login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258378
O.g.f. satisfies A^3(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) )^2.
6
1, 5, 37, 385, 5417, 99421, 2296077, 64510617, 2142013137, 82103710517, 3566271497845, 173005328363057, 9265752053418233, 542783129304580237, 34511577062800532573, 2366512551126709790793, 174056559606294111346593, 13666923859188010833522789, 1140970414332381380968275653
OFFSET
0,2
COMMENTS
The binomial transform of an o.g.f. A(z) is given by BINOMIAL(A(z)) = 1/(1 - z)*A(z/(1 - z)).
For general remarks on a solution to the functional equation A^(N+1)(z) = 1/(1 - z)*(BINOMIAL(BINOMIAL(A(z))) )^N for integer N, and the connection with triangle A145901 see A258377 (case N = 1). This is the case N = 2.
From Peter Bala, Dec 06 2017: (Start)
a(n) appears to be of the form 4*m + 1. Calculation suggests that for k = 1,2,3,..., the sequence a(n) (mod 2^k) is purely periodic with period length a divisor of 2^(k-1). For example, a(n) (mod 8) = (1, 5, 5, 1, 1, 5, 5, 1,...) seems to be purely periodic with period length 4 and a(n) (mod 16) = (1, 5, 5, 1, 9, 13, 13, 9, 1, 5, 5, 1, 9, 13, 13, 9,...) seems to be purely periodic with period length 8 (both checked up to n = 1000). (End)
LINKS
FORMULA
a(0) = 1 and for n >= 1, a(n) = 1/n*Sum_{i = 0..n-1} R(i+1,2)*a(n-1-i), where R(n,x) denotes the n-th row polynomial of A145901.
O.g.f.: A(z) = 1 + 5*z + 37*z^2 + 385*z^3 + 5417*z^4 + ... satisfies A^3(z) = 1/(1 - z)*1/(1 - 2*z)^2*A^2(z/(1 - 2*z)).
O.g.f.: A(z) = exp( Sum_{k >= 1} R(k,2)*z^k/k ).
MAPLE
with(combinat):
#recursively define the row polynomials R(n, x) of A145901
R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i, x), i = 0..n-1) end if; end proc:
#define a family of sequences depending on an integer parameter k
a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1, k)*a(n-1-i, k), i = 0..n-1) end if; end proc:
# display the case k = 2
seq(a(n, 2), n = 0..18);
MATHEMATICA
R[n_, x_] := R[n, x] = If[n == 0, 1, 1 + x*Sum[Binomial[n, i]*2^(n - i)*R[i, x], {i, 0, n - 1}]];
a[n_, k_] := a[n, k] = If[n == 0, 1, 1/n*Sum[R[i + 1, k]*a[n - 1 - i, k], {i, 0, n - 1}]];
a[n_] := a[n, 2];
a /@ Range[0, 18] (* Jean-François Alcover, Oct 02 2019 *)
CROSSREFS
Cf. A019538, A145901, A258377 (N = 1), A258379 (N = 3), A258380 (N = 4), A258381 (N = 5).
Sequence in context: A208231 A352117 A112937 * A368322 A273954 A092649
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 28 2015
STATUS
approved