login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374601
Defined by: Sum_{i=1..n} i*a(i)/n^i = 1, n>=1.
2
1, 1, 4, 28, 278, 3554, 55382, 1015750, 21401830, 508932130, 13475090126, 393026736854, 12518884854734, 432357148756210, 16092438499462630, 642170913160160710, 27351173629037613494, 1238472705706192189442, 59411223892666111129022, 3010044856761072109710262
OFFSET
1,3
LINKS
FORMULA
a(n) = n^(n-1) - Sum_{i=1..n-1} n^(n-1-i)*i*a(i))
a(n) = A374562(n)/n.
EXAMPLE
1*a(1)/1^1 = 1, so a(1) = 1.
1*a(1)/2^1 + 2*a(2)/2^2 = 1, so a(2) = 1.
1*a(1)/3^1 + 2*a(2)/3^2 + 3*a(3)/3^3 = 1, so a(3)=4.
MAPLE
a:= proc(n) option remember; `if`(n<1, 0,
n^(n-1)-add(n^(n-1-i)*a(i)*i, i=1..n-1))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jul 13 2024
MATHEMATICA
a[n_]:=a[n]=n^(n-1)-Sum[n^(n-1-i)*i*a[i], {i, 1, n-1}]
PROG
(PARI) a(n)=n^(n-1)-sum(i=1, n-1, n^(n-1-i)*i*a(i))
CROSSREFS
Cf. A374562.
Sequence in context: A174494 A128318 A032274 * A182964 A306228 A178599
KEYWORD
nonn
AUTHOR
Luc Rousseau, Jul 13 2024
STATUS
approved