login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115970
Expansion of 1/(4*sqrt(1-4*x) - 3).
7
1, 8, 72, 656, 5992, 54768, 500688, 4577568, 41851560, 382641200, 3498428272, 31985610720, 292439802256, 2673735097184, 24445577182368, 223502416896576, 2043450657688872, 18682977401318064, 170815793235313968
OFFSET
0,2
COMMENTS
The g.f. is A(x)^2/(2*A(x)-A(x)^2) where A(x) is the g.f. of A076035.
The Hankel transform of this sequence is 8^n = [1, 8, 64, 512, 4096, ...]; the Hankel transform of the aerated sequence with g.f. 1/(1-8*x^2*c(x^2)) is also 8^n. - Philippe Deléham, Feb 13 2007
LINKS
FORMULA
G.f.: 1/(1-8*x*c(x)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} A106566(n, k)*8^k.
From Philippe Deléham, Feb 13 2007: (Start)
a(n) = (64*a(n-1) - 8*A000108(n-1))/7.
a(n) = Sum_{k=0..n} A039599(n,k)*7^k.
a(n) = Sum_{k=0..n} A106566(n,k)*8^k. (End)
D-finite with recurrence: 7*n*a(n) = 2*(46*n-21)*a(n-1) - 128*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 3*2^(6*n+1)/7^(n+1). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
CoefficientList[Series[1/(4*Sqrt[1-4*x]-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(1/(4*sqrt(1-4*x)-3)) \\ G. C. Greubel, May 05 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(4*Sqrt(1-4*x)-3) )); // G. C. Greubel, May 05 2019
(Sage) (1/(4*sqrt(1-4*x)-3)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019
CROSSREFS
Sequence in context: A055275 A155198 A147840 * A078995 A264913 A082414
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2006
STATUS
approved