login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182964
G.f.: x = Sum_{n>=1} a(n)*G_n(x)^n where G_n(x) is the n-th iteration of (x-x^2).
0
1, 1, 4, 28, 278, 3558, 55600, 1024459, 21721922, 520585084, 13908591504, 409749226342, 13192559204352, 460792929469356, 17351608517036848, 700669956538570048, 30200986529461293238, 1383912736505236230958
OFFSET
1,3
COMMENTS
Compare g.f. of this sequence to the g.f. of A000272(n) = n^(n-2):
. x = Sum_{n>=1} n^(n-2)*[x/(1+n*x)]^n
where x/(1+n*x) = n-th iteration of x/(1+x).
EXAMPLE
G.f.: x = 1*G_1(x) + 1*G_2(x)^2 + 4*G_3(x)^3 + 28*G_4(x)^4 + 278*G_5(x)^5 + 3558*G_6(x)^6 + 55600*G_7(x)^7 +...+ a(n)*G_n(x)^n +...
where the initial iterations of G(x) = (x-x^2) begin:
G_1(x) = x - x^2;
G_2(x) = x - 2*x^2 + 2*x^3 - x^4;
G_3(x) = x - 3*x^2 + 6*x^3 - 9*x^4 + 10*x^5 - 8*x^6 + 4*x^7 - x^8;
G_4(x) = x - 4*x^2 + 12*x^3 - 30*x^4 + 64*x^5 - 118*x^6 +-...;
G_5(x) = x - 5*x^2 + 20*x^3 - 70*x^4 + 220*x^5 - 630*x^6 +-...;
...
Coefficients in the n-th power of the n-th iteration of x-x^2 begin:
G_1(x)^1: [1, -1, 0, 0, 0, 0, 0, ...];
G_2(x)^2: [1, -4, 8, -10, 8, -4, 1, 0, 0, 0, 0, 0, ...];
G_3(x)^3: [1, -9, 45, -162, 462, -1095, 2217, -3900, 6024, ...];
G_4(x)^4: [1, -16, 144, -952, 5120, -23608, 96296, -354664, ...];
G_5(x)^5: [1, -25, 350, -3600, 30225, -218775, 1410780, ...];
G_6(x)^6: [1, -36, 720, -10530, 125400, -1286376, 11759727, ...];
...
PROG
(PARI) /* n-th Iteration of a function: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* G.f.: */
{a(n)=local(G=x); if(n<=1, G=x, G=x-sum(k=1, n-1, a(k)*ITERATE(k, x-x^2, n)^k)); polcoeff(G, n)}
CROSSREFS
Sequence in context: A128318 A032274 A374601 * A306228 A178599 A369088
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2011
STATUS
approved