Improved Deep Embedded Clustering with Local Structure Preservation

Xifeng Guo, Long Gao, Xinwang Liu, Jianping Yin
College of Computer, National University of Defense Technology, Changsha, China
guoxifeng1990@163.com, 1017730430@qq.com, 1022xinwang.liu@ gmail.com, jpyin @nudt.edu.cn

Abstract

Deep clustering learns deep feature representations
that favor clustering task using neural networks.
Some pioneering work proposes to simultaneously
learn embedded features and perform clustering
by explicitly defining a clustering oriented loss.
Though promising performance has been demon-
strated in various applications, we observe that a
vital ingredient has been overlooked by these work
that the defined clustering loss may corrupt fea-
ture space, which leads to non-representative mean-
ingless features and this in turn hurts clustering
performance. To address this issue, in this paper,
we propose the Improved Deep Embedded Cluster-
ing (IDEC) algorithm to take care of data structure
preservation. Specifically, we manipulate feature
space to scatter data points using a clustering loss as
guidance. To constrain the manipulation and main-
tain the local structure of data generating distribu-
tion, an under-complete autoencoder is applied. By
integrating the clustering loss and autoencoder’s re-
construction loss, IDEC can jointly optimize clus-
ter labels assignment and learn features that are
suitable for clustering with local structure preser-
vation. The resultant optimization problem can be
effectively solved by mini-batch stochastic gradi-
ent descent and backpropagation. Experiments on
image and text datasets empirically validate the im-
portance of local structure preservation and the ef-
fectiveness of our algorithm.

1 Introduction

Unsupervised clustering is a vital research topic in data sci-
ence and machine learning. Traditional clustering algo-
rithms like k-means [MacQueen, 1967], gaussian mixture
model [Bishop, 2006] and spectral clustering [Von Luxburg,
2007] group data on handcrafted features according to intrin-
sic characteristics or similarity. However, when the dimen-
sion of input feature space (data space) is very high, the clus-
tering becomes ineffective due to unreliable similarity met-
rics. Transforming data from high dimensional feature space
to lower dimensional space in which to perform clustering
is an intuitive solution and has been widely studied. This

can be done by applying dimension reduction techniques like
Principle Component Analysis (PCA), but the representation
ability of these shallow models is limited. Thanks to the de-
velopment of deep learning, such feature transformation can
be achieved by using Deep Neural Networks (DNN). We refer
to this kind of clustering as deep clustering.

Deep clustering is most recently proposed and leaves a
lot of problems unsolved. For example, what types of neu-
ral networks are proper? How to provide guidance informa-
tion i.e. to define clustering oriented loss function? Which
properties of data should be preserved during transforma-
tion? The primitive work in deep clustering focuses on
learning features that preserve some properties of data by
adding priori knowledge to the subjective [Tian et al., 2014;
Peng et al,, 2016]. They are two-stage algorithms: fea-
ture transformation and then clustering. Latter, algorithms
that jointly accomplish feature transformation and clustering
come into being [Yang er al., 2016; Xie et al., 2016]. The
Deep Embedded Clustering (DEC) [Xie et al., 2016] algo-
rithm defines an effective objective in a self-learning man-
ner. The defined clustering loss is used to update parameters
of transforming network and cluster centers simultaneously.
The cluster assignment is implicitly integrated to soft labels.
However, the local structure preservation can not be guaran-
teed by the clustering loss. Thus the feature transformation
may be misguided, leading to corruption of embedded space.

To deal with this problem, in this paper, we assume that
both clustering oriented loss guidance and local structure
preservation mechanism are essential for deep clustering. In-
spired by [Peng er al., 2016], we use under-complete au-
toencoder to learn embedded features and to preserve local
structure of data generating distribution. We propose to in-
corporate autoencoder into DEC framework. In this way, the
proposed framework can jointly perform clustering and learn
representative features with local structure preservation. We
refer to our algorithm as Improved Deep Embedded Cluster-
ing (IDEC). The optimization of IDEC can directly perform
mini-batch stochastic gradient descent and backpropagation.
At last, some experiments are carefully designed and con-
ducted. The results validate our assumption and the effective-
ness of our IDEC.

The contributions of this work are summarized as below:

e We propose a deep clustering algorithm that can jointly
perform clustering and learn representative features with

local structure preservation.

e We empirically prove the importance of local structure
preservation in deep clustering.

e The proposed IDEC outperforms the newest opponent in
a large margin.

2 Related Work
2.1 Deep Clustering

Existing deep clustering algorithms broadly fall into two cat-
egories: (i) two-stage work that applies clustering after hav-
ing learned a representation, and (ii) approaches that jointly
optimize the feature learning and clustering.

The former category of algorithms directly take advan-
tage of existing unsupervised deep learning frameworks and
techniques. For example, [Tian er al., 2014] uses autoen-
coder to learn low dimensional features of original graph, and
then runs k-means algorithm to get clustering results. [Chen,
2015] layer-wisely trains a Deep Belief Network (DBN) and
then applies non-parametric maximum-margin clustering to
learned intermediate representation. [Peng et al., 2016] uses
autoencoder with sparsity prior to learn representations in
nonlinear latent space that are adaptive to local and global
subspace structure simultaneously, and then traditional clus-
tering algorithms are employed to get label assignment.

The other category of algorithms try to explicitly define
a clustering loss, simulating classification error in supervised
deep learning. [Yang et al., 2016] proposes a recurrent frame-
work in deep representations and image clusters, which in-
tegrates two processes into a single model with a unified
weighted triplet loss and optimizes it end-to-end. DEC [Xie et
al., 2016] learns a mapping from the observed space to a low-
dimensional latent space with deep neural networks, which
can obtain feature representations and cluster assignments si-
multaneously.

The proposed algorithm intrinsically is a modified version
of DEC with incorporating an under-complete autoencoder
to preserve local structure. It excels [Yang er al., 2016] by
simplicity without recurrent and outperforms DEC in terms
of clustering accuracy and feature’s representativeness. Since
IDEC mainly depends on autoencoder and DEC, we will in-
troduce them in more detail in the following sections.

2.2 Autoencoder

An autoencoder is a neural network that is trained to attempt
to copy its input to its output. Internally, it has a hidden layer
z that describes a code used to represent the input. The net-
work consists of two parts: an encoder function z = fy (z)
and a decoder ' = gy (z) that produces a reconstruction.
There are two widely used types of autoencoders.

Under-complete autoencoder. It controls the dimension
of latent code z lower than input data . Learning such under-
complete representations force the autoencoder to capture the
most salient features of the data.

Denoising autoencoder. Instead of reconstructing = given
x, denoising autoencoder minimizes the following objective:

L= |z — gw (fw(@)|3 (1)

where 7 is a copy of x that is corrupted by some form of
noise. Therefore, denoising autoencoder has to recover x
from this corruption rather than simply copying their input.
In this way, denoising autoencoder can force encoder fy and
decoder gy to implicitly capture the structure of data gener-
ating distribution.

In our algorithm, the denoising autoencoder is used for pre-
training and under-complete autoencoder is added to DEC
framework after initialization.

2.3 Deep Embedded Clustering

Deep Embedded Clustering (DEC) [Xie ef al., 2016] starts
with pretraining an autoencoder and then removes the de-
coder. The remaining encoder is finetuned by optimizing the
following objective:

L=KL(PIQ) =3 piylogt”)
i g J

where ¢;; is the similarity between embedded point
z; and cluster center p; measured by Student’s ¢-
distribution [Maaten and Hinton, 2008]:

(4 llze — p501*) 7"

A SNy P e)

And p;; in (2) is the target distribution defined as

q%j/ Zz qij
> (a2 ais)

As we can see, the target distribution P is defined by @, so
minimizing L is a form of self-training [Nigam and Ghani,
2000].

Let fy be the encoder mapping, i.e. z; = fy (x;) where
x; is input example from dataset X. After pretraining, all em-
bedded points {z;} can be extracted using fy,. Then employ
k-means on {z;} to get initial cluster centers {/;}. After-
wards, L can be computed according to (2), (3) and (4). And
the predicted label of sample x; is arg max; g;;.

During backpropagation, 0L/0z; and OL/0p; can be eas-
ily computed. Then 0L/0z; is passed down to update fy,
and OL/0p; is used to update cluster center j;:

oL
Wi = Hj —)\% o)

Dij = 4

The biggest contribution of DEC is the clustering loss (or
target distribution P, to be specific). It works by using high
confidential samples as supervision and then making samples
in each cluster distribute more densely. However, there is no
guarantee of pulling samples near margins towards the correct
cluster. We deal with this problem by explicitly preserving
the local structure of data. Under this condition, the super-
vision information of high confidential samples can help the
marginal samples walk to the correct cluster.

3 Improved Deep Embedded Clustering

Consider a dataset X with n samples and each sample x; €
R? where d is the dimension. The number of clusters K is a

Decoder

il

D Clustering loss

Encoder

o

SSO| UOIONIISU0JaY

Figure 1: The network structure of IDEC. The encoder and decoder
are composed of fully connected layers. Clustering loss is used to
scatter the embedded points z and the reconstruction loss makes sure
that the embedded space preserves local structure of data generating
distribution.

priori knowledge and the jth cluster center is represented by
p; € R Let the value of s; € {1,2,..., K} represent the
cluster index assigned to sample z;. Define nonlinear map-
ping fw : x; — z; and gy : z; — x} where z; is the
embedded point of z; in the low dimensional feature space
and z is the reconstructed sample for ;.

We aim to find a good fyr which makes embedded points
{z;}?_, more suitable for clustering task. To this end, two
components are essential: the autoencoder and clustering
loss. The autoencoder is used to learn representations in un-
supervised manner and the learned features can preserve in-
trinsic local structure in data. The clustering loss, borrowed
from [Xie et al., 20161, is responsible for manipulating em-
bedded space in order to scatter embedded points. The whole
network structure is illustrated in Fig. 1. And the objective is
defined as

L=L,+~L. (6)

where L, and L. are reconstruction loss and clustering loss
respectively, and v > 0 is a coefficient that controls the de-
gree of distorting embedded space. When v = 1 and L, = 0,
(6) reduces to the objective of DEC [Xie et al., 2016].

3.1 Clustering loss and Initialization

The clustering loss is proposed by [Xie et al., 2016]. It is de-
fined as KL divergence between distributions P and (), where
@ is the distribution of soft labels measured by Student’s ¢-
distribution and P is the target distribution derived from Q.
That is to say, the clustering loss is defined as

L. = KL(P||Q) = ZZp” 1ogp”)

where K L is KullbackLeibler divergence that measures the
non-symmetric difference between two probability distribu-
tions, P and @ are defined by (4) and (3). Details can be
found in Section 2.3 and [Xie et al., 2016].

Follow suggestions in [Xie et al., 2016], we also pretrain a
stacked denoising autoencoder before performing clustering.
After pretraining, embedded points are valid feature represen-
tations for input samples. Then cluster centers {y; }szl can
be initialized by employing k-means on {z; = fw (z;)}7,

3.2 Local structure preservation

The embedded points obtained in Section 3.1 are not neces-
sarily suitable for clustering task. To this end, DEC [Xie et
al., 2016] abandons the decoder and finetunes the encoder us-
ing clustering loss L.. However, we suppose that this kind of
finetuning could distort the embedded space, weaken the rep-
resentativeness of embedded features and thereby hurt clus-
tering performance. Therefore, we propose to keep the de-
coder untouched and directly attach the clustering loss to em-
bedded space.

To ensure the effectiveness of clustering loss, the stacked
denoising autoencoder used in pretraining is not appropriate
any more. Because the clustering should be performed on
features of clean data, instead of noised data that used in de-
noising autoencoder. So we directly remove the noise. Then
the stacked denoising autoencoder degenerates into an under-
complete autoencoder (See Section 2.2). The reconstruction
loss is measured by Mean Squared Error (MSE):

Z |l — g (23)13 ®)

where z; = fw (x;) and fy and gy are encoder and de-
coder mappings respectively. As shown in [Peng er al., 2016]
and [Goodfellow et al., 2016], autoencoders can preserve lo-
cal structure of data generating distribution. Under this condi-
tion, manipulating embedded space slightly using clustering
loss will not cause corruption. So the coefficient ~ is better
to be less than 1, which will be empirically demonstrated in
Section 4.3.

3.3 Optimization

We optimize (6) using mini-batch stochastic gradient decent
(SGD) and backpropagation. To be specific, there are three
kinds of parameters to optimize or update: autoencoder’s
weights, cluster centers and target distribution P.

Update autoencoder’s weights and cluster centers. Fix
target distribution P, then the gradients of L. with respect to
embedded point z; and cluster center y; can be computed as:

L. & _
S =23 (1 - wlP) (o -

L. .~ oyl
a; *2;(1+”21 ,LLJH) ((hy

dij)(zi NJ) 9

— pij)(zi — pg) (10)

Note that the above derivations are from [Xie et al., 2016].
Then given a mini batch with m samples and learning rate),
{45 1s updated by

Z

The decoder’s weights are updated by

11
8#J (v

=W - = (12)

The encoder’s weights are updated by

A w= [OL, L,
W—W—m;<aw+vaw> (13)

1=

Update target distribution. The target distribution P
serves as “groundtruth” soft label but also depends on pre-
dicted soft label. Therefore, to avoid instability, P should
not be updated at each iteration (one update for autoencoder’s
weights using a mini-batch of samples is called an iteration)
using only a batch of data. In practice, we update target distri-
bution using all embedded points every T iterations. See (3)
and (4) for the update rules. When update target distribution,
the label assigned to x; is obtained by

$; = arg max ¢, (14)
J

where ¢;; is computed by (3). We will stop training if label
assignment change (in percentage) between two consecutive
updates for target distribution is less than a threshold 6.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1: Improved Deep Embedded Clustering

Input: Input data: X'; Number of clusters: K'; Target
distribution update interval: 7"; Stopping
threshold: §; Maximum iterations: MaxIter.

Output: Autoencoder’s weights W and W’; Cluster

centers u and labels s.
1 Initialize p, W’ and W according to Section 3.1.
2 foriter € {0,1,..., MaxIter} do
if iter%T == 0 then
Compute all embedded points {z; = fw (z;)}7,
Update P using (3), (4) and {z}7 ;.
Save last label assignment: s,;q = s.
Compute new label assignments s via (14).
if sum(soiq # s)/n < § then
| Stop training.

e ® N U R W

10 Choose a batch of samples S € X.
u | Update y, W' and W via (11), (12) and (13) on S.

It is not difficult to see that the time complexity of IDEC al-
gorithm is O(nD? 4+ ndK), where D, d and K are maximum
number of neurons in hidden layers, dimension of embedding
layer and number of clusters. Generally K < d < D holds,
so the time complexity is O(nD?).

4 Experiments

4.1 DataSets

The proposed IDEC method is evaluated on two image
datasets and one text dataset:

o MNIST: The MNIST dataset [LeCun et al., 1998] con-
sists of total 70000 handwritten digits of 28x28 pixel
size. We reshaped each gray image to a 784 dimensional
vector.

e USPS: The USPS dataset contains 9298 gray-scale
handwritten digit images with size of 16x16 pixels. The
features are floating point in [0, 2].

Table 1: Datasets statistics

Dataset # examples | # classes | Dimension
MNIST 70000 10 784
USPS 9298 10 256
REUTERS-10K 10000 4 2000

Accuracy (%)
[e0]
[0,

84}
83
82
81 : : :
0 5000 10000 15000 20000
Iteration
0.5
--- DEC
— |IDEC(total loss)
0.4}

— IDEC(clustering loss)
IDEC(reconstruction loss)

Loss

0.1t"

N 1,

\ LT
AR YN A AR

0.05 5000

10000 15000

Iteration

20000
Figure 2: Accuracies and losses during training on MNIST.

o REUTERS-10K: Reuters contains around 810000 En-
glish news stories labeled with a category tree [Lewis ef
al., 2004]. Following DEC [Xie et al., 2016], we used 4
root categories: corporate/industrial, government/social,
markets and economics as labels and excluded all docu-
ments with multiple labels. Restricted by computational
resources, we randomly sampled a subset of 10000 ex-
amples and computed tf-idf features on the 2000 most
frequent words. The sampled dataset is referred as to
REUTERS-10K.

For all algorithms, we preprocessed datasets as same as DEC,
i.e. normalizing each example z; € X to % ||z;[|3 ~ 1.

4.2 Experiment Setup

Comparing methods. We demonstrate the effectiveness of
our IDEC algorithm mainly by comparing with DEC [Xie et
al., 2016] which can be viewed as a special case of IDEC
when the reconstruction term is set to zero. we use the pub-

Epoch 15

Epoch 30

x
x
o
S

k4

%

e B gy,

W B
B

,% :
.

L2
»

Epoch 10

e

i“:%x s

%,

it

3?"%“

*

'%g; *

w4

Figure 3: Visualization of clustering results on subset of MNIST during training. Different colors mark different clusters. The first row is
ours and second row corresponds to DEC. The proposed IDEC converges slower since it optimizes reconstruction loss as well. Both methods
separate clusters well but the data structure in the first row is preserved better than DEC. Note points with red and blue color, they are totally

mixed together in DEC while still somehow separable in our IDEC.

licly available code released by the author to report the per-
formance of DEC. The two-stage deep clustering algorithm is
denoted as AE+k-means, which means performing k-means
algorithm on embedded features of pretrained autoencoder.
This is the same as the results of DEC and IDEC before train-
ing with clustering loss. For the sake of completeness, two
traditional and classic clustering algorithms, k-means and
Spectral Embedded Clustering (SEC) [Nie et al., 2011], are
also included in comparison. k-means is run 20 times with
different initialization and the result with best objective value
is chosen. SEC is a variant of spectral clustering with a lin-
earity regularization explicitly added and outperforms tradi-
tional spectral clustering methods on a wide range of datasets
according to [Nie ef al., 2011]. The parameters of SEC are
fixed as default value in the code provided by the authors.

Parameters setting. Following the settings in DEC [Xie
et al., 2016], the encoder network is set as a fully connected
multilayer perceptron (MLP) with dimensions d—500—500—
2000 — 10 for all datasets, where d is the dimension of input
data (features). And the decoder network is a mirror of en-
coder, i.e. a MLP with dimensions 10— 2000 — 500 — 500 —d.
Except for input, output and embedding layers, all internal
layers are activated by ReLU nonlinearity function [Glorot et
al., 2011]. The autoencoder network pretraining is set exactly
the same as [Xie et al., 2016], please refer to the paper for
more details. After pretraining, the coefficient v of clustering
loss is set to 0.1 (this is determined by a grid search in {0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1.0}) and batch size to 256 for all
datasets. The optimizer Adam [Kingma and Ba, 2014] with
init learning rate A = 0.001, 81 = 0.9, B2 = 0.999 is applied
for MNIST dataset and SGD with learning rate A = 0.1 and
momentum 3 = 0.99 is used for USPS and REUTERS-10K
datasets. The convergence threshold is set to 6 = 0.1%. And

Table 2: Comparison of clustering performance in terms of accuracy
(%) and NMI (%, in bracket).

[Methods | MNIST | USPS | REUTERS-10K |
k-means 53.24 66.82 51.62
SEC 80.37 N/A 60.08
AE+k-means | 81.82(74.73) | 69.31(66.20) 70.52(39.79)
DEC 86.55(83.72) | 74.08(75.29) 73.68(49.76)
IDEC 88.06(86.72) | 76.05(78.46) 75.64(49.81)

the update intervals 71" are 140, 30, 3 iterations for MNIST,
USPS and REUTERS-10K respectively. Our implementation
is based on Python and Keras [Chollet, 2015] and is available
athttps://github.com/XifengGuo/IDEC.

Evaluation Metric. All clustering methods are evaluated
by clustering accuracy (ACC) and Normalized Mutual Infor-
mation (NMI) which are widely used in unsupervised learn-
ing scenario.

4.3 Results

We report the results of all comparing algorithms on 3
datasets in Table 2. As it shows, deep clustering algorithms
AE+k-means, DEC and IDEC outperform traditional cluster-
ing algorithms k-means and Spectral Embedded Clustering
(SEC) [Nie et al., 2011] with a large margin, which indi-
cates the fascinating potentials of deep learning in unsuper-
vised clustering field. The performance gap between AE+k-
means and DEC reflects the effect of clustering loss. And
the outperformance of IDEC over DEC demonstrates that the
autoencoder can help improve clustering performance.
Figure 2 illustrates the behavior of DEC and IDEC dur-
ing training on MNIST. We observe the following phenom-
ena. First, the final accuracies comply with results in Table 2,

— IDEC A=0.1 — IDEC A=0.01
— - DECA=0.1 — - DECX=0.01

— IDEC A=0.001

— IDEC XA =0.0001
DEC A=0.001 — - DEC A=0.0001

80 I I I
107

—A=0.1

N
A=0

. 0001

Figure 4: The effect of learning rate A and clustering coefficient «y in (6) on clustering performance for MNIST dataset.

i.e. IDEC outperforms DEC. Second, IDEC converges slower
than DEC because of the fluctuation of reconstruction loss.
Third, IDEC has larger clustering loss and higher clustering
accuracy than DEC. This implies that the objective of DEC
may mislead the clustering procedure by distorting the em-
bedded feature space and breaking the intrinsic structure of
data. Finally, the reconstruction losses at last few iterations
approximately equal the loss at beginning. It implies that the
performance improvement from DEC to IDEC is not likely
due to the clustering ability of autoencoder. Actually, we did
conduct an experiment that finetunes the autoencoder only us-
ing reconstruction loss L, (by setting coefficient v in (6) to
0) via various optimizers, and no improvement in terms of
clustering accuracy was observed. So we assume that the au-
toencoder plays the role of preserving local structure of data,
and under this condition clustering loss can manipulate em-
bedded space to get better clustering accuracy.

We further prove our assumption about the role autoen-
coder acts by visualizing the embedded feature space during
training. The t-SNE [Maaten and Hinton, 2008] visualization
on a random subset of MNIST with 1000 samples is shown in
Fig. 3. From left to right in the top row, the training process
of IDEC, the “shape” of each cluster is almost maintained.
On the contrary, the “shape” in the bottom is changed a lot
with training proceeding. Furthermore, when you focus on
clusters colored by red and blue (digits 4 and 9), in the first
column they are still separable but become distinguishable in
the last column. This is a loophole of DEC’s objective (clus-
tering loss). Our IDEC doesn’t overcome this problem, but
does go further than DEC. To validate this, see the figures in
the last column: blue and red clusters of IDEC are still some-
how separable while in DEC they are totally mixed up. This
problem was not observed from Figure 5 in [Xie er al., 2016],
but it indeed happens by using their released code. This is
also pointed out by [Zheng et al., 2016]. It can be concluded
that the autoencoder can preserve the intrinsic structure of
data generating distribution and hence help clustering loss to

manipulate the embedded feature space appropriately.

To see how the coefficient v of clustering loss in (6) affects
the performance of IDEC algorithm, we conduct experiment
on MNIST dataset by sampling in range [10~2,10%]. The
optimizer is set as SGD with momentum 5 = 0.9, as same as
DEC'’s default setting, for fair comparison. The learning rate
Ads setas 0.1,0.01,0.001,0.0001 successively. As shown in
Figure 4, there are following observations:

e For the best learning rate, IDEC (A = 0.1) outperforms
DEC (A = 0.01) when « € [0.05,1.0]. Because « with
too small value eliminates the positive effect of clus-
tering loss term and large value tends to distort latent
feature space. When v — 0, the clustering result ap-
proaches the result of AE+k-means.

e | earning rate A and clustering coefficient -y are coupling.
For larger +, it requires smaller A to maintain perfor-
mance. But the combination of small v and large)\ leads
to higher performance. So we recommend v = 0.1, as
we did in all experiments.

5 Conclusion

This paper proposes Improved Deep Embedded Clustering
(IDEC) algorithm, which jointly performs clustering and
learns embedded features that are suitable for clustering and
preserve local structure of data generating distribution. IDEC
manipulates feature space to scatter data by optimizing a KL
divergence based clustering loss with a self-training target
distribution. And it maintains the local structure by incor-
porating an autoencoder. Empirical experiments demonstrate
that structure preservation is vital to deep clustering algo-
rithm and can favor clustering performance. Future work in-
cludes: adding more prior knowledge (e.g. sparsity) in IDEC
framework, and incorporating convolutional layers for image
datasets.

Acknowledgments

This work was financially supported by the National Nat-
ural Science Foundation of China (Project no. 60970034,
61170287, 61232016 and 61672528).

References

[Bishop, 2006] Christopher M Bishop. Pattern Recognition
and Machine Learning. Springer, 2006.

[Chen, 2015] Gang Chen. Deep learning with nonparametric
clustering. arXiv preprint arXiv:1501.03084, 2015.

[Chollet, 2015] Frangois Chollet. Keras, 2015.

[Glorot et al., 2011] Xavier Glorot, Antoine Bordes, and
Yoshua Bengio. Deep sparse rectifier neural networks.
Journal of Machine Learning Research, 15:315-323,
2011.

[Goodfellow et al., 2016] Tan Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep learning. MIT Press, 2016.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

[Lewis et al., 2004] David D Lewis, Yiming Yang, Tony G
Rose, and Fan Li. Rcvl: A new benchmark collection for

text categorization research. Journal of Machine Learning
Research, 5(Apr):361-397, 2004.

[Maaten and Hinton, 2008] Laurens van der Maaten and Ge-
offrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579-2605, 2008.

[MacQueen, 1967] James MacQueen. Some methods for
classification and analysis of multivariate observations. In
Berkeley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281-297. Oakland, CA, USA.,
1967.

[Nie et al., 2011] Feiping Nie, Zinan Zeng, Ivor W Tsang,
Dong Xu, and Changshui Zhang. Spectral embedded
clustering: A framework for in-sample and out-of-sample
spectral clustering. [EEE Transactions on Neural Net-
works, 22(11):1796-1808, 2011.

[Nigam and Ghani, 2000] Kamal Nigam and Rayid Ghani.
Analyzing the effectiveness and applicability of co-
training. In International Conference on Information and
Knowledge Management, pages 86-93. ACM, 2000.

[Peng er al., 2016] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-
Yun Yau, and Zhang Yi. Deep subspace clustering with
sparsity prior. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2016.

[Tian et al., 2014] Fei Tian, Bin Gao, Qing Cui, Enhong
Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In AAAI pages 1293-1299, 2014.

[Von Luxburg, 2007] Ulrike Von Luxburg. A tutorial on
spectral clustering. Statistics and Computing, 17(4):395-
416, 2007.

[Xie et al., 2016] Junyuan Xie, Ross Girshick, and Ali
Farhadi. Unsupervised deep embedding for clustering
analysis. In International Conference on Machine Learn-
ing (ICML), 2016.

[Yang er al., 2016] Jianwei Yang, Devi Parikh, and Dhruv
Batra. Joint unsupervised learning of deep representations
and image clusters. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5147-5156,
2016.

[Zheng et al., 2016] Yin Zheng, Huachun Tan, Bangsheng
Tang, Hanning Zhou, et al. Variational deep embed-

ding: A generative approach to clustering. arXiv preprint
arXiv:1611.05148, 2016.

