login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076934
Smallest integer of the form n/k!.
19
1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 2, 13, 7, 15, 8, 17, 3, 19, 10, 21, 11, 23, 1, 25, 13, 27, 14, 29, 5, 31, 16, 33, 17, 35, 6, 37, 19, 39, 20, 41, 7, 43, 22, 45, 23, 47, 2, 49, 25, 51, 26, 53, 9, 55, 28, 57, 29, 59, 10, 61, 31, 63, 32, 65, 11, 67, 34, 69, 35, 71
OFFSET
1,3
COMMENTS
Equivalently, n divided by the largest factorial divisor of n.
Also, the smallest r such that n/r is a factorial number.
Positions of 1's are the factorial numbers A000142. Is every positive integer in this sequence? - Gus Wiseman, May 15 2019
Let m = A055874(n), the largest integer such that 1,2,...,m divides n. Then a(n*m!) = n since m+1 does not divide n, showing that every integer is part of the sequence. - Etienne Dupuis, Sep 19 2020
LINKS
FORMULA
From Amiram Eldar, Dec 25 2023: (Start)
a(n) = n/A055881(n)!.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = BesselI(2, 2) = 0.688948... (A229020). (End)
MATHEMATICA
Table[n/Max@@Intersection[Divisors[n], Array[Factorial, n]], {n, 100}] (* Gus Wiseman, May 15 2019 *)
a[n_] := Module[{k=1}, While[Divisible[n, k!], k++]; n/(k-1)!]; Array[a, 100] (* Amiram Eldar, Dec 25 2023 *)
PROG
(PARI) first(n) = {my(res = [1..n]); for(i = 2, oo, k = i!; if(k <= n, for(j = 1, n\k, res[j*k] = j ) , return(res) ) ) } \\ David A. Corneth, Sep 19 2020
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Oct 19 2002
EXTENSIONS
More terms from David A. Corneth, Sep 19 2020
STATUS
approved