-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Reviewed By: rbgirshick Differential Revision: D7015424 fbshipit-source-id: b8e4a998ae55e717f0b7981f15349d93e464b734
- Loading branch information
1 parent
7d8da09
commit 609dc51
Showing
1 changed file
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# Copyright (c) 2017-present, Facebook, Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
############################################################################## | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
import logging | ||
import numpy as np | ||
import os | ||
import shutil | ||
import tempfile | ||
|
||
from caffe2.python import workspace | ||
|
||
from core.config import assert_and_infer_cfg | ||
from core.config import cfg | ||
from core.config import get_output_dir | ||
from datasets.roidb import combined_roidb_for_training | ||
from modeling import model_builder | ||
import utils.c2 as c2_utils | ||
import utils.logging | ||
import utils.net as nu | ||
|
||
utils.c2.import_detectron_ops() | ||
|
||
|
||
def get_params(model): | ||
blobs = {} # gpu_0 blobs with unscoped_name as key | ||
all_blobs = {} # all blobs with scoped name as key | ||
# Save all parameters | ||
for param in model.params: | ||
scoped_name = str(param) | ||
unscoped_name = c2_utils.UnscopeName(scoped_name) | ||
if 'gpu_0' in scoped_name: | ||
blobs[unscoped_name] = workspace.FetchBlob(scoped_name) | ||
all_blobs[scoped_name] = workspace.FetchBlob(scoped_name) | ||
for param in model.TrainableParams(): | ||
scoped_name = str(param) + '_momentum' | ||
unscoped_name = c2_utils.UnscopeName(scoped_name) | ||
if 'gpu_0' in scoped_name: | ||
blobs[unscoped_name] = workspace.FetchBlob(scoped_name) | ||
all_blobs[scoped_name] = workspace.FetchBlob(scoped_name) | ||
return blobs, all_blobs | ||
|
||
|
||
def add_momentum_init_ops(model): | ||
for param in model.TrainableParams(gpu_id=0): | ||
model.param_init_net.GaussianFill( | ||
[param + '_momentum'], param + '_momentum', mean=0.0, std=1.0) | ||
|
||
|
||
def init_weights(model): | ||
# init weights in gpu_id = 0 and then broadcast | ||
workspace.RunNetOnce(model.param_init_net) | ||
nu.broadcast_parameters(model) | ||
|
||
|
||
def test_restore_checkpoint(): | ||
# Create Model | ||
model = model_builder.create(cfg.MODEL.TYPE, train=True) | ||
add_momentum_init_ops(model) | ||
init_weights(model) | ||
# Fill input blobs | ||
roidb = combined_roidb_for_training( | ||
cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES | ||
) | ||
model_builder.add_training_inputs(model, roidb=roidb) | ||
workspace.CreateNet(model.net) | ||
# Bookkeeping for checkpoint creation | ||
iter_num = 0 | ||
checkpoints = {} | ||
output_dir = get_output_dir(cfg.TRAIN.DATASETS, training=True) | ||
chk_file_path = os.path.join(output_dir, 'model_iter{}.pkl'.format(iter_num)) | ||
checkpoints[iter_num] = chk_file_path | ||
# Save model weights | ||
nu.save_model_to_weights_file(checkpoints[iter_num], model) | ||
orig_gpu_0_params, orig_all_params = get_params(model) | ||
# Change the model weights | ||
init_weights(model) | ||
# Reload the weights in the model | ||
nu.initialize_gpu_from_weights_file(model, chk_file_path, gpu_id=0) | ||
nu.broadcast_parameters(model) | ||
shutil.rmtree(cfg.OUTPUT_DIR) | ||
_, restored_all_params = get_params(model) | ||
# Check if all params are loaded correctly | ||
for scoped_name, blob in orig_all_params.items(): | ||
np.testing.assert_array_equal(blob, restored_all_params[scoped_name]) | ||
# Check if broadcast_parameters works | ||
for scoped_name, blob in restored_all_params.items(): | ||
unscoped_name = c2_utils.UnscopeName(scoped_name) | ||
np.testing.assert_array_equal(blob, orig_gpu_0_params[unscoped_name]) | ||
|
||
|
||
if __name__ == '__main__': | ||
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) | ||
logger = utils.logging.setup_logging(__name__) | ||
logger.setLevel(logging.DEBUG) | ||
logging.getLogger('roi_data.loader').setLevel(logging.INFO) | ||
np.random.seed(cfg.RNG_SEED) | ||
output_dir = tempfile.mkdtemp() | ||
# Generate config for test | ||
cfg.MODEL.TYPE = 'generalized_rcnn' | ||
cfg.MODEL.CONV_BODY = 'FPN.add_fpn_ResNet50_conv5_body' | ||
cfg.MODEL.NUM_CLASSES = 81 | ||
cfg.MODEL.FASTER_RCNN = True | ||
cfg.FPN.FPN_ON = True | ||
cfg.FPN.MULTILEVEL_ROIS = True | ||
cfg.FPN.MULTILEVEL_RPN = True | ||
cfg.FAST_RCNN.ROI_BOX_HEAD = 'fast_rcnn_heads.add_roi_2mlp_head' | ||
cfg.FAST_RCNN.ROI_XFORM_METHOD = 'RoIAlign' | ||
cfg.OUTPUT_DIR = output_dir | ||
cfg.TRAIN.DATASETS = ('coco_2014_minival',) | ||
cfg.TRAIN.WEIGHTS = b'' | ||
for num_gpu in range(workspace.NumCudaDevices()): | ||
cfg.immutable(False) | ||
cfg.NUM_GPUS = num_gpu + 1 | ||
assert_and_infer_cfg() | ||
test_restore_checkpoint() |