login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115627
Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.
31
1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
OFFSET
2,4
COMMENTS
The factorization of n! is n! = 2^T(n,1)*3^T(n,2)*...*p_(pi(n))^T(n,pi(n)) where p_k = k-th prime, pi(n) = A000720(n).
Nonzero terms of A085604; T(n,k) = A085604(n,k), k = 1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
For n=2, 3, 4 and 5, all terms of the n-th row are odd. Are there other such rows? - Michel Marcus, Nov 11 2018
From Gus Wiseman, May 15 2019: (Start)
Differences between successive rows are A067255, so row n is the sum of the first n row-vectors of A067255 (padded with zeros on the right so that all n row-vectors have length A000720(n)). For example, the first 10 rows of A067255 are
{}
1
0 1
2 0
0 0 1
1 1 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0
with column sums (8,4,2,1), which is row 10.
(End)
For all prime p > 7, 3*p > 2*nextprime(p), so for any n > 21 there will always be a prime p dividing n! with exponent 2 and there are no further rows with all entries odd. - Charlie Neder, Jun 03 2019
LINKS
H. T. Davis, Tables of the Mathematical Functions, Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX. [Annotated scan of pages 204-208 of Volume 2.] See Table 2 on page 206.
Wenguang Zhai, On the prime power factorization of n!, Journal of Number Theory, Volume 129, Issue 8, August 2009, pages 1820-1836.
FORMULA
T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014
EXAMPLE
From Gus Wiseman, May 09 2019: (Start)
Triangle begins:
1
1 1
3 1
3 1 1
4 2 1
4 2 1 1
7 2 1 1
7 4 1 1
8 4 2 1
8 4 2 1 1
10 5 2 1 1
10 5 2 1 1 1
11 5 2 2 1 1
11 6 3 2 1 1
15 6 3 2 1 1
15 6 3 2 1 1 1
16 8 3 2 1 1 1
16 8 3 2 1 1 1 1
18 8 4 2 1 1 1 1
(End)
m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - David A. Corneth, Jun 22 2014
MAPLE
A115627 := proc(n, k) local d, p; p := ithprime(k) ; n-add(d, d=convert(n, base, p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
MATHEMATICA
Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *)
T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
PROG
(Haskell)
a115627 n k = a115627_tabf !! (n-2) !! (k-1)
a115627_row = map a100995 . a141809_row . a000142
a115627_tabf = map a115627_row [2..]
-- Reinhard Zumkeller, Nov 01 2013
(PARI) a(n)=my(i=2); while(n-primepi(i)>1, n-=primepi(i); i++); p=prime(n-1); sum(j=1, log(i)\log(p), i\=p) \\ David A. Corneth, Jun 21 2014
CROSSREFS
Row lengths are A000720.
Row-sums are A022559.
Row-products are A135291.
Row maxima are A011371.
Sequence in context: A335915 A249781 A342041 * A128218 A010283 A134699
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved