魚嘴
魚嘴(fish mouth)也稱魚顎或魚頜(fish jaw),是構成魚類的口腔的骨骼、軟骨、肌肉和韌帶等軟組織的組合結構,是魚類消化道和呼吸道的開端。絕大多數硬骨魚有兩套頜骨——主要的口頜(oral jaws)負責開合嘴部併吞咬食物,而位於咽部後方的咽頜(pharyngeal jaws)則負責咀嚼和吞咽食物[2][3]。軟骨魚類(比如鯊魚和鰩魚)只有由軟骨組成的口頜。通常情況下,魚類的頜骨由關節連接、垂直相對的上頜和下頜組成,並且可以擁有規則排列的牙齒。軟骨魚的口頜則會長出數套多次從內向外移動更換的牙齒。
魚類的頜骨(特別是硬骨魚)演化出了類似連杆機構的複雜結構,來適應水域生態系統中的各種競爭需求。比較明顯的是能夠迅速協調的將頜骨向前突出張開的平面四桿機構,使得魚嘴可以迅速擴大口腔體積並產生負壓將獵物吸入口中。魚類的前上頜骨也配有這種結構[4],使得整個魚嘴擁有三套四桿機構可以前後、上下、左右的口腔直徑都產生擴大[4][5][6]。
演化
[編輯]魚嘴的頜骨結構可能來源於支撐無頜魚類鰓部的咽弓(pharyngeal arches)。最早的魚頜出現在約4億3000萬年前的志留紀的(已滅絕的)盾皮魚[8]和棘魚之中[9]。擁有可積極開合的顎部最初的選擇優勢可能並不與進食有關,而是增加呼吸效率——顎部開合產生的「頰泵」(buccal pump)效應可以讓更多的新鮮水在單位時間內流過魚鰓以便增加納氧量。用開合頜骨進行吞咬很可能只是一個連帶產生的副功能,但隨後變成了許多從早期魚類演化出的脊椎動物的主要生存技能,被一些演化生物學家譽為「脊椎動物歷史上最深刻並最激進的演化步伐」[10][11]和「至關重要的創新」[12]。相比之下,無頜魚類的生存難度更高,因此大部分都在三疊紀滅絕沒能存活至今,對少數存活至今的圓口綱魚類(盲鰻和七鰓鰻)的研究也沒能幫助解釋早期頜骨的演化對脊椎動物頭骨深層重塑的影響[13][14]。
通常的看法是脊椎動物的頜骨與魚類的鰓弓(branchial arch或gill arches)同源[15],都來自於胚胎階段發展出的咽弓。無頜魚的鰓裂開口在嘴後方,由軟骨組織支撐,而第一組鰓弓則環繞嘴口。這第一組鰓弓在有頜魚中發生對摺彎曲變成了上下頜;第二鰓弓的上部在則變成了負責將頜骨和顱骨連接的舌頜骨(hyomandibula)[16],在真骨魚中還負責懸掛鰓蓋(operculum)[17]。現在被普遍接受的看法是有頜魚類的祖先是身上有骨質的甲板覆蓋、無頜的甲冑魚[18][19]。
另見
[編輯]參考
[編輯]- ^ 1.0 1.1 Fraser, G. J.; Hulsey, C. D.; Bloomquist, R. F.; Uyesugi, K.; Manley, N. R.; Streelman, J. T. An ancient gene network is co-opted for teeth on old and new jaws. PLOS Biology. 2009, 7 (2): e1000031. PMC 2637924 . PMID 19215146. doi:10.1371/journal.pbio.1000031.
- ^ Mabuchi, K.; Miya, M.; Azuma, Y.; Nishida, M. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evolutionary Biology. 2007, 7 (1): 10. PMC 1797158 . PMID 17263894. doi:10.1186/1471-2148-7-10.
- ^ Alfaro, M. E.; Brock, C. D.; Banbury, B. L.; Wainwright, P. C. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?. BMC Evolutionary Biology. 2009, 9 (1): 255. PMC 2779191 . PMID 19849854. doi:10.1186/1471-2148-9-255.
- ^ 4.0 4.1 Westneat, Mark W. Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models. Journal of Morphology. September 1990, 205 (3): 269–295. PMID 29865760. S2CID 46933606. doi:10.1002/jmor.1052050304.
- ^ Olsen, Aaron M.; Camp, Ariel L.; Brainerd, Elizabeth L. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom. Journal of Experimental Biology. 15 December 2017, 220 (24): 4612–4623. PMID 29237766. doi:10.1242/jeb.159079 .
- ^ Muller, M. A novel classification of planar four-bar linkages and its application to the mechanical analysis of animal systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 29 May 1996, 351 (1340): 689–720. Bibcode:1996RSPTB.351..689M. PMID 8927640. doi:10.1098/rstb.1996.0065.
- ^ Benton 2005.
- ^ Placodermi: Overview. Palaeos. [10 December 2014]. (原始內容存檔於2022-06-28).
- ^ Acanthodii. Palaeos. [10 December 2014]. (原始內容存檔於2022-06-28).
- ^ Gai, Z.; Zhu, M. The origin of the vertebrate jaw: Intersection between developmental biology-based model and fossil evidence. Chinese Science Bulletin. 2012, 57 (30): 3819–3828. Bibcode:2012ChSBu..57.3819G. doi:10.1007/s11434-012-5372-z .
- ^ Maisey, J. G. Discovering Fossil Fishes. Westview Press. 2000: 1–223 [2023-01-06]. ISBN 978-0-8133-3807-1. (原始內容存檔於2022-06-30).
- ^ Kimmel, C. B.; Miller, C. T.; Keynes, R. J. Neural crest patterning and the evolution of the jaw. Journal of Anatomy. 2001, 199 (1&2): 105–119. PMC 1594948 . PMID 11523812. doi:10.1017/S0021878201008068.
- ^ Janvier, P. Homologies and Evolutionary Transitions in Early Vertebrate History. Anderson, J. S.; Sues, H.-D. (編). Major Transitions in Vertebrate Evolution. Indiana University Press. 2007: 57–121 [2023-01-06]. ISBN 978-0-253-34926-2. (原始內容存檔於2022-06-29).
- ^ Khonsari, R. H.; Li, B.; Vernier, P.; Northcutt, R. G.; Janvier, P. Agnathan brain anatomy and craniate phylogeny. Acta Zoologica. 2009, 90 (s1): 52–68. S2CID 56425436. doi:10.1111/j.1463-6395.2008.00388.x.
- ^ For example: (1) both sets of bones are made from neural crest cells (rather than mesodermal tissue like most other bones); (2) both structures form the upper and lower bars that bend forward and are hinged in the middle; and (3) the musculature of the jaw seem homologous to the gill arches of jawless fishes. (Gilbert 2000)
- ^ Gilbert. Evolutionary Embryology. 2000 [2022-06-27]. (原始內容存檔於2021-09-07).
- ^ Clack, J. A. Earliest known tetrapod braincase and the evolution of the stapes and fenestra ovalis. Nature. 1994, 369 (6479): 392–394. Bibcode:1994Natur.369..392C. S2CID 33913758. doi:10.1038/369392a0.
- ^ Donoghue, P. C.; Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends in Ecology & Evolution. 2005, 20 (6): 312–319. PMID 16701387. doi:10.1016/j.tree.2005.04.008.
- ^ Forey, P. L.; Janvier, P. Agnathans and the origin of jawed vertebrates. Nature. 1993, 361 (6408): 129–134. Bibcode:1993Natur.361..129F. S2CID 43389789. doi:10.1038/361129a0.
額外閱讀
[編輯]- Benton, Michael J. Vertebrate Palaeontology 3rd. John Wiley & Sons. 2009. ISBN 978-1-4051-4449-0.
- Botella, H.; Blom, H.; Dorka, M.; Ahlberg, P. E.; Janvier, P. Jaws and teeth of the earliest bony fishes. Nature. 2007, 448 (7153): 583–586. Bibcode:2007Natur.448..583B. PMID 17671501. S2CID 4337868. doi:10.1038/nature05989.
- Compagnucci, C; Debiais-Thibaud, M; Coolen, M; Fish, J; Griffin, J N; Bertocchini, F; Minoux, M; Rijli, F M; Borday-Birraux, V; Casane, D; Mazanc, S; Depew, M J. Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Developmental Biology. 2013, 377 (2): 428–448. PMID 23473983. doi:10.1016/j.ydbio.2013.02.022 .
- Depew, M J; Lufkin, T; Rubenstein, J L. Specification of jaw subdivisions by Dlx genes. Science. 2002, 298 (5592): 381–385. PMID 12193642. S2CID 10274300. doi:10.1126/science.1075703.
- Forey, Peter; Janvier, Philippe. Agnathans and the origin of jawed vertebrates. Gee, Henry (編). Shaking the tree: readings from Nature in the history of life. USA: University of Chicago Press; Nature/Macmillan Magazines. 2000: 251–266 [2023-01-06]. ISBN 978-0-226-28497-2. (原始內容存檔於2022-06-30).
- Gilbert, Scott F. The anatomical tradition: Evolutionary Embryology: Embryonic homologies. Developmental Biology. Sunderland (MA): Sinauer Associates, Inc. (NCBI). 2000 [2018-04-09]. (3rd and 4th paras, One of the most celebrated cases...)
- Hulsey, CD; Fraser, GJ; Streelman, JT. Evolution and development of complex biomechanical systems: 300 million years of fish jaws. Zebrafish. 2005, 2 (4): 243–257. CiteSeerX 10.1.1.210.7203 . PMID 18248183. doi:10.1089/zeb.2005.2.243.
- Koentges, G; Matsuoka, T. Jaws of the fates. Science. 2002, 298 (5592): 371–373. PMID 12376690. S2CID 20212436. doi:10.1126/science.1077706.
- Lingham-Soliar, Theagarten. The First Vertebrates, Jawless Fishes, the Agnathans. The Vertebrate Integument Volume 1. 2014: 11–31. ISBN 978-3-642-53747-9. doi:10.1007/978-3-642-53748-6_2.
- Lingham-Soliar, T. The Earliest Jawed Vertebrates, the Gnathostomes. The Vertebrate Integument 1. Springer. 2014: 33–58 [2022-06-27]. ISBN 978-3-642-53748-6. (原始內容存檔於2022-06-30).
- Mallatt, J. The origin of the vertebrate jaw: Neoclassical ideas versus newer, development-based ideas. Zoological Science. 2008, 25 (10): 990–998. PMID 19267635. S2CID 3104126. doi:10.2108/zsj.25.990.
- Mehta, Rita S.; Wainwright, Peter C. Functional morphology of the pharyngeal jaw apparatus in moray eels. Journal of Morphology. May 2008, 269 (5): 604–619. PMID 18196573. S2CID 17013964. doi:10.1002/jmor.10612.
- Muschick, M.; Salzburger, W. Pharyngeal jaws and their evolutionary, ecological and behavioural significance (PDF). Muschick, Moritz (編). Convergence and plasticity in the adaptive radiation of cichlid fishes (PhD論文). University of Basel: 13–37. 2013 [2022-06-27]. (原始內容存檔 (PDF)於2022-07-07).
- Oisi, Y; Ota, K G; Kuraku, S; Fujimoto, S; Kuratani, S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature. 2013, 493 (7431): 175–180. Bibcode:2013Natur.493..175O. PMID 23254938. S2CID 4403344. doi:10.1038/nature11794.
- Romer, Alfred Sherwood; Parsons, Thomas S. The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. 1977. ISBN 978-0-03-910284-5.
- Soukup, V; Horácek, I; Cerny, R. Development and evolution of the vertebrate primary mouth. Journal of Anatomy. 2013, 222 (1): 79–99. PMC 3552417 . PMID 22804777. doi:10.1111/j.1469-7580.2012.01540.x.
- Wainwright, P. C. Functional Morphology of the Pharyngeal Jaw Apparatus. Shadwick, R. E.; Lauder, G. V. (編). Fish Biomechanics. Fish Physiology 23. Academic Press. 2006: 77–102 [2023-01-06]. ISBN 978-0-08-047776-3. (原始內容存檔於2022-06-28). Full view (頁面存檔備份,存於網際網路檔案館)
- Westneat, M. W. Skull Biomechanics and Suction Feeding in Fishes. Shadwick, R. E.; Lauder, G. V. (編). Fish Biomechanics. Fish Physiology 23. Academic Press. 2006: 29–76. ISBN 978-0-08-047776-3.
- Westneat, Mark W. Evolution of levers and linkages in the feeding mechanisms of fishes. Integrative and Comparative Biology. 2004, 44 (5): 378–389. PMID 21676723. doi:10.1093/icb/44.5.378 .
外部連結
[編輯]外部影片連結 | |
---|---|
Video of a slingjaw wrasse catching prey by protruding its jaw | |
Video of a red bay snook catching prey by suction feeding |
- Moray Eels Are Uniquely Equipped to Pack Big Prey Into Their Narrow Bodies (新聞稿). National Science Foundation. September 5, 2007 [2022-06-27]. (原始內容存檔於2017-10-06).
- Myers, PZ. Evolution of the jaw. Pharyngula. 13 March 2007 [2022-06-27]. (原始內容存檔於2021-05-09).
- Barford, Eliot. Ancient fish face shows roots of modern jaw. News. Nature. 25 September 2013 [2022-06-27]. (原始內容存檔於2013-10-31).
- Zhu, Min; Yu, Xiaobo; Erik Ahlberg, Per; Choo, Brian; Lu, Jing; Qiao, Tuo; Qu, Qingming; Zhao, Wenjin; Jia, Liantao; Blom, Henning; Zhu, You’an. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature. 2013, 502 (7470): 188–193. Bibcode:2013Natur.502..188Z. PMID 24067611. S2CID 4462506. doi:10.1038/nature12617.