OFFSET
0,2
COMMENTS
The g.f. is A(x)^2/(2*A(x)-A(x)^2) where A(x) is the g.f. of A076035.
The Hankel transform of this sequence is 8^n = [1, 8, 64, 512, 4096, ...]; the Hankel transform of the aerated sequence with g.f. 1/(1-8*x^2*c(x^2)) is also 8^n. - Philippe Deléham, Feb 13 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
G.f.: 1/(1-8*x*c(x)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} A106566(n, k)*8^k.
From Philippe Deléham, Feb 13 2007: (Start)
a(n) = (64*a(n-1) - 8*A000108(n-1))/7.
a(n) = Sum_{k=0..n} A039599(n,k)*7^k.
a(n) = Sum_{k=0..n} A106566(n,k)*8^k. (End)
D-finite with recurrence: 7*n*a(n) = 2*(46*n-21)*a(n-1) - 128*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 3*2^(6*n+1)/7^(n+1). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
CoefficientList[Series[1/(4*Sqrt[1-4*x]-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(1/(4*sqrt(1-4*x)-3)) \\ G. C. Greubel, May 05 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(4*Sqrt(1-4*x)-3) )); // G. C. Greubel, May 05 2019
(Sage) (1/(4*sqrt(1-4*x)-3)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2006
STATUS
approved