IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7826-d685330.html
   My bibliography  Save this article

Economic and Environmental Aspects of Agriculture in the EU Countries

Author

Listed:
  • Joanna Domagała

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland)

Abstract

The analysis of the economic efficiency of agriculture has been the subject of numerous studies. An economically efficient agricultural sector is not always environmentally efficient. Agriculture is a large emitter of greenhouse gases. The Intergovernmental Panel on Climate Change states that food production and agriculture are responsible for 21–37% of total global CO 2 emissions. Due to the comprehensive assessment of the agricultural efficiency, it is worthwhile to apply to its measurement an integrated approach based on economic, energy and environmental aspects. These aspects were the main reasons for undertaking this research. The purpose of the study was to determine the economic, energy and environmental efficiency of agriculture in the EU Member States in 2019. The environmental analyses relate to the period 1990–2019. A total of 26 member states of the European Union (excluding Malta and Luxembourg) were selected for research. The sources of materials were Eurostat and the European Environmental Agency. This study was based on the Data Envelopment Analysis method, and used the DEA model focused on minimizing inputs. The research also adopts energy productivity and greenhouse gas emission efficiency indicators. The DEA model features the following variables: one effect (value of agricultural production) and four inputs (land, labour, use of fertilizers and use of energy). It was found that seven out of the 26 studied EU countries have efficient agriculture. The efficient agriculture group included The Netherlands, Denmark, Greece, Cyprus, the United Kingdom, Italy and Ireland. Based on the DEA method, benchmarks have been defined for countries with inefficient agriculture. On the basis of these benchmarks for inefficient agricultural sectors, it was possible to determine how they could improve efficiency to achieve the same results with fewer inputs. This issue is particularly important in the context of sustainable agricultural development. In the next stage of the research, the analysis of economic and energy efficiency was combined with the analysis of GHG emission efficiency in agriculture. Four groups of countries have been distinguished: eco-efficiency leaders, eco-efficiency followers, environmental slackers, eco-efficiency laggards. The leaders of the classification were The Netherlands, Italy, Greece, Cyprus and Portugal.

Suggested Citation

  • Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7826-:d:685330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerzy Bienkowski & Rafal Baum & Malgorzata Holka, 2021. "Eco-Efficiency of Milk Production in Poland Using the Life Cycle Assessment Methodologies," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 890-912.
    2. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    3. Timo Kuosmanen, 2005. "Measurement and Analysis of Eco‐efficiency: An Economist's Perspective," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 15-18, October.
    4. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    5. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    6. George E. Halkos & Nickolaos G. Tzeremes & Stavros A. Kourtzidis, 2016. "Measuring Sustainability Efficiency Using a Two-Stage Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1159-1175, October.
    7. Chetroiu, Rodica & Călin, Ion, 2013. "The concept of economic efficiency in agriculture," MPRA Paper 55007, University Library of Munich, Germany.
    8. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    9. S Reinhard & G Thijssen, 2000. "Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(2), pages 167-186, June.
    10. Habtamu Alem & Gudbrand Lien & J. Brian Hardaker, 2018. "Economic performance and efficiency determinants of crop-producing farms in Norway," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 67(9), pages 1418-1434, November.
    11. Gjalt Huppes & Masanobu Ishikawa, 2005. "A Framework for Quantified Eco‐efficiency Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 25-41, October.
    12. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. Vicente, José R., 2004. "Economic Efficiency of Agricultural Production In Brazil," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 42(2), pages 1-22, June.
    15. Stijn Reinhard & C. A. Knox Lovell & Geert Thijssen, 2002. "Analysis of Environmental Efficiency Variation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1054-1065.
    16. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    17. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    18. Jan Polcyn, 2021. "Eco-Efficiency and Human Capital Efficiency: Example of Small- and Medium-Sized Family Farms in Selected European Countries," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    19. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    20. Van Passel, Steven & Nevens, Frank & Mathijs, Erik & Van Huylenbroeck, Guido, 2007. "Measuring farm sustainability and explaining differences in sustainable efficiency," Ecological Economics, Elsevier, vol. 62(1), pages 149-161, April.
    21. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    22. Godard, Caroline & Bamière, Laure & Debove, Elodie & De Cara, Stéphane & Jayet, Pierre-Alain & Niang, N.B., 2005. "Interface between Agriculture and the Environment: Integrating Yield Response Functions in an Economic Model of EU Agriculture," 89th Seminar, February 2-5, 2005, Parma, Italy 232663, European Association of Agricultural Economists.
    23. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    24. Mouron, Patrik & Scholz, Roland W. & Nemecek, Thomas & Weber, Olaf, 2006. "Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing," Ecological Economics, Elsevier, vol. 58(3), pages 561-578, June.
    25. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    26. Van Meensel, Jef & Lauwers, Ludwig & Van Huylenbroeck, Guido & Van Passel, Steven, 2010. "Comparing frontier methods for economic-environmental trade-off analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1027-1040, December.
    27. Jean-Christophe Bureau & Stefan Tangermann & Alan Matthews & Davide Viaggi & Christophe Crombez & Louise Knops & Johan Swinnen, 2012. "The Common Agricultural Policy after 2013," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 47(6), pages 316-342, November.
    28. Stefan Wirsenius & Fredrik Hedenus & Kristina Mohlin, 2011. "Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects," Climatic Change, Springer, vol. 108(1), pages 159-184, September.
    29. Marcin Wysokiński & Bogdan Klepacki & Piotr Gradziuk & Magdalena Golonko & Piotr Gołasa & Wioletta Bieńkowska-Gołasa & Barbara Gradziuk & Paulina Trębska & Aleksandra Lubańska & Danuta Guzal-Dec & Ark, 2021. "Economic and Energy Efficiency of Farms in Poland," Energies, MDPI, vol. 14(17), pages 1-21, September.
    30. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    31. SOTO Iria & BARNES Andrew & BALAFOUTIS Athanasios & BECK Bert & SANCHEZ FERNANDEZ Berta & VANGEYTE Jurgen & FOUNTAS Spyros & VAN DER WAL Tamme & EORY Vera & GOMEZ BARBERO Manuel, 2019. "The contribution of precision agriculture technologies to farm productivity and the mitigation of greenhouse gas emissions in the EU," JRC Research Reports JRC112505, Joint Research Centre.
    32. Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), 2016. "Advances in Efficiency and Productivity," International Series in Operations Research and Management Science, Springer, number 978-3-319-48461-7, December.
    33. Laure Latruffe & Kelvin Balcombe & Sophia Davidova & Katarzyna Zawalinska, 2005. "Technical and scale efficiency of crop and livestock farms in Poland : does specialization matte r?," Post-Print hal-02392195, HAL.
    34. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, June.
    35. Alene, Arega D. & Manyong, Victor M. & Gockowski, James, 2006. "The production efficiency of intercropping annual and perennial crops in southern Ethiopia: A comparison of distance functions and production frontiers," Agricultural Systems, Elsevier, vol. 91(1-2), pages 51-70, November.
    36. Galanopoulos, Konstantinos & Aggelopoulos, Stamatis & Kamenidou, Irene & Mattas, Konstadinos, 2006. "Assessing the effects of managerial and production practices on the efficiency of commercial pig farming," Agricultural Systems, Elsevier, vol. 88(2-3), pages 125-141, June.
    37. Magdalena Rybaczewska-Błażejowska & Wacław Gierulski, 2018. "Eco-Efficiency Evaluation of Agricultural Production in the EU-28," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    38. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    39. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    40. Edjabou, Louise Dyhr & Smed, Sinne, 2013. "The effect of using consumption taxes on foods to promote climate friendly diets – The case of Denmark," Food Policy, Elsevier, vol. 39(C), pages 84-96.
    41. Jiaxing Pang & Xingpeng Chen & Zilong Zhang & Hengji Li, 2016. "Measuring Eco-Efficiency of Agriculture in China," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    42. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    43. Anna Gaviglio & Rosalia Filippini & Fabio Albino Madau & Maria Elena Marescotti & Eugenio Demartini, 2021. "Technical efficiency and productivity of farms: a periurban case study analysis," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-18, December.
    44. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    45. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    46. Callens, Isabelle & Tyteca, Daniel, 1999. "Towards indicators of sustainable development for firms: A productive efficiency perspective," Ecological Economics, Elsevier, vol. 28(1), pages 41-53, January.
    47. Luis Orea & Alan Wall, 2016. "Measuring Eco-efficiency Using the Stochastic Frontier Analysis Approach," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 275-297, Springer.
    48. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, June.
    49. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    50. Chavas, Jean-Paul & Aliber, Michael, 1993. "An Analysis Of Economic Efficiency In Agriculture: A Nonparametric Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-16, July.
    51. Mette Asmild & Jens Leth Hougaard, 2006. "Economic versus environmental improvement potentials of Danish pig farms," Agricultural Economics, International Association of Agricultural Economists, vol. 35(2), pages 171-181, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
    2. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
    3. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    4. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    5. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    6. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    7. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    8. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    9. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    10. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    11. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2019. "Is Social Capital Green? Cultural Features and Environmental Performance in the European Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 795-822, March.
    12. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    13. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    14. repec:zbw:inwedp:752021 is not listed on IDEAS
    15. Magdalena Rybaczewska-Błażejowska & Wacław Gierulski, 2018. "Eco-Efficiency Evaluation of Agricultural Production in the EU-28," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    16. Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.
    17. María Pérez Urdiales & Alfons Oude Lansink & Alan Wall, 2016. "Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 559-574, August.
    18. Aldanondo, Ana M. & Casasnovas, Valero L. & Almansa, M. Carmen, 2016. "Cost-constrained measures of environmental efficiency: a material balance approach," MPRA Paper 72490, University Library of Munich, Germany.
    19. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    20. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    21. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7826-:d:685330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.