CA2829357A1 - Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application - Google Patents
Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application Download PDFInfo
- Publication number
- CA2829357A1 CA2829357A1 CA2829357A CA2829357A CA2829357A1 CA 2829357 A1 CA2829357 A1 CA 2829357A1 CA 2829357 A CA2829357 A CA 2829357A CA 2829357 A CA2829357 A CA 2829357A CA 2829357 A1 CA2829357 A1 CA 2829357A1
- Authority
- CA
- Canada
- Prior art keywords
- silicone
- group
- hydrogel film
- monomer
- hydrogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000008569 process Effects 0.000 title claims abstract description 15
- 230000007062 hydrolysis Effects 0.000 title abstract description 12
- 238000006460 hydrolysis reaction Methods 0.000 title abstract description 12
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 title description 16
- 239000010409 thin film Substances 0.000 title description 6
- 238000002360 preparation method Methods 0.000 title description 4
- 239000000017 hydrogel Substances 0.000 claims abstract description 88
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229920000642 polymer Polymers 0.000 claims abstract description 29
- 229920001577 copolymer Polymers 0.000 claims abstract description 18
- 125000001931 aliphatic group Chemical group 0.000 claims description 34
- 229920006395 saturated elastomer Polymers 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 24
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- 125000005842 heteroatom Chemical group 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 16
- -1 Hydroxycyclohexanyl Chemical group 0.000 claims description 12
- 150000002430 hydrocarbons Chemical group 0.000 claims description 12
- 125000005647 linker group Chemical group 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 11
- 229920000570 polyether Polymers 0.000 claims description 11
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 150000008282 halocarbons Chemical group 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 6
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical group CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 5
- UGSGCRBUIKFJSE-UHFFFAOYSA-N o-ethyl n-cyanocarbamothioate Chemical compound CCOC(=S)NC#N UGSGCRBUIKFJSE-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 claims description 4
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 claims description 4
- 229940124530 sulfonamide Drugs 0.000 claims description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 4
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical group FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 3
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- 239000004599 antimicrobial Substances 0.000 claims description 2
- 230000000975 bioactive effect Effects 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims description 2
- 239000003431 cross linking reagent Substances 0.000 claims description 2
- 239000003999 initiator Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 8
- 230000005855 radiation Effects 0.000 claims 7
- 125000002348 vinylic group Chemical group 0.000 claims 3
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 claims 2
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 claims 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims 2
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 claims 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 claims 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 claims 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 claims 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 claims 1
- NGXMPSHQTWLSBM-UHFFFAOYSA-N CC(=C)C(O)=O.CC(=C)C(O)=O.CC(=C)C(O)=O.O=C=CC(=C=O)C=C=O Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O.CC(=C)C(O)=O.O=C=CC(=C=O)C=C=O NGXMPSHQTWLSBM-UHFFFAOYSA-N 0.000 claims 1
- 239000004971 Cross linker Substances 0.000 claims 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims 1
- 239000006096 absorbing agent Substances 0.000 claims 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 claims 1
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical compound C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 claims 1
- 125000004093 cyano group Chemical group *C#N 0.000 claims 1
- 125000000524 functional group Chemical group 0.000 claims 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 claims 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims 1
- KYKIFKUTBWKKRE-UHFFFAOYSA-N n-ethenylpropan-2-amine Chemical compound CC(C)NC=C KYKIFKUTBWKKRE-UHFFFAOYSA-N 0.000 claims 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims 1
- 239000012454 non-polar solvent Substances 0.000 claims 1
- 239000002798 polar solvent Substances 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 125000005401 siloxanyl group Chemical group 0.000 claims 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 claims 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 46
- 239000001301 oxygen Substances 0.000 description 35
- 229910052760 oxygen Inorganic materials 0.000 description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 34
- 230000035699 permeability Effects 0.000 description 29
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 230000003301 hydrolyzing effect Effects 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000006459 hydrosilylation reaction Methods 0.000 description 4
- 229960004592 isopropanol Drugs 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- FTNHSYOSVXCLEF-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-(2-trimethylsilylethyl)silane Chemical compound C[SiH](C)O[Si](C)(C)CC[Si](C)(C)C FTNHSYOSVXCLEF-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000012633 leachable Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000096 monohydride Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- ZQTYRTSKQFQYPQ-UHFFFAOYSA-N trisiloxane Chemical compound [SiH3]O[SiH2]O[SiH3] ZQTYRTSKQFQYPQ-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- ZWAJLVLEBYIOTI-OLQVQODUSA-N (1s,6r)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCC[C@@H]2O[C@@H]21 ZWAJLVLEBYIOTI-OLQVQODUSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 description 1
- 101100439208 Caenorhabditis elegans cex-1 gene Proteins 0.000 description 1
- 206010015946 Eye irritation Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910007161 Si(CH3)3 Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 231100000013 eye irritation Toxicity 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 238000010002 mechanical finishing Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 210000003370 receptor cell Anatomy 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0834—Compounds having one or more O-Si linkage
- C07F7/0838—Compounds with one or more Si-O-Si sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/20—Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/38—Esters containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/102—Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
- C08L101/14—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/14—Water soluble or water swellable polymers, e.g. aqueous gels
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Eyeglasses (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Silicon Polymers (AREA)
- Materials For Medical Uses (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
There is provided new mono-(meth)acrylate functionalized silicone monomers containing carbosiloxane linkage for improved hydrolysis resistance, useful in making water absorbing silicone-hydrogel films for contact lens applications. This invention also provides homo-polymers and copolymers made from the mono-(meth)acrylate functionalized hydrophilic silicone monomers described herein. Also provided is a process for producing the monomers and polymers described herein and contact lenses produced from the same.
Description
SILOXANE MONOMERS CONTAINING HYDROLYSIS RESISTANCE
CARBOSILOXANE LINKAGE, PROCESS FOR THEIR PREPARATION AND THIN
FILMS CONTAINING THE SAME FOR CONTACT LENS APPLICATION
FIELD OF THE INVENTION
[0001] The present invention relates to mono-acrylate functional silicone monomers comprising hydrolytically stable carbosiloxane linkages and polymers thereof. The present invention is also directed to hydrogel compositions useful for the production of biomedical devices, particularly soft contact lenses characterized by high oxygen permeability, high water content, low protein denaturation behavior and strong resistance to hydrolysis across a range of pH and temperature ranges.
BACKGROUND OF THE INVENTION
[0002] Any publications or references discussed herein are presented to describe the background of the invention and to provide additional detail regarding its practice. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
CARBOSILOXANE LINKAGE, PROCESS FOR THEIR PREPARATION AND THIN
FILMS CONTAINING THE SAME FOR CONTACT LENS APPLICATION
FIELD OF THE INVENTION
[0001] The present invention relates to mono-acrylate functional silicone monomers comprising hydrolytically stable carbosiloxane linkages and polymers thereof. The present invention is also directed to hydrogel compositions useful for the production of biomedical devices, particularly soft contact lenses characterized by high oxygen permeability, high water content, low protein denaturation behavior and strong resistance to hydrolysis across a range of pH and temperature ranges.
BACKGROUND OF THE INVENTION
[0002] Any publications or references discussed herein are presented to describe the background of the invention and to provide additional detail regarding its practice. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
[0003] Silicone-hydrogel films are used to make extended wear soft contact lenses due to their high oxygen permeability, flexibility, comfort and reduced corneal complications. Conventional hydrogel materials (e.g. HEMA), by themselves have poor oxygen permeability and they transport oxygen to the eye through the absorbed water molecules. Water itself has a low Dk value (80 barrer). 1 Barrer = 10-11 (cm3 02) cm cm-2 s-1 mmHg-I where lcm3 02' is at a quantity of oxygen at standard temperature and pressure and where 'cm' represents the thickness of the material and cm-2 is the reciprocal of the surface area of that material. Lenses made from conventional hydrogel materials, upon exposure to atmospheric air for long periods, get slowly dehydrated and the amount of oxygen transported to the cornea is reduced, which leads to eye irritation, redness and other corneal complications, all of which restricttheir use for extended periods of wear.
[0004] Silico ne-hydrogels with the comfort of soft contact lenses and significantly higher oxygen permeability overcame these obstacles for extended wear and were revolutionary in the field of ophthalmic lenses. The following patents describe silicone-hydrogels for use in extended wear contacts all of which are incorporated herein in their entirety by reference. US Patents 4,954,587;
5,010,141;
5,079,319; 5,115,056; 5,260,000; 5,336,797; 5,358,995; 5,387,632; 5,451,617;
5,486,579 and 5,998,498.
[0005] US 3,808,178 claims compositions prepared by copolymerization of a poly-siloxanylalkyl acrylic ester and an alkyl acrylic ester for the production of contact lenses with increased oxygen permeability. The compositions disclosed (see Columns 2 and 3) have trisiloxane (Si-O-Si-O-Si) and siloxycarbo (Si-O-C) linkages, which are susceptible to hydrolysis in spite of the presence of sterically hindered groups attached to silicon.
5,079,319; 5,115,056; 5,260,000; 5,336,797; 5,358,995; 5,387,632; 5,451,617;
5,486,579 and 5,998,498.
[0005] US 3,808,178 claims compositions prepared by copolymerization of a poly-siloxanylalkyl acrylic ester and an alkyl acrylic ester for the production of contact lenses with increased oxygen permeability. The compositions disclosed (see Columns 2 and 3) have trisiloxane (Si-O-Si-O-Si) and siloxycarbo (Si-O-C) linkages, which are susceptible to hydrolysis in spite of the presence of sterically hindered groups attached to silicon.
[0006] The polymer obtained by copolymerizing 3-[tris(trimethylsiloxy)silyl]propyl methacrylate (usually abbreviated TRIS), [(CH3)3Si0]3Si(CH2)300CC(CH3)=CH2, and N,N-dimethylacrylamide, H2C=CHCON(CH3)2, is disclosed in US 5,358,995 and 5,387,632, both of which are incorporated herein in their entirety by reference, as a hydrogel composition useful for preparing ophthalmic lenses with good wettability and oxygen permeability. However, if a carboxylic acid such as methacrylic acid is included in the copolymerization to improve the water content of the product, the composition is gradually hydrolyzed and contact lenses made from it degrade when stored in aqueous media. US 3,377,371 and US 2008/0081894 Al, both of which are incorporated herein in their entirety by reference, disclose use of sterically hindered derivatives of TRIS to forestall this type of degradation. However, the continued presence of siloxycarbo (Si-O-C-) and/or trisiloxane (Si-O-Si-O-Si) units in the compositions makes them susceptible to hydrolysis. US 4,260,725 and US
4,259,467, both of which are incorporated herein in their entirety by reference, disclose hydrolytically stable contact lens comprising polysiloxane-containing hydrophilic side chains. The disclosed polysiloxane monomers are bifunctional in nature and have -Si-C linkages instead of -Si-O-C- bonds in terminal positions.
However, in the lens industry mono-functional monomers are preferred more than multi-functional monomers as they give better control of the modulus of the final lens material. The instant invention discloses mono-functional monomers comprising carbosiloxane linkages (for example, Si-CH2CH2-Si and Si-CH2-CH2-Si-O-Si) to avoid the material degradation problems attendant to hydrolysis, while at the same time providing better surface wettability and oxygen permeability to films, lenses and other objects made from said monomers.
4,259,467, both of which are incorporated herein in their entirety by reference, disclose hydrolytically stable contact lens comprising polysiloxane-containing hydrophilic side chains. The disclosed polysiloxane monomers are bifunctional in nature and have -Si-C linkages instead of -Si-O-C- bonds in terminal positions.
However, in the lens industry mono-functional monomers are preferred more than multi-functional monomers as they give better control of the modulus of the final lens material. The instant invention discloses mono-functional monomers comprising carbosiloxane linkages (for example, Si-CH2CH2-Si and Si-CH2-CH2-Si-O-Si) to avoid the material degradation problems attendant to hydrolysis, while at the same time providing better surface wettability and oxygen permeability to films, lenses and other objects made from said monomers.
[0007] Carbosiloxanes contain both the ¨Si(CHR)x-Si- and ¨Si-O-Si-functionalities. R is hydrogen or a hydrocarbyl group such as an alkyl, cycloalkyl or aryl group. The subscript x is an integer greater than or equal to 1. Use of carbosiloxanes to impart hydrolysis resistance to surfactants in agricultural and other topical formulations is disclosed in US 7,700,797 B2 and 7,507,775 B2, both of which are incorporated herein in their entirety by reference. The instant invention discloses the acrylate and methacrylated carbosiloxane monomers, having improved hydrolysis resistance, that can be copolymerized with unsaturated hydrophilic monomers, such as N-vinyl pyrrolidone and N,N-dimethylacrylamide, to produce silicone hydrogels suitable for ophthalmic lenses.
[0008] In their study of gas permeability through silicone polymer membranes, Stern, et al (J. Polymer Science Part 6: Polymer Physics 25 (1987) 1263 ¨
1298) reported that substitution of methyl groups by bulky groups (e.g., ethyl, isopropyl, butyl, hexyl) on the silicone backbone, or the replacement of siloxane (-SiOSi-) linkage by carbosilane (-Si(CH2)õSi-) linkage resulted in reduced oxygen permeability. Based on Stern et al report, one would expect the oxygen permeability to get reduced when siloxane linkage (-Si-O-Si) is replaced by carbosiloxane linkage (-Si(CH2)Si-) in the backbone chain. Surprisingly, the silicone hydrogel film produced using the carbosiloxane monomer of the current invention showed improved oxygen permeability in comparison to the corresponding siloxane monomer having conventional siloxane linkage.
1298) reported that substitution of methyl groups by bulky groups (e.g., ethyl, isopropyl, butyl, hexyl) on the silicone backbone, or the replacement of siloxane (-SiOSi-) linkage by carbosilane (-Si(CH2)õSi-) linkage resulted in reduced oxygen permeability. Based on Stern et al report, one would expect the oxygen permeability to get reduced when siloxane linkage (-Si-O-Si) is replaced by carbosiloxane linkage (-Si(CH2)Si-) in the backbone chain. Surprisingly, the silicone hydrogel film produced using the carbosiloxane monomer of the current invention showed improved oxygen permeability in comparison to the corresponding siloxane monomer having conventional siloxane linkage.
[0009] The instant invention provides carbosiloxane monomers and polymers derived there from that satisfy the deficiencies that exist in current state-of-the-art products and technologies.
SUMMARY OF THE INVENTION
SUMMARY OF THE INVENTION
[00010] An object of the present invention is to provide a silicone monomer having the following general formulae (I):
(R1R2R3)si _,Iii_ [si(R4R5)(y2)ja _ si(R6R7) _ z (I) wherein a is 0 to about 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms; Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a divalent hetero atom;
R1, R2, R3, R4, R5, R6, and R7 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons, ¨Y2-Si(R8R6R16) and A, wherein R6R9R1 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Z has the following general formulae (II) - R11 - B - X (II) wherein R11 is a linear or branched, divalent alkyl linking group having 0 to about 20 carbon atoms; B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms; and X is acrylamide or a polymerizable group having the following general formula (Ill) R12 (Ill) wherein R12, R13, and R14 is hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons.
(R1R2R3)si _,Iii_ [si(R4R5)(y2)ja _ si(R6R7) _ z (I) wherein a is 0 to about 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms; Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a divalent hetero atom;
R1, R2, R3, R4, R5, R6, and R7 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons, ¨Y2-Si(R8R6R16) and A, wherein R6R9R1 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Z has the following general formulae (II) - R11 - B - X (II) wherein R11 is a linear or branched, divalent alkyl linking group having 0 to about 20 carbon atoms; B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms; and X is acrylamide or a polymerizable group having the following general formula (Ill) R12 (Ill) wherein R12, R13, and R14 is hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons.
[00011] Another object of the present invention is to provide homo and copolymers derived from the described monomers and silicone hydrogels containing the same.
[00012] Still another object of the present invention is to provide soft, flexible, transparent, water absorbing, inherently wettable and better oxygen permeable contact lens comprising the silicone-hydrogel film of the present invention.
[00013] Still yet another object of the present invention is to a process for producing a silicone monomer having the general following formulae (IV):
(R1R2R3)Si ¨Y1- [Si(R4R5)(y2)]a _ si(R6R7) H (IV) wherein a is 0 to 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms; Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a divalent hetero atom; R1, R2, R3, R4, R5, Rs, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons, ¨Y2-Si(R8R9R10) and A, wherein R8R9R1 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or cycloaromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms; This is reacted with terminally unsaturated group having the general formula (V):
R15 - B ¨ M (V) wherein R15 is selected from the group consisting of linear or branched unsaturated alkyl groups having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms,. "A" and "B"
comprises functionalities selected from the group consisting of alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, thio, urethane, urea, sulfonate, sulphonamide, phosphate and combinations thereof. "M" in formulae V is selected from the group consisting of hydroxyl, halogen, epoxy and carboxylic acid group to produce functionalized carbosiloxane. Once the functionalized carbosiloxane is produced it is reacted with an alkylacryloyl compound having the following formula (VI):
R13.--G
(VI) wherein G is selected from the group consisting of a halogen, hydroxyl and alkyloxy having 1 to about 10 carbon atoms and R12, R13 and R14 is independently selected from the group consisting of hydrogen, substituted saturated monovalent hydrocarbons having 1 to about 20 carbons and unsubstituted saturated monovalent hydrocarbons having 1 to about 20 carbons to produce said silicone monomer set forth herein above.
(R1R2R3)Si ¨Y1- [Si(R4R5)(y2)]a _ si(R6R7) H (IV) wherein a is 0 to 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms; Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a divalent hetero atom; R1, R2, R3, R4, R5, Rs, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons, ¨Y2-Si(R8R9R10) and A, wherein R8R9R1 are independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or cycloaromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms; This is reacted with terminally unsaturated group having the general formula (V):
R15 - B ¨ M (V) wherein R15 is selected from the group consisting of linear or branched unsaturated alkyl groups having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms,. "A" and "B"
comprises functionalities selected from the group consisting of alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, thio, urethane, urea, sulfonate, sulphonamide, phosphate and combinations thereof. "M" in formulae V is selected from the group consisting of hydroxyl, halogen, epoxy and carboxylic acid group to produce functionalized carbosiloxane. Once the functionalized carbosiloxane is produced it is reacted with an alkylacryloyl compound having the following formula (VI):
R13.--G
(VI) wherein G is selected from the group consisting of a halogen, hydroxyl and alkyloxy having 1 to about 10 carbon atoms and R12, R13 and R14 is independently selected from the group consisting of hydrogen, substituted saturated monovalent hydrocarbons having 1 to about 20 carbons and unsubstituted saturated monovalent hydrocarbons having 1 to about 20 carbons to produce said silicone monomer set forth herein above.
[00014] The present invention is further described in the detailed description section including the examples provided below.
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE INVENTION
[00015] In accordance with the present invention, mono- acrylate and methacrylate functionalized carbosiloxane monomers that are non-bulky, show improved hydrolysis resistance and useful for preparing silicone-hydrogel films for contact lens applications are disclosed. Carbosiloxane monomer of the present invention showed improved hydrolysis resistance under acidic and basic pH
conditions in comparison to the corresponding conventional siloxane monomers.
Silicone hydrogel films obtained with these monomers also showed better oxygen permeability, surface wettability and low modulus in comparison to films of the corresponding conventional siloxane monomers.
conditions in comparison to the corresponding conventional siloxane monomers.
Silicone hydrogel films obtained with these monomers also showed better oxygen permeability, surface wettability and low modulus in comparison to films of the corresponding conventional siloxane monomers.
[00016] In the present invention, the monomers disclosed have a carbosilane linkage, -Si-(CH2)õ-Si-, which makes it possible to produce hydrolytically stable (hydrolysis resistance) monomers and polymers. It also produces silicone hydrogel film with improved oxygen permeability in comparison to corresponding conventional siloxane monomer.
[00017] The silicone ¨ hydrogel film of the present invention also provides better surface wettability without any secondary surface treatment, like plasma oxidation or plasma coating, or internal wetting agents. That is, the contact lenses produced from silicone-hydrogel films of the present invention, without secondary treatment, are soft, flexible and inherently wettable with high oxygen permeability.
The monomers of the present invention also allow for miscibility with hydrophilic organic comonomers without the need for any solvent and the silicone hydrogels thus produced are transparent in entire range of compositions.
The monomers of the present invention also allow for miscibility with hydrophilic organic comonomers without the need for any solvent and the silicone hydrogels thus produced are transparent in entire range of compositions.
[00018] As used herein, "homopolymers" are polymers made from the same repeating monomer and 'copolymers" are polymers wherein the polymer contains at least two structurally different monomers. Notations such as (meth)acrylate denote monomer with either acrylate or methacrylate functionality.
[00019] Also, as used in the specification and including the appended claims, the singular forms "a," "an," and "the" include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise.
[00020] Ranges may be expressed herein as from "about" or "approximately"
one particular value and/or to "about" or "approximately" another particular value.
When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment.
one particular value and/or to "about" or "approximately" another particular value.
When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment.
[00021] All methods described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
[00022] As used herein, "comprising," "including," "containing,"
"characterized by," and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps, but will also be understood to include the more restrictive terms "consisting of" and "consisting essentially of."
"characterized by," and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps, but will also be understood to include the more restrictive terms "consisting of" and "consisting essentially of."
[00023] The monomers of the present invention can be used to obtain cured elastomer sheets with desirable physical strength and resistance to tearing after absorption of water. The (meth)acrylate functionalized silicone monomers/polymers of the present invention and their preparation and use in contact lens are further described in the sections below.
[00024] The present invention also provides silicone-hydrogel compositions comprising (meth)acrylated carbosiloxane monomers and conventional monomers such as HEMA or other contact lens monomers to produce soft, flexible water absorbing films. The homo and copolymers of the present invention are clear (no haze from poor miscibility) polymers that absorb water, have excellent surface wettability and oxygen permeability, which are necessary for the better comfort and good health of the human cornea. The present invention also provides contact lenses made from the silicone-hydrogel films of the claimed invention. These embodiments are further described below.
[00025] The silicone monomers having carbosilane linkage, -Si-(CH2),-Si-, produced in the current invention may be used to form homo/copolymers that produce hydrolytically stable silicone-hydrogel films. The film shows inherent wettability and better oxygen permeability in comparison to films with conventional siloxane monomers. The contact lenses produced from the silicone-hydrogel films of the present invention do not require any expensive secondary treatments, like plasma oxidation or plasma coating, or internal wetting agents to improve wettability.
That is, the contact lenses produced from silicone-hydrogel films of the present invention, without secondary treatment, are soft, flexible and inherently wettable with high oxygen permeability.
That is, the contact lenses produced from silicone-hydrogel films of the present invention, without secondary treatment, are soft, flexible and inherently wettable with high oxygen permeability.
[00026] The mono- acrylate functional carbosiloxane monomers of the present invention have the general structure shown in formula (I):
(R1R2R3)si _y_ Esi(R4R5)(y2-._ )1 Si(R6R7) - Z (I) [00027] One of the preferred variants of the formula (I) of the present invention is the mono acrylate functional monomer having the general formula as shown below.
R2 _ R4 _ R6 R1¨Si ......õ-Si.,...
R3 -R5 J a R7 wherein a is 0 to 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms, and Y2 can be the same as 1/1 or a hetero atom such as nitrogen, oxygen or sulfur. R1 to R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 i carbons. R1-R7 can also be independently selected from _y2_si(R8R9Ro) and A, where R8 to R1 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons. A can be a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of, substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and optionally contains hetero atoms. Preferably, A
comprises functionalities such as alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonate, sulphonamide, phosphate and their combinations.
Z in the above structure can have the general formula (II) shown below _ Ril _ B _ x (II) wherein R11 is a linear or branched, divalent alkyl linking group having about 0 to about 20 carbon atoms.
B in general formula (II) is a divalent moiety selected from the group consisting of, substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Preferably, B comprises functionalities such as alcohols, ethers, esters, amides, amines, acids and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonates, sulphonamides, phosphates and their combinations.
In particular, some of the representative functionalities for B are shown below:
-0-(C2H4O)p - (C3H60)q ¨ (C4H80)r ¨0-Polyether wherein p and q are independently 0 to about 100; r is 0 to about 50 and (p +q + r) is greater than 0, ( __________ OH
________ 2 Hydroxycyclohexanyl, OH
¨CH2¨C H¨CH2¨
Hydroxypropanyl, ll NH¨C¨O ___________________________ CH2¨OH2¨
Urethane, o ¨HN ¨C ¨N H¨
Urea, ¨o¨c¨ NH 4cH2-)¨NH¨C¨ NH ¨
Urea and urethane, ¨o¨c-0¨
Carbonate, and ,, o ,¨
Carbamate, X is acrylamide or a polymerizable group having the general formula (III) II I
-0 c R13 I
(III) wherein R12 to R14 can be selected from hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons.
(R1R2R3)si _y_ Esi(R4R5)(y2-._ )1 Si(R6R7) - Z (I) [00027] One of the preferred variants of the formula (I) of the present invention is the mono acrylate functional monomer having the general formula as shown below.
R2 _ R4 _ R6 R1¨Si ......õ-Si.,...
R3 -R5 J a R7 wherein a is 0 to 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms, and Y2 can be the same as 1/1 or a hetero atom such as nitrogen, oxygen or sulfur. R1 to R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 i carbons. R1-R7 can also be independently selected from _y2_si(R8R9Ro) and A, where R8 to R1 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons. A can be a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of, substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and optionally contains hetero atoms. Preferably, A
comprises functionalities such as alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonate, sulphonamide, phosphate and their combinations.
Z in the above structure can have the general formula (II) shown below _ Ril _ B _ x (II) wherein R11 is a linear or branched, divalent alkyl linking group having about 0 to about 20 carbon atoms.
B in general formula (II) is a divalent moiety selected from the group consisting of, substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Preferably, B comprises functionalities such as alcohols, ethers, esters, amides, amines, acids and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonates, sulphonamides, phosphates and their combinations.
In particular, some of the representative functionalities for B are shown below:
-0-(C2H4O)p - (C3H60)q ¨ (C4H80)r ¨0-Polyether wherein p and q are independently 0 to about 100; r is 0 to about 50 and (p +q + r) is greater than 0, ( __________ OH
________ 2 Hydroxycyclohexanyl, OH
¨CH2¨C H¨CH2¨
Hydroxypropanyl, ll NH¨C¨O ___________________________ CH2¨OH2¨
Urethane, o ¨HN ¨C ¨N H¨
Urea, ¨o¨c¨ NH 4cH2-)¨NH¨C¨ NH ¨
Urea and urethane, ¨o¨c-0¨
Carbonate, and ,, o ,¨
Carbamate, X is acrylamide or a polymerizable group having the general formula (III) II I
-0 c R13 I
(III) wherein R12 to R14 can be selected from hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons.
[00028]
The present invention is also directed to polymers formed by the reaction products of the monomers provided herein. These polymers may be homopolymers of one of the monomers of the present invention or copolymers of two structurally different silicone monomers of the present invention, and/or copolymers of one or more silicone monomers of the present invention and at least one other hydrophilic unsaturated organic monomers suitable for use in silicone hydrogels, with preferred non-limiting examples of such being N,N-dimethylacrylamide, 2-hydroxy-ethyl-methacrylate (HEMA), N-vinylpyrrolidone, and methacrylic acid. In such copolymers, the ratio of the silicone monomers of the present invention to the other hydrophilic unsaturated organic monomers is from about 1:100 to about 100:1 and preferably from about 20:80 to about 90:10 and more preferably from about 30:70 to about 80:20.
The present invention is also directed to polymers formed by the reaction products of the monomers provided herein. These polymers may be homopolymers of one of the monomers of the present invention or copolymers of two structurally different silicone monomers of the present invention, and/or copolymers of one or more silicone monomers of the present invention and at least one other hydrophilic unsaturated organic monomers suitable for use in silicone hydrogels, with preferred non-limiting examples of such being N,N-dimethylacrylamide, 2-hydroxy-ethyl-methacrylate (HEMA), N-vinylpyrrolidone, and methacrylic acid. In such copolymers, the ratio of the silicone monomers of the present invention to the other hydrophilic unsaturated organic monomers is from about 1:100 to about 100:1 and preferably from about 20:80 to about 90:10 and more preferably from about 30:70 to about 80:20.
[00029]
The unsaturated organic monomers and the carbosiloxane monomers of this invention are mutually miscible and form homogeneous mixtures. The use of compatibilizing solvents is not necessary. The carbosiloxane monomers of this invention are also either water-soluble or water- dispersible.
Water-soluble carbosiloxane monomers are miscible with water to yield homogeneous solutions.
Water-dispersible carbosiloxane monomers do not dissolve completely in water.
Cloudiness, haze, colloid formation and similar visible signs of heterogeneity in the aqueous mixture are indicative of dispersion rather than solution. Both water solubility and water dispersibility are desirable features of the carbosiloxane monomers of the instant invention. When the carbosiloxane monomers contain a methacrylated ethoxylated polyether segment, water dispersibility is observed when the polyether content is less than about 60 weight percent of the total molecular weight, and water solubility when the polyether segment is greater than about weight percent.
The unsaturated organic monomers and the carbosiloxane monomers of this invention are mutually miscible and form homogeneous mixtures. The use of compatibilizing solvents is not necessary. The carbosiloxane monomers of this invention are also either water-soluble or water- dispersible.
Water-soluble carbosiloxane monomers are miscible with water to yield homogeneous solutions.
Water-dispersible carbosiloxane monomers do not dissolve completely in water.
Cloudiness, haze, colloid formation and similar visible signs of heterogeneity in the aqueous mixture are indicative of dispersion rather than solution. Both water solubility and water dispersibility are desirable features of the carbosiloxane monomers of the instant invention. When the carbosiloxane monomers contain a methacrylated ethoxylated polyether segment, water dispersibility is observed when the polyether content is less than about 60 weight percent of the total molecular weight, and water solubility when the polyether segment is greater than about weight percent.
[00030] To form polymers using the monomers of the present invention, the desired monomers are mixed and the resulting mixture is polymerized and cured to form transparent thin films by known thermal techniques using free radical or cationic or anionic initiators and UV cure techniques using photoinitiators in the presence of crosslinking agents. The monomers added to the reaction mixture to form the polymers may be monomers or prepolymers. A "prepolymer" is a reaction intermediate polymer of medium molecular weight having polymerizable groups.
Thus, it is understood that the terms "silicone-containing monomers" and "hydrophilic monomers" include prepolymers. The present invention is also directed to silicone hydrogel films comprising the homopolymers or copolymers detailed above.
Thus, it is understood that the terms "silicone-containing monomers" and "hydrophilic monomers" include prepolymers. The present invention is also directed to silicone hydrogel films comprising the homopolymers or copolymers detailed above.
[00031] One preferred variant of silicone monomer from structure (I) of the present invention has the following formula - -a wherein B is a divalent polyether as shown in the representative example with p is 0 to about 100, preferably 2 to about 15, more preferably about 8, and q and r equals to 0; Y1 is a divalent alkyl-linking group of about 1 to 10 carbons, preferably 1 to about 5 carbons, more preferably about 2 carbons. Y2 is a combination of divalent heteroatom and divalent alkyl group and X is polymerizable methacrylate group.
a is 0 to about 100, more preferably 0 to 20 inclusive, and even more preferably 1.
Each of the R groups in the general monomer structure (I) is a monovalent alkyl-linking group, preferably a methyl group. R1 to R7 can also be selected from ¨Y2-Si(R8R8R10) and A.
a is 0 to about 100, more preferably 0 to 20 inclusive, and even more preferably 1.
Each of the R groups in the general monomer structure (I) is a monovalent alkyl-linking group, preferably a methyl group. R1 to R7 can also be selected from ¨Y2-Si(R8R8R10) and A.
[00032] Another preferred variant of silicone monomer from structure (I) of the present invention has the following formula OH
_ I _ I
II
.......õ...o.......CH2 ¨Si 1 SI i srY' I i 111 0 0 1 ¨ ¨a wherein B is a divalent hydroxyl containing cycloaliphatic ring; X is polymerizable methacrylate group, a is 0 to about 100, more preferably 0 to about 20 inclusive, and even more preferably 1. Y1 is a divalent alkyl-linking group of about 1 to 10 carbons, preferably 1 to about 5 carbons, more preferably about 2 carbons. Y2 is a combination of divalent heteroatom and divalent alkyl group. Each of the R
groups in the general monomer structure (I) is a monovalent alkyl-linking group, preferably a methyl group. R1 to R7 can also be selected from ¨Y2-Si(R8R8R10) and A.
_ I _ I
II
.......õ...o.......CH2 ¨Si 1 SI i srY' I i 111 0 0 1 ¨ ¨a wherein B is a divalent hydroxyl containing cycloaliphatic ring; X is polymerizable methacrylate group, a is 0 to about 100, more preferably 0 to about 20 inclusive, and even more preferably 1. Y1 is a divalent alkyl-linking group of about 1 to 10 carbons, preferably 1 to about 5 carbons, more preferably about 2 carbons. Y2 is a combination of divalent heteroatom and divalent alkyl group. Each of the R
groups in the general monomer structure (I) is a monovalent alkyl-linking group, preferably a methyl group. R1 to R7 can also be selected from ¨Y2-Si(R8R8R10) and A.
[00033] Another preferred variant of silicone monomer from structure (I) of the present invention has the following formula - I - sIioc cH2 ¨lislic/1 I- -a CH3 wherein B is a divalent alkyl group; X is polymerizable methacrylate group, a is 0 to about 100, more preferably 0 to about 20 inclusive, and even more preferably 1. Y1 is a divalent alkyl-linking group of about 1 to 10 carbons, preferably 1 to about 5 carbons, more preferably about 2 carbons. Y2 is a combination of divalent heteroatom and divalent alkyl group. Each of the R groups in the general monomer structure (I) is a monovalent alkyl-linking group, preferably a methyl group.
R1 to R7 can also be selected from ¨Y2-Si(R5R9R10) and A.
R1 to R7 can also be selected from ¨Y2-Si(R5R9R10) and A.
[00034] Another embodiment of the present invention is directed to a process for producing the described silicone monomers comprising chemically reacting a silicone-containing compound having the general formula shown below (R1R2R3)si __),1_ [si(R4R5)(y2)]._ si(R6R7) _ H (I) wherein a is 0 to 100; Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms, and Y2 can be Y1 or a divalent hetero atom. R1 to R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons. Also, R1-R7 can be ¨Y2-Si(R5R9R10) and A, wherein R5 to R1 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic hydrocarbon groups of 1 to about 10 carbons and halogenated hydrocarbon groups of 1 to about 10 carbons. A can be a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of, substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and optionally contains hetero atoms. Once produced it is reacted with terminally unsaturated group having the general formula as shown below (II) R15- B ¨ M (II) wherein R15 is a linear or branched unsaturated alkyl group having about 0 to about 20 carbon atoms, B is divalent moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Preferably, B comprises functionalities such as alcohols, ethers, esters, amides, amines, acids and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonates, sulphonamides, phosphates and their combinations. M can be hydroxyl or halogen or epoxy or carboxylic acid group.
Preferably, B comprises functionalities such as alcohols, ethers, esters, amides, amines, acids and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonates, sulphonamides, phosphates and their combinations. M can be hydroxyl or halogen or epoxy or carboxylic acid group.
[00035] Once the functionalized carbosiloxane is produced it is reacted with an alkylacryloyl compound having the general formula (IV).
R13--../G
(IV) wherein G can be a halogen or hydroxyl or alkyloxy having 1 to 10 carbon atoms.
R12 to R14 can be selected from hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons to produce said silicone monomer. The reaction of the functionalized carbosiloxane with alkylacryloyl compound having the general formula (IV) can be carried out in the presence of a tertiary amine base or basic ion-exchange resin (IER) or azeotrope forming solvent or reactant. The azeotrope forming solvent can be selected from hexane, heptane, toluene etc. and the reactant such as methylmethacrylate under the inert reaction conditions.
R13--../G
(IV) wherein G can be a halogen or hydroxyl or alkyloxy having 1 to 10 carbon atoms.
R12 to R14 can be selected from hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon group of 1 to about 20 carbons to produce said silicone monomer. The reaction of the functionalized carbosiloxane with alkylacryloyl compound having the general formula (IV) can be carried out in the presence of a tertiary amine base or basic ion-exchange resin (IER) or azeotrope forming solvent or reactant. The azeotrope forming solvent can be selected from hexane, heptane, toluene etc. and the reactant such as methylmethacrylate under the inert reaction conditions.
[00036] In another embodiment, the monomer of the present invention can be used to form silicone-hydrogels for contact lens applications, via processes known in the art. Accordingly, the present invention is also directed to contact lenses produced from either homo or copolymers of the present invention. The monomers/polymers of the present invention can be formed into contact lenses by spin casting processes, as disclosed in U.S. Pat. Nos. 3,408,429 and 3,496,254, cast molding processes, as disclosed in U.S. Pat Nos. 4,084,459 and 4,197,266, combinations of methods thereof, or any other known method for making contact lenses in which all of the aforementioned references are incorporated herein.
Polymerization may be conducted either in a spinning mold, or a stationary mold corresponding to a desired contact lens shape and thickness. The lens may be further subjected to mechanical finishing, as occasion demands. Polymerization may also be conducted in an appropriate mold or vessel to form buttons, plates or rods, which may then be processed (e.g., cut or polished via lathe or laser) to give a contact lens having a desired shape.
Polymerization may be conducted either in a spinning mold, or a stationary mold corresponding to a desired contact lens shape and thickness. The lens may be further subjected to mechanical finishing, as occasion demands. Polymerization may also be conducted in an appropriate mold or vessel to form buttons, plates or rods, which may then be processed (e.g., cut or polished via lathe or laser) to give a contact lens having a desired shape.
[00037] In another embodiment, the silicone hydrogel compositions of the present invention form clear, transparent homogeneous single-phase solution that can be cured directly without employing any compatibilizing solvents.
Conventional silicone-hydrogel films are generally produced by curing a mixture of hydrophobic silicone monomers and hydrophilic hydrogel monomers in the presence of about to 40 wt.% of solvent, as they are incompatible with each other. However in the current invention, the inventive methacrylated carbosiloxane monomers are found to be miscible with conventional hydrophilic hydrogel monomers (such as HEMA) and can form homogeneous solutions suitable to produce silicone-hydrogel films without employing any solvent.
Conventional silicone-hydrogel films are generally produced by curing a mixture of hydrophobic silicone monomers and hydrophilic hydrogel monomers in the presence of about to 40 wt.% of solvent, as they are incompatible with each other. However in the current invention, the inventive methacrylated carbosiloxane monomers are found to be miscible with conventional hydrophilic hydrogel monomers (such as HEMA) and can form homogeneous solutions suitable to produce silicone-hydrogel films without employing any solvent.
[00038] In another embodiment, the silicone hydrogel composition of the present invention can be cured to form silicone-hydrogels for contact lens applications using moulds that have either hydrophilic or hydrophobic surfaces and their combinations. The silicone hydrogel film made from the inventive monomers can be released from the mould and purified from the leachable using either water or organic solvents, such as isopropyl alcohol, or the combinations of water and organic solvents.
[00039] In another embodiment of the present invention, the silicone-hydrogel films of the present invention are soft, flexible, and highly transparent and water absorbing. Silicone-hydrogel films made from the inventive monomers exhibit better hydrolytic stability with better oxygen permeability compared to ones made using conventional silicone monomers. The present silicone hydrogel films were found to have dynamic contact angles with water, less than 80 and absorb about 10 to about 70 wt.% of water, which can vary depending on the silicone hydrogel composition.
The silicone hydrogels produced were also found to have good mechanical properties required for the contact lens application.
The silicone hydrogels produced were also found to have good mechanical properties required for the contact lens application.
[00040] In another embodiment, the carbosiloxane monomers of the present invention show better hydrolytic stability under acidic and basic conditions in comparison to the corresponding siloxanes.
[00041] The polymers of the present invention may also contain ultraviolet absorbents, antimicrobial agents, pigments, colorants and bioactive molecules in the form of additives or comonomers.
[00042] As stated above, the silicone-hydrogels of the present invention are oxygen transporting with improved surface wettable properties when compared to silicone monomers having bulky alkyl groups. The monomers and prepolymers employed in accordance with this invention are readily polymerized to form three-dimensional networks, which permit the transport of oxygen with improved wettability along with better mechanicals and optical clarity.
[00043] Specific use of the films include intraocular contact lenses, artificial corneas, daily disposable and extended wearable contact lenses or as coatings for biomedical devices.
EXAMPLES
EXAMPLES
[00044] The following examples are illustrative only and should not be construed as limiting the invention, which is properly delineated in the appended claims. Carbosiloxane monomers having different hydrophilic moieties with polymerizable functionality were produced. The hydrolytic stability of these novel monomers were measured under basic, neutral and acidic pH conditions and showed improved hydrolytic stability compared to conventional silicone monomers with same functionality. The carbosiloxane monomers were further copolymerized with conventional hydrogel monomers or mixtures thereof with different weight ratios to produce silicone hydrogel films. The films obtained with monomers of the current invention were also found to have better oxygen permeability, inherent wettability and lower modulus that are key for the contact lens application.
[00045] The silicone-hydrogel films produced were evaluated for lens properties using the following methods.
(1) Equilibrium Water Content [00046] The film was immersed in deionized water for 48 hours then the surface water was wiped off gently using lintless tissue paper. The hydrated film was weighed precisely and then dried in an oven at 37 C for 48 hours and weighed again for dry weight. Water content was calculated based on weight change using the following equation.
Weight of hydrated lens - Weight of dry lens % Water content =x 100 Weight of hydrated lens (2) Water wettability [00047] Water wettability of the film surface was evaluated by measuring contact angle using a captive air bubble method with a Rame Hart NRL C.A.
goniometer. In the captive bubble method, to better simulate the on eye conditions, an air bubble injected from a syringe is brought into contact with the film immersed in milli-Q water and the contact angle is then measured. Lower contact angle values represent a greater degree of hydrophilicity or better surface wettability of the film.
(3) Oxygen Permeability (Dk Value) [00048] Oxygen permeability is one of the important factors in contact lenses and generally the higher the permeability the more desirable the lens. The oxygen permeability (Dk) for these samples was measured using a polarographic technique following ISO 9913 standard method. The film was clamped into the permeation cell and the donor chamber was filled with oxygen saturated PBS (phosphate buffered saline). The concentration of oxygen in the receptor cell was monitored, as a function of time, and the permeability was determined from the slope of concentration vs time plot.
(4) Modulus [00049] The Young's modulus of the hydrated film was measured using an lnstron tensile tester. The wet samples were cut into 6 cm x 0.8 cm strips and the mechanical properties were measured with a load cell of 50 N and crosshead speed of 10 mm/minute. The modulus was determined from the initial slope of a stress-strain curve. Modulus is directly correlated to the softness of the material.
Lower the modulus, softer is the material.
MONOMER PREPARATION
EXAMPLE 1 (Ex. 1):
Synthesis of compound represented by the formula [00050] This monomer was prepared using two-step process. In the first step, a hydrosilylation reaction occurs between hydroxyl terminated methallyl polyether and mono-hydride functional carbosiloxane. In the second step, the hydroxyl group is converted into polymerizable methacrylate group through a methacrylation reaction.
The mono-hydride functional carbosiloxane was prepared using the process disclosed in US 7,259,220 B1, which is herein incorporated in its entirety by reference.
(1) Equilibrium Water Content [00046] The film was immersed in deionized water for 48 hours then the surface water was wiped off gently using lintless tissue paper. The hydrated film was weighed precisely and then dried in an oven at 37 C for 48 hours and weighed again for dry weight. Water content was calculated based on weight change using the following equation.
Weight of hydrated lens - Weight of dry lens % Water content =x 100 Weight of hydrated lens (2) Water wettability [00047] Water wettability of the film surface was evaluated by measuring contact angle using a captive air bubble method with a Rame Hart NRL C.A.
goniometer. In the captive bubble method, to better simulate the on eye conditions, an air bubble injected from a syringe is brought into contact with the film immersed in milli-Q water and the contact angle is then measured. Lower contact angle values represent a greater degree of hydrophilicity or better surface wettability of the film.
(3) Oxygen Permeability (Dk Value) [00048] Oxygen permeability is one of the important factors in contact lenses and generally the higher the permeability the more desirable the lens. The oxygen permeability (Dk) for these samples was measured using a polarographic technique following ISO 9913 standard method. The film was clamped into the permeation cell and the donor chamber was filled with oxygen saturated PBS (phosphate buffered saline). The concentration of oxygen in the receptor cell was monitored, as a function of time, and the permeability was determined from the slope of concentration vs time plot.
(4) Modulus [00049] The Young's modulus of the hydrated film was measured using an lnstron tensile tester. The wet samples were cut into 6 cm x 0.8 cm strips and the mechanical properties were measured with a load cell of 50 N and crosshead speed of 10 mm/minute. The modulus was determined from the initial slope of a stress-strain curve. Modulus is directly correlated to the softness of the material.
Lower the modulus, softer is the material.
MONOMER PREPARATION
EXAMPLE 1 (Ex. 1):
Synthesis of compound represented by the formula [00050] This monomer was prepared using two-step process. In the first step, a hydrosilylation reaction occurs between hydroxyl terminated methallyl polyether and mono-hydride functional carbosiloxane. In the second step, the hydroxyl group is converted into polymerizable methacrylate group through a methacrylation reaction.
The mono-hydride functional carbosiloxane was prepared using the process disclosed in US 7,259,220 B1, which is herein incorporated in its entirety by reference.
[00051] In a specific process, 1-(2-trimethylsilylethyl)-1,1,3,3-tetramethyldisiloxane (25 g), a hydride functional carbosiloxane, and a methallyl-terminated polyethylene glycol (46 g), having an average of 8 ethylene oxide (EO) units in the chain, were introduced into 250 mL three-neck round bottom (RB) flask equipped with a reflux condenser, mechanical stirrer, temperature controller with thermocouple and a nitrogen inlet. The contents were heated to 80 C to 90 C in presence of Karstedt's catalyst (50 to 100 ppm of Pt with respect to total reactant charge) and buffer (US 5,986,122) to prevent side reactions like dehydrocoupling reaction from taking place. After completion of the hydrosilylation, volatile compounds were removed from the reaction product under reduced pressure. The final product, hydroxyl terminated carbosiloxane polyether, was obtained as a colorless, transparent liquid in quantitative yield without any undesired side products.
The resultant pure product was well characterized by multinuclear NMR
spectroscopy. Synthesis of the silicone polyethers of the present invention can occur with or without solvent. If solvents are used, preferred ones include toluene, isopropylalcohol or methyl ethyl ketone.
H-NMR (ppm) : 0.02 (Si(CH3), 0.3 & 0.6 (S1CH2CH), 0.4 (SiCH2CH2Si), 1.0 (Si(CH3), 1.9 (-CH<), 3.2 & 3.3 (>CH-CH2-0-), 3.6 (-CH2CH20-).
Si-NMR (ppm) : 3.4 (Si(CH3)3CH2), 7.2 (0-Si(CH3)2(CH2)), 8.5 (0-Si(CH3)2(CH2CH2).
[00052] Next, the carbosiloxane polyether that was synthesized in the step above, triethylamine (11.3 g) and methylethylketone (100 ml) were introduced into three-neck one liter RB flask equipped with dropping funnel and a stirring blade. The flask was immersed in an ice bath and methacryloyl chloride (11.2 g) was added drop wise using dropping funnel over a period of approximately 1 hour with constant stirring. After completion of the addition the stirring was continued for another 3 hours at room temperature. The triethylamine hydrochloride salt that precipitated out during the reaction was filtered off. The solvent was removed with a rotary vacuum evaporator and the final monomer was obtained as colorless to pale yellow, transparent liquid. The low boiling point of the solvent used enables the solvent to be removed completely at a temperature of about 30 C to 40 C under vacuum (i.e.
less than about 10 mm Hg). The resulting monomer was well characterized by infrared spectroscopy, multinuclear NMR spectroscopy.
H-NMR (ppm): 0.02 (Si(CH3), 0.3 & 0.6 (SiCH2CH), 0.4 (SiCH2CH2Si), 0.98 (Si(CH3), 1.98 (CH3), 3.1 & 3.3 (>CH-CH2-0-), 3.64 (-CH2CH20-), 4.2 (CH2C00), 5.6 & 6.15 (CH2=).
Si-NMR (ppm) : 3.5 (Si(CH3)3CH2), 7.2 (0-Si(CH3)2(CH2)), 8.4 (0-Si(CH3)2(CH2CH2).
EXAMPLE 2 (Ex. 2):
Synthesis of compound represented by the formula OH
Si Si ,C............."..õ..CH2 -Si [00053] This monomer was prepared was also prepared using two-step process. In the first step, a hydrosilylation reaction occurs between hydride functional carbosiloxane and vinyl functional cyclohexene epoxide. In the second step, the epoxide group is reacted with unsaturated acids to introduce polymerizable group in it.
The resultant pure product was well characterized by multinuclear NMR
spectroscopy. Synthesis of the silicone polyethers of the present invention can occur with or without solvent. If solvents are used, preferred ones include toluene, isopropylalcohol or methyl ethyl ketone.
H-NMR (ppm) : 0.02 (Si(CH3), 0.3 & 0.6 (S1CH2CH), 0.4 (SiCH2CH2Si), 1.0 (Si(CH3), 1.9 (-CH<), 3.2 & 3.3 (>CH-CH2-0-), 3.6 (-CH2CH20-).
Si-NMR (ppm) : 3.4 (Si(CH3)3CH2), 7.2 (0-Si(CH3)2(CH2)), 8.5 (0-Si(CH3)2(CH2CH2).
[00052] Next, the carbosiloxane polyether that was synthesized in the step above, triethylamine (11.3 g) and methylethylketone (100 ml) were introduced into three-neck one liter RB flask equipped with dropping funnel and a stirring blade. The flask was immersed in an ice bath and methacryloyl chloride (11.2 g) was added drop wise using dropping funnel over a period of approximately 1 hour with constant stirring. After completion of the addition the stirring was continued for another 3 hours at room temperature. The triethylamine hydrochloride salt that precipitated out during the reaction was filtered off. The solvent was removed with a rotary vacuum evaporator and the final monomer was obtained as colorless to pale yellow, transparent liquid. The low boiling point of the solvent used enables the solvent to be removed completely at a temperature of about 30 C to 40 C under vacuum (i.e.
less than about 10 mm Hg). The resulting monomer was well characterized by infrared spectroscopy, multinuclear NMR spectroscopy.
H-NMR (ppm): 0.02 (Si(CH3), 0.3 & 0.6 (SiCH2CH), 0.4 (SiCH2CH2Si), 0.98 (Si(CH3), 1.98 (CH3), 3.1 & 3.3 (>CH-CH2-0-), 3.64 (-CH2CH20-), 4.2 (CH2C00), 5.6 & 6.15 (CH2=).
Si-NMR (ppm) : 3.5 (Si(CH3)3CH2), 7.2 (0-Si(CH3)2(CH2)), 8.4 (0-Si(CH3)2(CH2CH2).
EXAMPLE 2 (Ex. 2):
Synthesis of compound represented by the formula OH
Si Si ,C............."..õ..CH2 -Si [00053] This monomer was prepared was also prepared using two-step process. In the first step, a hydrosilylation reaction occurs between hydride functional carbosiloxane and vinyl functional cyclohexene epoxide. In the second step, the epoxide group is reacted with unsaturated acids to introduce polymerizable group in it.
[00054] In a specific process, 1-(2-trimethylsilylethyl)-1,1,3,3-tetramethyldisiloxane (25 g) and vinyl cyclohexene epoxide (13.2 g) were introduced into 250 mL three-neck round bottom (RB) flask equipped with a reflux condenser, mechanical stirrer, temperature controller with thermocouple and a nitrogen inlet.
The contents were heated to 80 C to 90 C in presence of Karstedt's catalyst (10 to 50 ppm Pt with respect to total reactant charge) and buffer (US 5,986,122) to prevent side reactions like dehydrocoupling reaction from taking place. After completion of the hydrosilylation, distilling out unwanted volatile compounds under reduced pressure purified the reaction product. The final product, epoxy functional carbosiloxane, was obtained as colorless, transparent liquid in quantitative yield without any undesired side products. The resultant pure product was well characterized by proton NMR spectroscopy. The epoxy functional carbosiloxane of the present invention can occur with or without solvent. If solvents are used, preferred ones include toluene, isopropylalcohol or methyl ethyl ketone.
H-NMR (ppm) : 0.02 (Si(CH3), 0.4 (SiCH2CH2Si), 0.5 (SiCH2), 1.2 to 2 (CH2).
The contents were heated to 80 C to 90 C in presence of Karstedt's catalyst (10 to 50 ppm Pt with respect to total reactant charge) and buffer (US 5,986,122) to prevent side reactions like dehydrocoupling reaction from taking place. After completion of the hydrosilylation, distilling out unwanted volatile compounds under reduced pressure purified the reaction product. The final product, epoxy functional carbosiloxane, was obtained as colorless, transparent liquid in quantitative yield without any undesired side products. The resultant pure product was well characterized by proton NMR spectroscopy. The epoxy functional carbosiloxane of the present invention can occur with or without solvent. If solvents are used, preferred ones include toluene, isopropylalcohol or methyl ethyl ketone.
H-NMR (ppm) : 0.02 (Si(CH3), 0.4 (SiCH2CH2Si), 0.5 (SiCH2), 1.2 to 2 (CH2).
[00055] Next, the epoxy functional carbosiloxane synthesized above, titanium isopropoxide (0.4 wt% with respect to carbosiloxane) and hydroquinone (0.0025 wt%
with respect to carbosiloxane) were introduced into three-neck one liter RB
flask equipped with dropping funnel and a stirring blade. The flask was heated to 90 deg C in an oil bath and then acrylic acid (7.68 g) was added in a drop wise manner into the RB with constant stirring. After completion of the addition the stirring was continued for another 5 hours at 90 deg C. The solvent (toluene) and other volatile impurities were removed with a rotary vacuum evaporator and the final monomer was obtained as colorless, transparent liquid. The resulting mono-acrylated carbosiloxane monomer was well characterized by infrared spectroscopy, proton NMR spectroscopy.
H-NMR (ppm) : 0.02 (Si(CH3), 0.4 (SiCH2CH2Si), 0.5 (SiCH2), 1.2 to 2 (CH2), 3.8 &
4.8 (CH2), 5.8, 6.2 & 6.4 (CH2=CH-).
FORMATION OF SILICONE-HYDROGEL FILMS
EXAMPLE 3 (Ex. 3) [00056] The compound obtained in Example 1 (49 parts by weight), 2-hydroxy ethyl methacrylate (49 parts by weight), ethylene glycol dimethacrylate (EGDMA) (1 part by weight), and benzoyl peroxide (1 part by weight) were mixed and stirred. The resulting clear, homogeneous and transparent reaction mixture was purged with nitrogen gas and poured into a polyethylene terephthalate mould. The thin film of the reaction mixture was thermally cured using hot air oven at 85 C for 8 hours.
After curing, heating the film in 10% isopropyl alcohol (IPA), in deionized (DI) water, released it from the mould and purified from the leachables. The film was further washed with hot DI water. The final silicone hydrogel film thus produced was soft, flexible and transparent and stored in DI water and measured for some of the contact lens properties. Table 1 shows the details of the formulation and the properties of the silicone hydrogel films produced.
EXAMPLES 4 (Ex. 4) [00057] A silicone-hydrogel film was obtained in the same way as in Example 3 except that the compound obtained in Example 2 was used instead of compound obtained in Example 1. The final sample was obtained as clear, transparent thin film and stored in pure water.
Comparative Example 1 (CEx. 1) _s_ [00058] The monomer was prepared in the same way as in Example 1 except that 1,111,3,5,5,5-heptamethyltrisiloxane was used instead of 1-(2-trimethylsilylethyl)-1,1,3,3-tetramethyldisiloxane. The mono-acrylated siloxane monomer produced was well characterized by infrared spectroscopy, multinuclear NMR spectroscopy.
H-NMR (ppm) : 0.02 (Si(CH3), 0.3 & 0.6 (SiCH2CH), 0.98 (Si(CH3), 1.98 (CH3), 3.1 &
3.3 (>CH-CH2-0-), 3.64 (-CH2CH20-), 4.3 (CH2C00), 5.6 & 6.15 (CH2=).
Si-NMR (ppm) : 8 (-Si(CH3)3), -22 (0-Si(CH3)2-).
Comparative Example 2 (CEx. 2) [00059] A silicone-hydrogel film was obtained in the same way as in Example 3 except that the compound obtained in Comparative Example 1 was used instead of compound obtained in Example I. The clear, transparent thin film produced was stored in pure water and measured for the properties.
with respect to carbosiloxane) were introduced into three-neck one liter RB
flask equipped with dropping funnel and a stirring blade. The flask was heated to 90 deg C in an oil bath and then acrylic acid (7.68 g) was added in a drop wise manner into the RB with constant stirring. After completion of the addition the stirring was continued for another 5 hours at 90 deg C. The solvent (toluene) and other volatile impurities were removed with a rotary vacuum evaporator and the final monomer was obtained as colorless, transparent liquid. The resulting mono-acrylated carbosiloxane monomer was well characterized by infrared spectroscopy, proton NMR spectroscopy.
H-NMR (ppm) : 0.02 (Si(CH3), 0.4 (SiCH2CH2Si), 0.5 (SiCH2), 1.2 to 2 (CH2), 3.8 &
4.8 (CH2), 5.8, 6.2 & 6.4 (CH2=CH-).
FORMATION OF SILICONE-HYDROGEL FILMS
EXAMPLE 3 (Ex. 3) [00056] The compound obtained in Example 1 (49 parts by weight), 2-hydroxy ethyl methacrylate (49 parts by weight), ethylene glycol dimethacrylate (EGDMA) (1 part by weight), and benzoyl peroxide (1 part by weight) were mixed and stirred. The resulting clear, homogeneous and transparent reaction mixture was purged with nitrogen gas and poured into a polyethylene terephthalate mould. The thin film of the reaction mixture was thermally cured using hot air oven at 85 C for 8 hours.
After curing, heating the film in 10% isopropyl alcohol (IPA), in deionized (DI) water, released it from the mould and purified from the leachables. The film was further washed with hot DI water. The final silicone hydrogel film thus produced was soft, flexible and transparent and stored in DI water and measured for some of the contact lens properties. Table 1 shows the details of the formulation and the properties of the silicone hydrogel films produced.
EXAMPLES 4 (Ex. 4) [00057] A silicone-hydrogel film was obtained in the same way as in Example 3 except that the compound obtained in Example 2 was used instead of compound obtained in Example 1. The final sample was obtained as clear, transparent thin film and stored in pure water.
Comparative Example 1 (CEx. 1) _s_ [00058] The monomer was prepared in the same way as in Example 1 except that 1,111,3,5,5,5-heptamethyltrisiloxane was used instead of 1-(2-trimethylsilylethyl)-1,1,3,3-tetramethyldisiloxane. The mono-acrylated siloxane monomer produced was well characterized by infrared spectroscopy, multinuclear NMR spectroscopy.
H-NMR (ppm) : 0.02 (Si(CH3), 0.3 & 0.6 (SiCH2CH), 0.98 (Si(CH3), 1.98 (CH3), 3.1 &
3.3 (>CH-CH2-0-), 3.64 (-CH2CH20-), 4.3 (CH2C00), 5.6 & 6.15 (CH2=).
Si-NMR (ppm) : 8 (-Si(CH3)3), -22 (0-Si(CH3)2-).
Comparative Example 2 (CEx. 2) [00059] A silicone-hydrogel film was obtained in the same way as in Example 3 except that the compound obtained in Comparative Example 1 was used instead of compound obtained in Example I. The clear, transparent thin film produced was stored in pure water and measured for the properties.
[00060]
Hydrolytic stability of the monomer of the present invention was measured using HPLC (US 20100069279). 0.5wt% of the monomers obtained in Example 1 (Ex.1) is introduced into three different vials containing 6.5, 7 and 7.5 pH
solutions. The vials were sealed with leak proof seal and heated to 85 deg C.
The heat accelerated hydrolytic degradation composition changes was monitored using HPLC as a function of time. In a same way, the monomer obtained in comparative example 1 was also measured for hydrolytic stability.
Hydrolytic stability of the monomer of the present invention was measured using HPLC (US 20100069279). 0.5wt% of the monomers obtained in Example 1 (Ex.1) is introduced into three different vials containing 6.5, 7 and 7.5 pH
solutions. The vials were sealed with leak proof seal and heated to 85 deg C.
The heat accelerated hydrolytic degradation composition changes was monitored using HPLC as a function of time. In a same way, the monomer obtained in comparative example 1 was also measured for hydrolytic stability.
[00061]
The monomer of the current invention (Ex.1) showed improved hydrolytic stability under acidic, basic and neutral conditions in comparison to the conventional siloxane monomer (CEx.2) over the acidic, neutral and basic pH
conditions (Figure 1).
Table 1: Formulation details and the properties of the silicone hydrogel films.
Silicone hydrogel Ex. 3 CEx. 2 Composition (wt.%) Silicone monomer (Ex 1) 49 Silicone monomer (CEx 1) 49 Benzoyl peroxide 1 1 Properties Equilibrium water content (%) 27 30 Dynamic contact angle (at 2 minutes) 36 40 42 4 Captive bubble contact angle 43 40 40 30 Young's modulus [MPa] 0.5 0.1 0.8 0.3 Oxygen permeability (Dk) [Barrer] 347 10 305 10 [00062]
Table 1 compares the properties of the silicone-hydrogel films produced using the monomers with carbosiloxane linkage (Ex.1) and monomer without the carbosiloxane linkage (Ex.2). The monomer, apart from the improved hydrolytic stability under different pH conditions, showed improved oxygen permeability and lower modulus in comparison to the silicone hydrogel film produced using the conventional silicone monomers.
The monomer of the current invention (Ex.1) showed improved hydrolytic stability under acidic, basic and neutral conditions in comparison to the conventional siloxane monomer (CEx.2) over the acidic, neutral and basic pH
conditions (Figure 1).
Table 1: Formulation details and the properties of the silicone hydrogel films.
Silicone hydrogel Ex. 3 CEx. 2 Composition (wt.%) Silicone monomer (Ex 1) 49 Silicone monomer (CEx 1) 49 Benzoyl peroxide 1 1 Properties Equilibrium water content (%) 27 30 Dynamic contact angle (at 2 minutes) 36 40 42 4 Captive bubble contact angle 43 40 40 30 Young's modulus [MPa] 0.5 0.1 0.8 0.3 Oxygen permeability (Dk) [Barrer] 347 10 305 10 [00062]
Table 1 compares the properties of the silicone-hydrogel films produced using the monomers with carbosiloxane linkage (Ex.1) and monomer without the carbosiloxane linkage (Ex.2). The monomer, apart from the improved hydrolytic stability under different pH conditions, showed improved oxygen permeability and lower modulus in comparison to the silicone hydrogel film produced using the conventional silicone monomers.
[00063] Stern, et al (J. Polymer Science Part B: Polymer Physics 25 (1987) 1263 ¨ 1298) reported that substitution of methyl groups by bulky groups (e.g., ethyl, isopropyl, butyl, hexyl) on the silicone backbone, or the replacement of siloxane (-SiOSi-) linkage by carbosilane (-Si(CH2)Si-) linkage resulted in reduced oxygen permeability. Based on Stern et al report, one would expect the oxygen permeability to get reduced when siloxane linkage (-Si-O-Si) is replaced by carbosiloxane linkage (-Si(CH2)Si-) in the backbone chain. Surprisingly, the silicone hydrogel film produced using the carbosiloxane monomer of the current invention showed improved oxygen permeability in comparison to the corresponding siloxane monomer having conventional siloxane linkage.
[00064] While the invention has been described with reference to a preferred embodiment, those skilled in the art will understand that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. It is intended that the invention not be limited to the particular embodiment disclosed as the best mode for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. All citations referred herein are expressly incorporated herein by reference.
Claims (38)
1. A silicone monomer comprising of at least one carbosiloxane linkage having the general formulae (I):
(R1R2R3)Si-Y1-[Si(R4R5)(Y2)]a-Si(R6R7)-Z (I) wherein a is 0 to about 100;
Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms;
Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a hetero atom;
R1, R2, R3, R4, R5, R6, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic or halogenated hydrocarbon groups of 1 to about 10 carbons, -Y2-Si(R8R9R10) and/or A, wherein R8R9R10 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Z has the following general formulae (II) - R11-B-X (II) wherein R11 is a linear or branched, divalent alkyl linking group having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms and X is acrylamide or a polymerizable group selected from the group consisting of substituted or unsubstituted unsaturated aliphatic or aromatic hydrocarbons, acrylates and methacrylates.
(R1R2R3)Si-Y1-[Si(R4R5)(Y2)]a-Si(R6R7)-Z (I) wherein a is 0 to about 100;
Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms;
Y2 is a substituted or unsubstituted divalent alkyl linking group of 1 to about 10 carbon atoms or a hetero atom;
R1, R2, R3, R4, R5, R6, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic or halogenated hydrocarbon groups of 1 to about 10 carbons, -Y2-Si(R8R9R10) and/or A, wherein R8R9R10 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a monovalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
Z has the following general formulae (II) - R11-B-X (II) wherein R11 is a linear or branched, divalent alkyl linking group having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms and X is acrylamide or a polymerizable group selected from the group consisting of substituted or unsubstituted unsaturated aliphatic or aromatic hydrocarbons, acrylates and methacrylates.
2. The silicone monomer of claim 1 , wherein R1, R2, R3, R4, R5, R6, R7, R8, R9,R10,R11,R12, R13 and R14 independently comprises a saturated monovalent hydrocarbon group of 1 to about 9 carbon atoms, a fluorinated hydrocarbon, a aralkyl or arylalkyl group, or a siloxanyl group.
3. The monomer of claim 1 , wherein A and B comprise at least one functional group consisting of alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, thio, urethane, urea, carbonate, carbamate, sulfonate, sulphonamide, and phosphate.
4. The silicone composition of claim 1, wherein B is one of the following divalent moieties -O-(C2H4O)p - (C3H6O)q - (C4H8O)r -Polyether wherein p and q are independently 0 to about 100; r is 0 to about 50 and (p +q + r) is greater than 0, Hydroxycyclohexanyl, Hydroxypropanyl, Urethane, Urea, Urea and urethane, Carbonate, or Carbamate.
5. The monomer of claim 1 wherein X is acrylamide or a polymerizable moiety having the general formula (III) wherein R12, R13, and R14 is hydrogen or a substituted or unsubstituted saturated monovalent hydrocarbon or halogenated hydrocarbon group of 1 to about 20 carbons.
6. The water soluble and water dispersible monomers of claim 1 comprising a hydrophilic polyethylene glycol and having the general formulae shown below:
wherein p is greater than 5.
(Ken will work on this claim to modify same)
wherein p is greater than 5.
(Ken will work on this claim to modify same)
7. A silicone composition of claim 1 comprising of
8. A silicone-hydrogel copolymer comprising at least 1 silicone monomer of claim 1 and at least 1 hydrogel comonomer.
9. A silicone-hydrogel copolymer composition comprising the copolymer of claim 6 and at least one member selected from the group consisting of a hydrophilic acrylic or vinylic comonomer, a crosslinking agent, a radical initiator, an antimicrobial agents, an UV-absorbers, a bioactive, and a visibility tinting agent.
10. A silicone-hydrogel copolymer comprising of at least 2 silicone monomers of claim 1 wherein at least one silicone monomer is different than at least one other silicone monomer.
11. A silicone-hydrogel copolymer comprising of at least 1 silicone monomer of claim 1 and at least 1 hydrogel monomer selected from the group consisting of vinylic monomer and an acrylic monomer.
12. The copolymer claim 11 wherein the acrylic monomer is selected from the group consisting of 2-hydroxy-ethyl-methacrylate (HEMA), 2-hydroxy-ethyl-acrylate (HEA), hydroxyl propyl methacrylate, trimethylammonium 2-hydroxy propyl methacrylate hydrochloride, dimethylaminoethyl methacrylate, glycerol methacrylate, N,N-Dimethyl acrylamide, N-isopropylacrylamide, acrylamide, 2-acrylamido-2-methyl propane sulphonic acid, methacrylamide, acrylic acid, methacrylic acid, and other acrylic monomers containing cationic and zwitterionic moieties and mixture thereof.
13. The copolymer claim 11 wherein the vinylic monomer is selected from the group consisting of N-vinyl-pyrrolidone, N-vinyl-caprolactam, N-vinyl-acetamide, N-vinyl-formamide and N-vinyl-isopropylamide, vinyl benzene, vinyl naphthalene, vinyl pyridine, and vinyl alcohol.
14. The copolymer composition of claim 9 wherein said crosslinker is selected from the group consisting of ethylene glycol dimethacrylate, trimethyloylpropane trimethacrylate, diethyleneglycol dimethacrylate, bisphenol A dimethacrylate, diglycidyl bisphenol A dimethacrylate, dimethacrylate-terminated polyethylene glycol and reactive linear polyether modified silicones.
15. A silicone-hydrogel film comprising a polymer of claim 8.
16. A silicone-hydrogel film comprising a polymer of claim 9.
17. A silicone-hydrogel film comprising a polymer of claim 10.
18. A silicone-hydrogel film comprising a polymer of claim 11.
19. A silicone-hydrogel film comprising a polymer of claim 12.
20. A silicone-hydrogel film comprising a polymer of claim 13.
21. A silicone-hydrogel film comprising a polymer of claim 14.
22. A contact lens comprising the silicone-hydrogel film of claim 15.
23. A contact lens comprising the silicone-hydrogel film of claim 16.
24. A contact lens comprising the silicone-hydrogel film of claim 17.
25. A contact lens comprising the silicone-hydrogel film of claim 18.
26. A contact lens comprising the silicone-hydrogel film of claim 19.
27. A contact lens comprising the silicone-hydrogel film of claim 20.
28. A contact lens comprising the silicone-hydrogel film of claim 21.
29. The contact lens according of claim 22, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
30. The contact lens according of claim 24, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
31. The contact lens according of claim 24, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
32. The contact lens according of claim 25, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
33. The contact lens according of claim 26, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
34 34. The contact lens according of claim 27, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
35. The contact lens according of claim 28, wherein said silicone-hydrogel film is transparent and homogeneous and polymerization of said silicone-hydrogel film is carried out by thermal or actinic radiation cure methods in the absence of solvent or compatibilizing agents.
36. The hydrogel soft contact lens material of claim 10, wherein the ratio of said monomer of claim 1 to said at least one additional monomer is 1 to about 100.
37. A process for producing a silicone monomer of claim 1 comprises reacting a silicone-containing compound having the general following formulae (IV):
(R1R2R3)Si-Y1-[Si(R4R5)(Y2)]a - Si(R6R7) - H (IV) wherein a is 0 to 100;
Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms;
Y2 is a substituted or unsubstituted divalent alkyllinking group of 1 to about carbon atoms or a divalent hetero atom;
R1, R2, R3, R4, R5, R6, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic or halogenated hydrocarbon groups of 1 to about 10 carbons, -Y2-Si(R8R9R10) and A, wherein R8R9R10 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or cycloaromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
with terminally unsaturated group having the general formula (V):
R15 - B - M (V) wherein R15 is selected from the group consisting of linear or branched unsaturated alkyl groups having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms, A and B comprises functionalities selected from the group consisting of alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, this, urethane, urea, carbonate, carbamate, sulfonate, sulphonamide, phosphate and combinations thereof;
M is selected from the group consisting of hydroxyl, halogen, epoxy and carboxylic acid group to produce functionalized carbosiloxane;
reacting the functionalized carbosiloxane with an alkylacryloyl compound having the following formula (VI):
wherein G is selected from the group consisting of a halogen, hydroxyl and alkyloxy having 1 to about 10 carbon atoms and R12, R13 and R14 is independently selected from the group consisting of hydrogen, substituted saturated monovalent hydrocarbons having 1 to about 20 carbons and unsubstituted saturated monovalent hydrocarbons having 1 to about 20 carbons to produce said silicone monomer having the general formulae (I) of claim 1.
(R1R2R3)Si-Y1-[Si(R4R5)(Y2)]a - Si(R6R7) - H (IV) wherein a is 0 to 100;
Y1 is a substituted or unsubstituted divalent alkyl linking group of 1 to 10 carbon atoms;
Y2 is a substituted or unsubstituted divalent alkyllinking group of 1 to about carbon atoms or a divalent hetero atom;
R1, R2, R3, R4, R5, R6, and R7 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic or aromatic or halogenated hydrocarbon groups of 1 to about 10 carbons, -Y2-Si(R8R9R10) and A, wherein R8R9R10 is independently selected from the group consisting of monovalent aliphatic, cycloaliphatic and aromatic hydrocarbon groups of 1 to about 10 carbons; A is a hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or cycloaromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms;
with terminally unsaturated group having the general formula (V):
R15 - B - M (V) wherein R15 is selected from the group consisting of linear or branched unsaturated alkyl groups having 0 to about 20 carbon atoms, B is a divalent hydrophilic or hydrophobic moiety selected from the group consisting of substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons and substituted or unsubstituted, saturated and unsaturated aliphatic, cycloaliphatic or aromatic hydrocarbons containing hetero atoms, A and B comprises functionalities selected from the group consisting of alkyl, alcohol, ether, ester, amide, amine, acid and its salts, cyano, this, urethane, urea, carbonate, carbamate, sulfonate, sulphonamide, phosphate and combinations thereof;
M is selected from the group consisting of hydroxyl, halogen, epoxy and carboxylic acid group to produce functionalized carbosiloxane;
reacting the functionalized carbosiloxane with an alkylacryloyl compound having the following formula (VI):
wherein G is selected from the group consisting of a halogen, hydroxyl and alkyloxy having 1 to about 10 carbon atoms and R12, R13 and R14 is independently selected from the group consisting of hydrogen, substituted saturated monovalent hydrocarbons having 1 to about 20 carbons and unsubstituted saturated monovalent hydrocarbons having 1 to about 20 carbons to produce said silicone monomer having the general formulae (I) of claim 1.
38. The process of claim 37, wherein said reaction of said functionalized carbosiloxane with said alkylacryloyl compound is carried out in the presence of atleast one tertiary base or at least one ionic exchange resin (IER) and a low boiling polar or non-polar solvent.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/029165 WO2012128752A1 (en) | 2011-03-21 | 2011-03-21 | Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2829357A1 true CA2829357A1 (en) | 2012-09-27 |
Family
ID=44227583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2829357A Abandoned CA2829357A1 (en) | 2011-03-21 | 2011-03-21 | Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2688892B1 (en) |
JP (1) | JP5947875B2 (en) |
KR (3) | KR20130133878A (en) |
CN (1) | CN103547585B (en) |
AU (1) | AU2011363044A1 (en) |
BR (1) | BR112013024165A2 (en) |
CA (1) | CA2829357A1 (en) |
WO (1) | WO2012128752A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039174B2 (en) | 2009-07-09 | 2015-05-26 | Bausch & Lomb Incorporated | Ethylenically unsaturated polymerizable groups comprising polycarbosiloxane monomers |
CN103547614A (en) * | 2011-03-21 | 2014-01-29 | 莫门蒂夫性能材料股份有限公司 | Organomodified carbosiloxane monomers containing compositions and uses thereof |
US9395468B2 (en) | 2012-08-27 | 2016-07-19 | Ocular Dynamics, Llc | Contact lens with a hydrophilic layer |
WO2014143926A1 (en) * | 2013-03-15 | 2014-09-18 | Bausch & Lomb Incorporated | Ethylenically unsaturated polymerizable groups comprising polycarbosiloxane monomers |
EP3570093B1 (en) | 2013-11-15 | 2021-09-15 | Tangible Science, Inc. | Contact lens with a hydrophilic layer |
WO2015164582A1 (en) * | 2014-04-25 | 2015-10-29 | Novartis Ag | Hydrophilized carbosiloxane vinylic monomers |
US9329306B2 (en) * | 2014-04-25 | 2016-05-03 | Novartis Ag | Carbosiloxane vinylic monomers |
JP2017530423A (en) * | 2014-07-21 | 2017-10-12 | タンジブル サイエンス, リミテッド ライアビリティ カンパニー | Contact lens and contact lens manufacturing method |
AU2015360637B2 (en) | 2014-12-09 | 2019-08-22 | Tangible Science, Inc. | Medical device coating with a biocompatible layer |
US11254789B2 (en) * | 2017-02-16 | 2022-02-22 | Momentive Performance Materials Inc. | Ionically modified silicones, compositions, and medical devices formed therefrom |
CA3068866A1 (en) * | 2017-06-26 | 2019-01-03 | Dow Silicones Corporation | Silicone-polyether copolymer, method of preparing same, and sealant comprising same |
EP3894017B1 (en) | 2018-12-12 | 2023-06-28 | Dow Global Technologies LLC | Polymer blend for personal care formulation |
US20210154050A1 (en) * | 2019-11-27 | 2021-05-27 | Jennifer Gloeckner Powers | Dressing for a nursing mother |
CN114316160A (en) * | 2021-11-17 | 2022-04-12 | 科思创树脂制造(佛山)有限公司 | Acrylic emulsion polymer and preparation method of water-based paint based on polymer |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL128305C (en) | 1963-09-11 | |||
AT251910B (en) | 1964-07-02 | 1967-01-25 | Ceskoslovenska Akademie Ved | Process for the manufacture of soft, pliable contact lenses |
US3377371A (en) | 1964-09-03 | 1968-04-09 | Dow Corning | Tris-siloxy acrylic silanes |
US3808178A (en) | 1972-06-16 | 1974-04-30 | Polycon Laboratories | Oxygen-permeable contact lens composition,methods and article of manufacture |
US4197266A (en) | 1974-05-06 | 1980-04-08 | Bausch & Lomb Incorporated | Method for forming optical lenses |
US4084459A (en) | 1977-03-07 | 1978-04-18 | Bausch & Lomb Incorporated | Method and apparatus for lens turning |
US4259467A (en) | 1979-12-10 | 1981-03-31 | Bausch & Lomb Incorporated | Hydrophilic contact lens made from polysiloxanes containing hydrophilic sidechains |
US4260725A (en) | 1979-12-10 | 1981-04-07 | Bausch & Lomb Incorporated | Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains |
AU546039B2 (en) * | 1982-05-08 | 1985-08-08 | Menicon Co., Ltd | Oxygen permeable hard contact lens |
NO166371C (en) * | 1983-07-15 | 1991-07-10 | Shinetsu Chemical Co | VINYL CHLORIDE COPOLYMES THAT HAVE HIGH PERMEABILITY FOR OXYGEN. |
JPS6020910A (en) * | 1983-07-15 | 1985-02-02 | Shin Etsu Chem Co Ltd | Production of vinyl chloride copolymer |
EP0194277A4 (en) * | 1984-08-17 | 1987-02-03 | Mc Carry John D | Alkylsilane contact lens and polymer. |
JPH0699517B2 (en) * | 1987-02-06 | 1994-12-07 | 株式会社メニコン | Soft contact lens material |
US4954587A (en) | 1988-07-05 | 1990-09-04 | Ciba-Geigy Corporation | Dimethylacrylamide-copolymer hydrogels with high oxygen permeability |
US5115056A (en) | 1989-06-20 | 1992-05-19 | Ciba-Geigy Corporation | Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof |
US5079319A (en) | 1989-10-25 | 1992-01-07 | Ciba-Geigy Corporation | Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof |
US5010141A (en) | 1989-10-25 | 1991-04-23 | Ciba-Geigy Corporation | Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof |
DE69216100T2 (en) | 1991-09-12 | 1997-06-12 | Bausch & Lomb Inc., Rochester, N.Y. | WETABLE SILICONE-HYDROGEL COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF |
DE69211152T2 (en) | 1991-11-05 | 1997-01-02 | Bausch & Lomb | COMPOSITIONS OF WETABLE SILICONE HYDROGELS AND METHOD FOR THE PRODUCTION THEREOF |
US5358995A (en) | 1992-05-15 | 1994-10-25 | Bausch & Lomb Incorporated | Surface wettable silicone hydrogels |
US5260000A (en) | 1992-08-03 | 1993-11-09 | Bausch & Lomb Incorporated | Process for making silicone containing hydrogel lenses |
US5336797A (en) | 1992-12-30 | 1994-08-09 | Bausch & Lomb Incorporated | Siloxane macromonomers |
US5986122A (en) | 1996-11-18 | 1999-11-16 | Witco Corporation | Treatment of polyethers prior to hydrosilylation |
US5998498A (en) | 1998-03-02 | 1999-12-07 | Johnson & Johnson Vision Products, Inc. | Soft contact lenses |
DE19934407A1 (en) | 1999-07-22 | 2001-01-25 | Espe Dental Ag | Novel hydrolyzable and polymerizable silanes are useful in dental applications for the production of filler, cement, crown- and bridging material, blending agents, lacquer, sealers and primers |
US7645720B2 (en) | 2005-12-13 | 2010-01-12 | Momentive Performance Materials Inc. | Extreme environment surfactant compositions comprising hydrolysis resistant organomodified disiloxane surfactants |
US7507775B2 (en) | 2005-10-13 | 2009-03-24 | Momentive Performance Materials Inc. | Hydrolysis resistant organomodified disiloxane surfactants |
US7700797B2 (en) | 2006-05-22 | 2010-04-20 | Momentive Performance Materials Inc. | Use of hydrolysis resistant organomodified silylated surfactants |
US7259220B1 (en) | 2006-07-13 | 2007-08-21 | General Electric Company | Selective hydrosilylation method |
US7838698B2 (en) | 2006-09-29 | 2010-11-23 | Johnson & Johnson Vision Care, Inc. | Hydrolysis-resistant silicone compounds |
BRPI0920732A2 (en) * | 2008-10-03 | 2015-12-29 | Momentive Performance Mat Inc | hydrophilic silicone monomers, processes for their preparation and thin films containing |
US7994356B2 (en) * | 2009-07-09 | 2011-08-09 | Bausch & Lomb Incorporated | Mono ethylenically unsaturated polycarbosiloxane monomers |
BR112012000503B1 (en) * | 2009-07-09 | 2019-08-20 | Bausch & Lomb Incorporated | HYDROGEL CONTACT LENS |
CN103547614A (en) | 2011-03-21 | 2014-01-29 | 莫门蒂夫性能材料股份有限公司 | Organomodified carbosiloxane monomers containing compositions and uses thereof |
-
2011
- 2011-03-21 CA CA2829357A patent/CA2829357A1/en not_active Abandoned
- 2011-03-21 BR BR112013024165A patent/BR112013024165A2/en not_active Application Discontinuation
- 2011-03-21 KR KR1020137027407A patent/KR20130133878A/en active Search and Examination
- 2011-03-21 JP JP2014501046A patent/JP5947875B2/en active Active
- 2011-03-21 AU AU2011363044A patent/AU2011363044A1/en not_active Abandoned
- 2011-03-21 KR KR1020167003983A patent/KR101771564B1/en active IP Right Grant
- 2011-03-21 WO PCT/US2011/029165 patent/WO2012128752A1/en active Application Filing
- 2011-03-21 KR KR1020177011773A patent/KR20170054532A/en not_active Application Discontinuation
- 2011-03-21 CN CN201180071095.0A patent/CN103547585B/en active Active
- 2011-03-21 EP EP11712723.3A patent/EP2688892B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20170054532A (en) | 2017-05-17 |
KR20160027206A (en) | 2016-03-09 |
WO2012128752A1 (en) | 2012-09-27 |
CN103547585B (en) | 2016-12-14 |
EP2688892A1 (en) | 2014-01-29 |
EP2688892B1 (en) | 2020-11-18 |
JP2014517083A (en) | 2014-07-17 |
JP5947875B2 (en) | 2016-07-06 |
KR20130133878A (en) | 2013-12-09 |
KR101771564B1 (en) | 2017-09-05 |
BR112013024165A2 (en) | 2016-12-06 |
AU2011363044A1 (en) | 2013-09-26 |
CN103547585A (en) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8772367B2 (en) | Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application | |
EP2688892B1 (en) | Siloxane monomers containing hydrolysis resistance carbosiloxane linkage and thin films containing the same for contact lens application | |
AU2009299415B2 (en) | Hydrophilic silicone monomers, process for their preparation and thin films containing the same | |
JP6502246B2 (en) | Hydrophilic silicone monomer, process for preparing the same and thin film containing the same | |
JP6236059B2 (en) | Hydrophilic macromer and hydrogel containing the same | |
EP3080191B1 (en) | Hydrophilic silicone composition | |
US9804296B2 (en) | Hydrophilic macromers and hydrogels comprising the same | |
JP2015515514A5 (en) | ||
US8030423B2 (en) | Multi-armed macromonomers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20130906 |
|
FZDE | Discontinued |
Effective date: 20160728 |