Skip to content

XifengGuo/IDEC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improved Deep Embedded Clustering (IDEC)

Keras implementation for our IJCAI-17 paper:

and re-implementation for paper:

  • Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. ICML 2016.

This code requires pretrained autoencoder weights provided. Use IDEC-toy code for a quick start.

Usage

  1. Install Keras v2.0, scikit-learn and git
    sudo pip install keras scikit-learn
    sudo apt-get install git

  2. Clone the code to local.
    git clone https://github.com/XifengGuo/IDEC.git IDEC

  3. Prepare datasets.

     cd IDEC/data/usps   
     bash ./download_usps.sh   
     cd ../reuters  
     bash ./get_data.sh   
     cd ../..
    
  4. Get pre-trained autoencoder's weights.
    Follow instructions at https://github.com/piiswrong/dec to pre-train the autoencoder. Then save the trained weights to a keras model (e.g. mnist_ae_weights.h5) and put it in folder 'ae_weights'.
    If you do not want to install Caffe package, you can download the pretrained weights from
    https://github.com/XifengGuo/data-and-models
    Then put .h5 file in ae_weights in local folder 'ae_weights'.
    Or you can just use IDEC-toy code for a quick start, but the results may be not promising.

  5. Run experiment on MNIST.
    python IDEC.py mnist --ae_weights ae_weights/mnist_ae_weights.h5
    or
    python DEC.py mnist --ae_weights ae_weights/mnist_ae_weights.h5
    The IDEC (or DEC) model is saved to "results/idec/IDEC_model_final.h5" (or "results/dec/DEC_model_final.h5").

  6. Run experiment on USPS.
    python IDEC.py usps --ae_weights ae_weights/usps_ae_weights --update_interval 30
    python DEC.py usps --ae_weights ae_weights/usps_ae_weights --update_interval 30

  7. Run experiment on REUTERSIDF10K.
    python IDEC.py reutersidf10k --ae_weights ae_weights/reutersidf10k_ae_weights --n_clusters 4 --update_interval 3
    python DEC.py reutersidf10k --ae_weights ae_weights/reutersidf10k_ae_weights --n_clusters 4 --update_interval 20

Models

The DEC model:

The IDEC model:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published