18058298A JP3820752B2 (ja) 1998-06-26 1998-06-26 有機電界発光素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100396876A Division CN100401526C (zh) 1998-06-26 1999-06-25 有机电致发光器件

Publications (2)

Publication Number Publication Date
CN1241893A CN1241893A (zh) 2000-01-19
CN100380701C true CN100380701C (zh) 2008-04-09

Family

ID=16085793

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100396876A Expired - Fee Related CN100401526C (zh) 1998-06-26 1999-06-25 有机电致发光器件
CNB991112156A Expired - Fee Related CN100380701C (zh) 1998-06-26 1999-06-25 有机电致发光器件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100396876A Expired - Fee Related CN100401526C (zh) 1998-06-26 1999-06-25 有机电致发光器件

Country Status (3)

Country Link
US (1) US6242116B1 (zh)
JP (1) JP3820752B2 (zh)
CN (2) CN100401526C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852518B2 (ja) * 1998-05-18 2006-11-29 ソニー株式会社 有機電界発光素子
TW463520B (en) * 1999-07-30 2001-11-11 Sony Corp Organic electroluminescent device
TW480896B (en) * 1999-07-30 2002-03-21 Sony Corp Organic electroluminescent device
JP4164717B2 (ja) * 1999-10-06 2008-10-15 ソニー株式会社 ビス(アミノスチリル)アントラセン化合物及びその合成中間体、並びにこれらの製造方法
JP2001288377A (ja) * 2000-04-06 2001-10-16 Sony Corp アミノスチリルアントラセン化合物及びその合成中間体、並びにこれらの製造方法
US6692326B2 (en) * 2001-06-16 2004-02-17 Cld, Inc. Method of making organic electroluminescent display
JP4161262B2 (ja) * 2002-06-26 2008-10-08 ソニー株式会社 有機電界発光素子、及びそれを用いた発光又は表示装置
JP4001118B2 (ja) 2003-03-24 2007-10-31 ソニー株式会社 有機電界発光素子及びアミノモノスチリルナフタレン化合物
CN101414667B (zh) * 2003-04-23 2010-06-09 柯尼卡美能达控股株式会社 有机电致发光元件和显示装置
ATE385251T1 (de) * 2003-07-10 2008-02-15 Merck Patent Gmbh Substituierte anthracene
KR101434632B1 (ko) * 2006-12-08 2014-08-27 에이전시 포 사이언스, 테크놀로지 앤드 리서치 아릴아민 화합물 및 전자 장치
JP4623166B2 (ja) 2008-08-25 2011-02-02 ソニー株式会社 標識化合物及びこれを用いた検出方法
CN106833619A (zh) * 2016-12-23 2017-06-13 成都新柯力化工科技有限公司 一种提高oled蓝色发光材料稳定性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188649A (ja) * 1993-11-18 1995-07-25 Fuji Electric Co Ltd 有機薄膜発光素子
JPH07216351A (ja) * 1994-01-28 1995-08-15 Fuji Electric Co Ltd 分散型el素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197120A (en) * 1975-12-29 1980-04-08 Eastman Kodak Company Electrophoretic migration imaging process
JPH061973A (ja) * 1992-06-18 1994-01-11 Konica Corp 有機エレクトロルミネッセンス素子
EP1056140B1 (en) * 1992-08-28 2005-07-06 Idemitsu Kosan Company Limited Charge injection auxiliary material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188649A (ja) * 1993-11-18 1995-07-25 Fuji Electric Co Ltd 有機薄膜発光素子
JPH07216351A (ja) * 1994-01-28 1995-08-15 Fuji Electric Co Ltd 分散型el素子

Also Published As

Publication number Publication date
US6242116B1 (en) 2001-06-05
CN1529538A (zh) 2004-09-15
JP3820752B2 (ja) 2006-09-13
CN100401526C (zh) 2008-07-09
CN1241893A (zh) 2000-01-19
JP2000012227A (ja) 2000-01-14

Similar Documents

Publication Publication Date Title
US7901795B2 (en) OLEDs doped with phosphorescent compounds
EP1289015B1 (en) Multicolor light emission apparatus and manufacturing method thereof
US6680131B1 (en) Organic electroluminescent device
US7255935B2 (en) Organic electroluminescent element and luminescent apparatus employing the same
WO2002047457A2 (en) Highly stable and efficient oleds with a phosphorescent-doped mixed layer architecture
EP1072668B1 (en) Organic electroluminescent device
CN100380701C (zh) 有机电致发光器件
US20040041751A1 (en) Method of driving electroluminescent device
CN100346494C (zh) 有机电致发光器件
US6410167B2 (en) Organic electroluminescent device
EP0967834B1 (en) Organic electroluminescent device
US6338910B1 (en) Organic electroluminescent device
US6228514B1 (en) Organic electroluminescent device
US6440585B2 (en) Organic electroluminescent device
WO2002022760A1 (en) Organic electro-luminescence device
US6555254B1 (en) Organic electroluminescent device
CN1242682A (zh) 有机电致发光器件
KR20000006490A (ko) 유기전계발광소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20100625