Skip to content

zhehaoxu/deep-deploy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

deploy deep learning model with MNN.

build

  1. install opencv;

  2. build MNN

  3. build this project

    mkdir build;cd build
    cmake -DMNN="your MNN path" ..
    make
    

use

image classification

model source demo note
MobileNet V1/V2/V3 link src
EfficientNet link src AdvProp use different preprocess
RepVGG link src
./mobilenet mobilenet_v2.mnn cat.jpg

Output:

class: 282 prob: 0.537347
class: 283 prob: 0.14923
class: 286 prob: 0.127461
class: 288 prob: 0.0312308
class: 284 prob: 0.0156367

object detection

model source demo note
Yolo V3 link src pass in lastest version
Yolo V3 link src decode box by hard code
./yolov3 yolov3.mnn image2.jpg

Output:

detection

image segmentation

model source demo note
Deeplab V3 link src
./deeplab deeplab.mnn image1.jpg

Output:

segmentation

cartoonize/style transfer/paint

model source demo note
White Box Cartoonize link src
./white-box-cartoonize cartoonize.mnn food16.jpg 

super resolution

model source demo note
DBPN link src
./dbpn dbpn_x2.mnn butterfly_x2.jpg

tools

  1. frozen_graph.py: to fix input shape or make partition.

Releases

No releases published

Packages

No packages published