-
Notifications
You must be signed in to change notification settings - Fork 89
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Parallel prefix sum for OpenMP backend #703
Conversation
Great idea, we can really use this. I would suggest a slightly modified algorithm though, which would reduce the amount of synchronization and memory access by adding a small sequential part:
This would mean 2n reads and 2n writes in parallel plus p reads and writes sequentially for p threads |
Thanks for taking a look at it. I had actually thought of this first and it's simpler to implement. The advantage is the total work would be O(n) instead of O(n log n), but the disadvantage is the max depth would be O(p). In a weak scaling scenario, which to me is the most important for exascale etc., the max depth would be O(n). The extra memory allocation also becomes O(n). The current approach might be slower for some small problem sizes, but might be better suited for Ginkgo, no? The current approach also avoids dynamic memory allocation altogether. |
Can you clarify what you mean by depth? It sounds like you are implying a size limit for this approach? If necessary, the prefix sum on total_sums can also be parallelized if the number of cores is too large (even though this sounds unlikely on-node). Finally, we only need O(p) additional memory, so this should really be negligible. |
omp/components/prefix_sum.cpp
Outdated
if (num_entries <= 1) { | ||
return; | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
if (num_entries <= 1) { | |
return; | |
} | |
if (num_entries <= 1) { | |
counts[0] = 0; | |
return; | |
} |
By depth I mean the number of sequential steps in the kernel. You make a good point - because this is CPUs we're talking about, the number of cores should typically be very small. In the largest cases maybe it's up to 100 or so but seldom more than that. But by having an extra array in main memory, would we not be introducing more latency? Right now, what you would be storing in the global |
The reads and writes into |
format! |
Codecov Report
@@ Coverage Diff @@
## develop #703 +/- ##
========================================
Coverage 92.44% 92.45%
========================================
Files 363 362 -1
Lines 26923 26920 -3
========================================
- Hits 24890 24888 -2
+ Misses 2033 2032 -1
Continue to review full report at Codecov.
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM! Only small suggestions
omp/components/prefix_sum.cpp
Outdated
partial_sum += nnz; | ||
const auto nentries = static_cast<IndexType>(num_entries); | ||
// the operation only makes sense for arrays of size at least 2 | ||
GKO_ENSURE_COMPATIBLE_BOUNDS(2, nentries); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't think we should restrict ourselves here: There are some cases (conversion between empty matrices, ...) where we call prefix_sum on 0 or 1-sized arrays, the expected output would not be a failure, but writing 0 or nothing to the output array.
964c6e4
to
bf1e2a9
Compare
This implementation has less memory acceses, so should typically be faster. Co-authored-by: Tobias Ribizel <[email protected]>
Co-authored-by: Aditya <[email protected]>
28ab5e2
to
97113d3
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
whitespace changes Co-authored-by: Pratik Nayak <[email protected]>
Kudos, SonarCloud Quality Gate passed! 0 Bugs No Coverage information |
Ginkgo release 1.4.0 The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem which enables Intel-GPU and CPU execution. The only Ginkgo features which have not been ported yet are some preconditioners. Ginkgo's mixed-precision support is greatly enhanced thanks to: 1. The new Accessor concept, which allows writing kernels featuring on-the-fly memory compression, among other features. The accessor can be used as header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example. 2. All LinOps now transparently support mixed-precision execution. By default, this is done through a temporary copy which may have a performance impact but already allows mixed-precision research. Native mixed-precision ELL kernels are implemented which do not see this cost. The accessor is also leveraged in a new CB-GMRES solver which allows for performance improvements by compressing the Krylov basis vectors. Many other features have been added to Ginkgo, such as reordering support, a new IDR solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU for now), machine topology information, and more! Supported systems and requirements: + For all platforms, cmake 3.13+ + C++14 compliant compiler + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+ + clang: 3.9+ + Intel compiler: 2018+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + HIP module: ROCm 3.5+ + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`. + Windows + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+ + Microsoft Visual Studio: VS 2019 + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. Algorithm and important feature additions: + Add a new DPC++ Executor for SYCL execution and other base utilities [#648](#648), [#661](#661), [#757](#757), [#832](#832) + Port matrix formats, solvers and related kernels to DPC++. For some kernels, also make use of a shared kernel implementation for all executors (except Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856) + Add accessors which allow multi-precision kernels, among other things. [#643](#643), [#708](#708) + Add support for mixed precision operations through apply in all LinOps. [#677](#677) + Add incomplete Cholesky factorizations and preconditioners as well as some improvements to ILU. [#672](#672), [#837](#837), [#846](#846) + Add an AMGX implementation and kernels on all devices but DPC++. [#528](#528), [#695](#695), [#860](#860) + Add a new mixed-precision capability solver, Compressed Basis GMRES (CB-GMRES). [#693](#693), [#763](#763) + Add the IDR(s) solver. [#620](#620) + Add a new fixed-size block CSR matrix format (for the Reference executor). [#671](#671), [#730](#730) + Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780) + Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649) + Add matrix assembly support on CPUs. [#644](#644) + Extends ISAI from triangular to general and spd matrices. [#690](#690) Other additions: + Add the possibility to apply real matrices to complex vectors. [#655](#655), [#658](#658) + Add functions to compute the absolute of a matrix format. [#636](#636) + Add symmetric permutation and improve existing permutations. [#684](#684), [#657](#657), [#663](#663) + Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697) + Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850) + Row-major accessor is generalized to more than 2 dimensions and a new "block column-major" accessor has been added. [#707](#707) + Add an heat equation example. [#698](#698), [#706](#706) + Add ccache support in CMake and CI. [#725](#725), [#739](#739) + Allow tuning and benchmarking variables non intrusively. [#692](#692) + Add triangular solver benchmark [#664](#664) + Add benchmarks for BLAS operations [#772](#772), [#829](#829) + Add support for different precisions and consistent index types in benchmarks. [#675](#675), [#828](#828) + Add a Github bot system to facilitate development and PR management. [#667](#667), [#674](#674), [#689](#689), [#853](#853) + Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781) + Add ssh debugging for Github Actions CI. [#749](#749) + Add pipeline segmentation for better CI speed. [#737](#737) Changes: + Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854) + Add implicit residual log for solvers and benchmarks. [#714](#714) + Change handling of the conjugate in the dense dot product. [#755](#755) + Improved Dense stride handling. [#774](#774) + Multiple improvements to the OpenMP kernels performance, including COO, an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740) + Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718) + Improved Identity constructor and treatment of rectangular matrices. [#646](#646) + Allow CUDA/HIP executors to select allocation mode. [#758](#758) + Check if executors share the same memory. [#670](#670) + Improve test install and smoke testing support. [#721](#721) + Update the JOSS paper citation and add publications in the documentation. [#629](#629), [#724](#724) + Improve the version output. [#806](#806) + Add some utilities for dim and span. [#821](#821) + Improved solver and preconditioner benchmarks. [#660](#660) + Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812) Fixes: + Sorting fix for the Jacobi preconditioner. [#659](#659) + Also log the first residual norm in CGS [#735](#735) + Fix BiCG and HIP CSR to work with complex matrices. [#651](#651) + Fix Coo SpMV on strided vectors. [#807](#807) + Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769) + Fix device_reset issue by moving counter/mutex to device. [#810](#810) + Fix `EnableLogging` superclass. [#841](#841) + Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726) + Decreased test size for a few device tests. [#742](#742) + Fix multiple issues with our CMake HIP and RPATH setup. [#712](#712), [#745](#745), [#709](#709) + Cleanup our CMake installation step. [#713](#713) + Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785) + Simplify third-party integration. [#786](#786) + Improve Ginkgo device arch flags management. [#696](#696) + Other fixes and improvements to the CMake setup. [#685](#685), [#792](#792), [#705](#705), [#836](#836) + Clarification of dense norm documentation [#784](#784) + Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840) + Make multiple operators/constructors explicit. [#650](#650), [#761](#761) + Fix some issues, memory leaks and warnings found by MSVC. [#666](#666), [#731](#731) + Improved solver memory estimates and consistent iteration counts [#691](#691) + Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754) + Fix for ForwardIterator requirements in iterator_factory. [#665](#665) + Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722) + Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852) Related PR: #857
Release 1.4.0 to master The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem which enables Intel-GPU and CPU execution. The only Ginkgo features which have not been ported yet are some preconditioners. Ginkgo's mixed-precision support is greatly enhanced thanks to: 1. The new Accessor concept, which allows writing kernels featuring on-the-fly memory compression, among other features. The accessor can be used as header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example. 2. All LinOps now transparently support mixed-precision execution. By default, this is done through a temporary copy which may have a performance impact but already allows mixed-precision research. Native mixed-precision ELL kernels are implemented which do not see this cost. The accessor is also leveraged in a new CB-GMRES solver which allows for performance improvements by compressing the Krylov basis vectors. Many other features have been added to Ginkgo, such as reordering support, a new IDR solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU for now), machine topology information, and more! Supported systems and requirements: + For all platforms, cmake 3.13+ + C++14 compliant compiler + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+ + clang: 3.9+ + Intel compiler: 2018+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + HIP module: ROCm 3.5+ + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`. + Windows + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+ + Microsoft Visual Studio: VS 2019 + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. Algorithm and important feature additions: + Add a new DPC++ Executor for SYCL execution and other base utilities [#648](#648), [#661](#661), [#757](#757), [#832](#832) + Port matrix formats, solvers and related kernels to DPC++. For some kernels, also make use of a shared kernel implementation for all executors (except Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856) + Add accessors which allow multi-precision kernels, among other things. [#643](#643), [#708](#708) + Add support for mixed precision operations through apply in all LinOps. [#677](#677) + Add incomplete Cholesky factorizations and preconditioners as well as some improvements to ILU. [#672](#672), [#837](#837), [#846](#846) + Add an AMGX implementation and kernels on all devices but DPC++. [#528](#528), [#695](#695), [#860](#860) + Add a new mixed-precision capability solver, Compressed Basis GMRES (CB-GMRES). [#693](#693), [#763](#763) + Add the IDR(s) solver. [#620](#620) + Add a new fixed-size block CSR matrix format (for the Reference executor). [#671](#671), [#730](#730) + Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780) + Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649) + Add matrix assembly support on CPUs. [#644](#644) + Extends ISAI from triangular to general and spd matrices. [#690](#690) Other additions: + Add the possibility to apply real matrices to complex vectors. [#655](#655), [#658](#658) + Add functions to compute the absolute of a matrix format. [#636](#636) + Add symmetric permutation and improve existing permutations. [#684](#684), [#657](#657), [#663](#663) + Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697) + Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850) + Row-major accessor is generalized to more than 2 dimensions and a new "block column-major" accessor has been added. [#707](#707) + Add an heat equation example. [#698](#698), [#706](#706) + Add ccache support in CMake and CI. [#725](#725), [#739](#739) + Allow tuning and benchmarking variables non intrusively. [#692](#692) + Add triangular solver benchmark [#664](#664) + Add benchmarks for BLAS operations [#772](#772), [#829](#829) + Add support for different precisions and consistent index types in benchmarks. [#675](#675), [#828](#828) + Add a Github bot system to facilitate development and PR management. [#667](#667), [#674](#674), [#689](#689), [#853](#853) + Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781) + Add ssh debugging for Github Actions CI. [#749](#749) + Add pipeline segmentation for better CI speed. [#737](#737) Changes: + Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854) + Add implicit residual log for solvers and benchmarks. [#714](#714) + Change handling of the conjugate in the dense dot product. [#755](#755) + Improved Dense stride handling. [#774](#774) + Multiple improvements to the OpenMP kernels performance, including COO, an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740) + Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718) + Improved Identity constructor and treatment of rectangular matrices. [#646](#646) + Allow CUDA/HIP executors to select allocation mode. [#758](#758) + Check if executors share the same memory. [#670](#670) + Improve test install and smoke testing support. [#721](#721) + Update the JOSS paper citation and add publications in the documentation. [#629](#629), [#724](#724) + Improve the version output. [#806](#806) + Add some utilities for dim and span. [#821](#821) + Improved solver and preconditioner benchmarks. [#660](#660) + Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812) Fixes: + Sorting fix for the Jacobi preconditioner. [#659](#659) + Also log the first residual norm in CGS [#735](#735) + Fix BiCG and HIP CSR to work with complex matrices. [#651](#651) + Fix Coo SpMV on strided vectors. [#807](#807) + Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769) + Fix device_reset issue by moving counter/mutex to device. [#810](#810) + Fix `EnableLogging` superclass. [#841](#841) + Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726) + Decreased test size for a few device tests. [#742](#742) + Fix multiple issues with our CMake HIP and RPATH setup. [#712](#712), [#745](#745), [#709](#709) + Cleanup our CMake installation step. [#713](#713) + Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785) + Simplify third-party integration. [#786](#786) + Improve Ginkgo device arch flags management. [#696](#696) + Other fixes and improvements to the CMake setup. [#685](#685), [#792](#792), [#705](#705), [#836](#836) + Clarification of dense norm documentation [#784](#784) + Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840) + Make multiple operators/constructors explicit. [#650](#650), [#761](#761) + Fix some issues, memory leaks and warnings found by MSVC. [#666](#666), [#731](#731) + Improved solver memory estimates and consistent iteration counts [#691](#691) + Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754) + Fix for ForwardIterator requirements in iterator_factory. [#665](#665) + Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722) + Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852) Related PR: #866
Simple algorithm with O(n log n) work and O(log n) depth or span.
Edit: It was decided to change the algorithm to one with O(n) work and O(p) depth (p = number of processors). Even though it's less parallel in a sense, it now has less memory accesses.