login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115971
a(0) = 0. If a(n) = 0, then a(2^n) through a(2^(n+1)-1) are each equal to 1. If a(n) = 1, then a(m + 2^n) = a(m) for each m, 0 <= m <= 2^n -1.
2
0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
Not the characteristic function of A047564, as it does not contain 256, although here a(256) = 1. - Antti Karttunen, Oct 18 2018
FORMULA
a(0) = 0; and for n > 0, if a(A000523(n)) is 0, then a(n) = 1, otherwise a(n) = a(n-(2^A000523(n))) = a(A053645(n)). - Antti Karttunen, Oct 22 2018
EXAMPLE
a(2) = 0. So terms a(4) through a(7) are each equal to 1.
a(3) = 1, so terms a(8) through a(15) are the same as terms a(0) through a(7).
From Antti Karttunen, Oct 22 2018: (Start)
For n = 256 = 2^8, a(8) = 0, thus a(256) = 1.
For n = 2^64, a(64) = 0, thus a(2^64) = 1. (End)
PROG
(PARI)
A000523(n) = if(n<1, 0, #binary(n)-1);
A115971(n) = if(!n, n, if(!A115971(A000523(n)), 1, A115971(n-(2^A000523(n))))); \\ Antti Karttunen, Oct 18 2018
CROSSREFS
Different from A320007.
Sequence in context: A112690 A316343 A288864 * A320007 A072165 A358224
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Mar 14 2006
STATUS
approved