login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352117
Expansion of e.g.f. 1/sqrt(2 - exp(2*x)).
8
1, 1, 5, 37, 377, 4921, 78365, 1473277, 31938737, 784384561, 21523937525, 652667322517, 21672312694697, 782133969325801, 30481907097849485, 1275870745561131757, 57083444567425884257, 2718602143583362124641, 137315150097164841942245
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (2*j+1)) * Stirling2(n,k).
a(n) ~ 2^n * n^n / (log(2)^(n + 1/2) * exp(n)). - Vaclav Kotesovec, Mar 05 2022
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - x/(1 - 4*x/(1 - 3*x/(1 - 8*x/(1 - ... - (2*n-1)*x/(1 - 4*n*x/(1 - ... ))))))). Cf. A346982. - Peter Bala, Aug 22 2023
For n > 0, a(n) = Sum_{k=1..n} a(n-k)*(1-k/n/2)*binomial(n,k)*2^k. - Tani Akinari, Sep 06 2023
a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-2)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 18 2023
MATHEMATICA
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[2*x])^(-1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(2-exp(2*x))))
(PARI) a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*stirling(n, k, 2));
(Maxima) a[n]:=if n=0 then 1 else sum(a[n-k]*(1-k/n/2)*binomial(n, k)*2^k, k, 1, n);
makelist(a[n], n, 0, 50); /* Tani Akinari, Sep 06 2023 */
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved