Skip to content

wyq977/SpatialDM

 
 

Repository files navigation

SpatialDM: Spatial Direct Messaging Detected by bivariate Moran

About

SpatialDM (Spatial Direct Messaging, or Spatial co-expressed ligand and receptor Detected by Moran's bivariant extension), a statistical model and toolbox to identify the spatial co-expression (i.e., spatial association) between a pair of ligand and receptor.

Uniquely, SpatialDM can distinguish co-expressed ligand and receptor pairs from spatially separating pairs, and identify the spots of interaction.

https://github.com/StatBiomed/SpatialDM/blob/main/docs/.figs/AvsB-1.png?raw=true

With the analytical testing method, SpatialDM is scalable to 1 million spots within 12 min with only one core.

https://github.com/StatBiomed/SpatialDM/blob/main/docs/.figs/runtime_aug16-1.png?raw=true

It comprises two main steps: 1) global selection spatialdm_global to identify significantly interacting LR pairs; 2) local selection spatialdm_local to identify local spots for each interaction.

Installation

SpatialDM is available through PyPI. To install, type the following command line and add -U for updates:

pip install -U SpatialDM

Alternatively, you can install from this GitHub repository for latest (often development) version by the following command line:

pip install -U git+https://github.com/leeyoyohku/SpatialDM

Installation time: < 1 min

Quick example

Using the build-in melanoma dataset as an example, the following Python script will compute the p-value indicating whether a certain Ligand-Receptor is spatially co-expressed.

import spatialdm as sdm
import spatialdm.plottings as pl
adata = sdm.datasets.melanoma()
raw = pd.DataFrame(adata.raw.X, index=adata.obs_names, columns=adata.var_names)
log = pd.DataFrame(adata.X, index=adata.obs_names, columns=adata.var_names)
spatialcoord = pd.DataFrame(adata.obsm['spatial'], index=adata.obs_names, columns=['x','y'])

# Preprocessing
my_sample = sdm.SpatialDM(log, raw, spatialcoord)     # load spatial data with simply log, raw, spatial input
my_sample.extract_lr(species='human', min_cell=3)
my_sample.weight_matrix(l=1.2, cutoff=0.2, single_cell=False)  # Not single-cell resolution

# Global selection of significant pairs
my_sample.spatialdm_global(1000, select_num=None, method='permutation')  # complete in seconds
my_sample.sig_pairs(method='permutation', fdr=True, threshold=0.1)     # select significant pairs
pl.global_plot(my_sample, pairs=['CSF1_CSF1R'])  # Overview of global selection

# Local selection of significant spots
my_sample.spatialdm_local(n_perm=1000, method='both', select_num=None, nproc=1)     # local spot selection complete in seconds
my_sample.sig_spots(method='permutation', fdr=False, threshold=0.1)     # significant local spots
pl.plot_pairs(my_sample, ['CSF1_CSF1R'], marker='s') # visualize known melanoma pair(s)

https://github.com/StatBiomed/SpatialDM/blob/main/docs/.figs/global_plot.png?raw=true

https://github.com/StatBiomed/SpatialDM/blob/main/docs/.figs/csf.png?raw=true

Detailed Manual

The full manual is at https://spatialdm.readthedocs.io, including:

References

SpatialDM manuscript with more details is available on bioRxiv now and is currently under review.

About

Spatial direct messaging detected by bivariate Moran

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.7%
  • Python 0.3%