login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306228
Numerators of the even moments of the standard V-monotone Gaussian distribution (see the reference in 'Links', Section 5).
1
1, 1, 4, 28, 278, 3564, 55928, 1037708, 22217720, 539070560, 14616331912, 437960845728, 14370870516352, 512497731949840, 19736969633949568, 816329819676996352, 36089654605723837664, 1698341924904555647808, 84761545323838638225152, 4471847161631552852257472
OFFSET
0,3
LINKS
Adrian Dacko, V-monotone independence, arXiv:1901.06342 [math.FA], 2019.
Adrian Dacko, Java program.
FORMULA
a(n) = b(n,n+1), where the term b(n,k) is defined recursively as follows:
For any nonnegative integers n and 1 <= k <= n+2, we have
b(n+1, k) = Sum_{m=0..n} Sum_{s=L1(k,m)..L2(k,m)} binomial(k-1,s)*binomial(n+2-k,m+1-s)*(delta(s,0)*b(m,1) + Sum_{r=1..s} b(m,r))*b(n-m,k-s),
where L1(k,m) = max(0, (m+k)-(n+1)), L2(k,m) = min(k-1,m+1), and delta(s,0) is the Kronecker delta (see the referrence in 'Links', Lemma 5.4).
PROG
(Java) // See links.
CROSSREFS
Sequence in context: A032274 A374601 A182964 * A178599 A369088 A007559
KEYWORD
frac,nonn
AUTHOR
Adrian Dacko, Jan 30 2019
STATUS
approved