Z3
Data Structures | Functions | Variables
z3py Namespace Reference

Data Structures

class  Context
 
class  Z3PPObject
 ASTs base class. More...
 
class  AstRef
 
class  SortRef
 
class  TypeVarRef
 
class  FuncDeclRef
 Function Declarations. More...
 
class  ExprRef
 Expressions. More...
 
class  BoolSortRef
 Booleans. More...
 
class  BoolRef
 
class  PatternRef
 Patterns. More...
 
class  QuantifierRef
 Quantifiers. More...
 
class  ArithSortRef
 Arithmetic. More...
 
class  ArithRef
 
class  IntNumRef
 
class  RatNumRef
 
class  AlgebraicNumRef
 
class  BitVecSortRef
 Bit-Vectors. More...
 
class  BitVecRef
 
class  BitVecNumRef
 
class  ArraySortRef
 Arrays. More...
 
class  ArrayRef
 
class  Datatype
 
class  ScopedConstructor
 
class  ScopedConstructorList
 
class  DatatypeSortRef
 
class  DatatypeRef
 
class  ParamsRef
 Parameter Sets. More...
 
class  ParamDescrsRef
 
class  Goal
 
class  AstVector
 
class  AstMap
 
class  FuncEntry
 
class  FuncInterp
 
class  ModelRef
 
class  Statistics
 Statistics. More...
 
class  CheckSatResult
 
class  Solver
 
class  Fixedpoint
 Fixedpoint. More...
 
class  FiniteDomainSortRef
 
class  FiniteDomainRef
 
class  FiniteDomainNumRef
 
class  OptimizeObjective
 Optimize. More...
 
class  Optimize
 
class  ApplyResult
 
class  Simplifier
 
class  Tactic
 
class  Probe
 
class  ParserContext
 
class  FPSortRef
 
class  FPRMSortRef
 
class  FPRef
 
class  FPRMRef
 
class  FPNumRef
 
class  SeqSortRef
 Strings, Sequences and Regular expressions. More...
 
class  CharSortRef
 
class  SeqRef
 
class  CharRef
 
class  ReSortRef
 
class  ReRef
 
class  OnClause
 
class  PropClosures
 
class  UserPropagateBase
 

Functions

def z3_debug ()
 
def enable_trace (msg)
 
def disable_trace (msg)
 
def get_version_string ()
 
def get_version ()
 
def get_full_version ()
 
def open_log (fname)
 
def append_log (s)
 
def to_symbol (s, ctx=None)
 
def z3_error_handler (c, e)
 
def main_ctx ()
 
def get_ctx (ctx)
 
def set_param (*args, **kws)
 
def reset_params ()
 
def set_option (*args, **kws)
 
def get_param (name)
 
def is_ast (a)
 
def eq (a, b)
 
def is_sort (s)
 
def DeclareSort (name, ctx=None)
 
def DeclareTypeVar (name, ctx=None)
 
def is_func_decl (a)
 
def Function (name, *sig)
 
def FreshFunction (*sig)
 
def RecFunction (name, *sig)
 
def RecAddDefinition (f, args, body)
 
def deserialize (st)
 
def is_expr (a)
 
def is_app (a)
 
def is_const (a)
 
def is_var (a)
 
def get_var_index (a)
 
def is_app_of (a, k)
 
def If (a, b, c, ctx=None)
 
def Distinct (*args)
 
def Const (name, sort)
 
def Consts (names, sort)
 
def FreshConst (sort, prefix="c")
 
def Var (idx, s)
 
def RealVar (idx, ctx=None)
 
def RealVarVector (n, ctx=None)
 
def is_bool (a)
 
def is_true (a)
 
def is_false (a)
 
def is_and (a)
 
def is_or (a)
 
def is_implies (a)
 
def is_not (a)
 
def is_eq (a)
 
def is_distinct (a)
 
def BoolSort (ctx=None)
 
def BoolVal (val, ctx=None)
 
def Bool (name, ctx=None)
 
def Bools (names, ctx=None)
 
def BoolVector (prefix, sz, ctx=None)
 
def FreshBool (prefix="b", ctx=None)
 
def Implies (a, b, ctx=None)
 
def Xor (a, b, ctx=None)
 
def Not (a, ctx=None)
 
def mk_not (a)
 
def And (*args)
 
def Or (*args)
 
def is_pattern (a)
 
def MultiPattern (*args)
 
def is_quantifier (a)
 
def ForAll (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
 
def Exists (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
 
def Lambda (vs, body)
 
def is_arith_sort (s)
 
def is_arith (a)
 
def is_int (a)
 
def is_real (a)
 
def is_int_value (a)
 
def is_rational_value (a)
 
def is_algebraic_value (a)
 
def is_add (a)
 
def is_mul (a)
 
def is_sub (a)
 
def is_div (a)
 
def is_idiv (a)
 
def is_mod (a)
 
def is_le (a)
 
def is_lt (a)
 
def is_ge (a)
 
def is_gt (a)
 
def is_is_int (a)
 
def is_to_real (a)
 
def is_to_int (a)
 
def IntSort (ctx=None)
 
def RealSort (ctx=None)
 
def IntVal (val, ctx=None)
 
def RealVal (val, ctx=None)
 
def RatVal (a, b, ctx=None)
 
def Q (a, b, ctx=None)
 
def Int (name, ctx=None)
 
def Ints (names, ctx=None)
 
def IntVector (prefix, sz, ctx=None)
 
def FreshInt (prefix="x", ctx=None)
 
def Real (name, ctx=None)
 
def Reals (names, ctx=None)
 
def RealVector (prefix, sz, ctx=None)
 
def FreshReal (prefix="b", ctx=None)
 
def ToReal (a)
 
def ToInt (a)
 
def IsInt (a)
 
def Sqrt (a, ctx=None)
 
def Cbrt (a, ctx=None)
 
def is_bv_sort (s)
 
def is_bv (a)
 
def is_bv_value (a)
 
def BV2Int (a, is_signed=False)
 
def Int2BV (a, num_bits)
 
def BitVecSort (sz, ctx=None)
 
def BitVecVal (val, bv, ctx=None)
 
def BitVec (name, bv, ctx=None)
 
def BitVecs (names, bv, ctx=None)
 
def Concat (*args)
 
def Extract (high, low, a)
 
def ULE (a, b)
 
def ULT (a, b)
 
def UGE (a, b)
 
def UGT (a, b)
 
def UDiv (a, b)
 
def URem (a, b)
 
def SRem (a, b)
 
def LShR (a, b)
 
def RotateLeft (a, b)
 
def RotateRight (a, b)
 
def SignExt (n, a)
 
def ZeroExt (n, a)
 
def RepeatBitVec (n, a)
 
def BVRedAnd (a)
 
def BVRedOr (a)
 
def BVAddNoOverflow (a, b, signed)
 
def BVAddNoUnderflow (a, b)
 
def BVSubNoOverflow (a, b)
 
def BVSubNoUnderflow (a, b, signed)
 
def BVSDivNoOverflow (a, b)
 
def BVSNegNoOverflow (a)
 
def BVMulNoOverflow (a, b, signed)
 
def BVMulNoUnderflow (a, b)
 
def is_array_sort (a)
 
def is_array (a)
 
def is_const_array (a)
 
def is_K (a)
 
def is_map (a)
 
def is_default (a)
 
def get_map_func (a)
 
def ArraySort (*sig)
 
def Array (name, *sorts)
 
def Update (a, *args)
 
def Default (a)
 
def Store (a, *args)
 
def Select (a, *args)
 
def Map (f, *args)
 
def K (dom, v)
 
def Ext (a, b)
 
def SetHasSize (a, k)
 
def is_select (a)
 
def is_store (a)
 
def SetSort (s)
 Sets. More...
 
def EmptySet (s)
 
def FullSet (s)
 
def SetUnion (*args)
 
def SetIntersect (*args)
 
def SetAdd (s, e)
 
def SetDel (s, e)
 
def SetComplement (s)
 
def SetDifference (a, b)
 
def IsMember (e, s)
 
def IsSubset (a, b)
 
def CreateDatatypes (*ds)
 
def DatatypeSort (name, ctx=None)
 
def TupleSort (name, sorts, ctx=None)
 
def DisjointSum (name, sorts, ctx=None)
 
def EnumSort (name, values, ctx=None)
 
def args2params (arguments, keywords, ctx=None)
 
def Model (ctx=None)
 
def is_as_array (n)
 
def get_as_array_func (n)
 
def SolverFor (logic, ctx=None, logFile=None)
 
def SimpleSolver (ctx=None, logFile=None)
 
def FiniteDomainSort (name, sz, ctx=None)
 
def is_finite_domain_sort (s)
 
def is_finite_domain (a)
 
def FiniteDomainVal (val, sort, ctx=None)
 
def is_finite_domain_value (a)
 
def AndThen (*ts, **ks)
 
def Then (*ts, **ks)
 
def OrElse (*ts, **ks)
 
def ParOr (*ts, **ks)
 
def ParThen (t1, t2, ctx=None)
 
def ParAndThen (t1, t2, ctx=None)
 
def With (t, *args, **keys)
 
def WithParams (t, p)
 
def Repeat (t, max=4294967295, ctx=None)
 
def TryFor (t, ms, ctx=None)
 
def tactics (ctx=None)
 
def tactic_description (name, ctx=None)
 
def describe_tactics ()
 
def is_probe (p)
 
def probes (ctx=None)
 
def probe_description (name, ctx=None)
 
def describe_probes ()
 
def FailIf (p, ctx=None)
 
def When (p, t, ctx=None)
 
def Cond (p, t1, t2, ctx=None)
 
def simplify (a, *arguments, **keywords)
 Utils. More...
 
def help_simplify ()
 
def simplify_param_descrs ()
 
def substitute (t, *m)
 
def substitute_vars (t, *m)
 
def substitute_funs (t, *m)
 
def Sum (*args)
 
def Product (*args)
 
def Abs (arg)
 
def AtMost (*args)
 
def AtLeast (*args)
 
def PbLe (args, k)
 
def PbGe (args, k)
 
def PbEq (args, k, ctx=None)
 
def solve (*args, **keywords)
 
def solve_using (s, *args, **keywords)
 
def prove (claim, show=False, **keywords)
 
def parse_smt2_string (s, sorts={}, decls={}, ctx=None)
 
def parse_smt2_file (f, sorts={}, decls={}, ctx=None)
 
def get_default_rounding_mode (ctx=None)
 
def set_default_rounding_mode (rm, ctx=None)
 
def get_default_fp_sort (ctx=None)
 
def set_default_fp_sort (ebits, sbits, ctx=None)
 
def Float16 (ctx=None)
 
def FloatHalf (ctx=None)
 
def Float32 (ctx=None)
 
def FloatSingle (ctx=None)
 
def Float64 (ctx=None)
 
def FloatDouble (ctx=None)
 
def Float128 (ctx=None)
 
def FloatQuadruple (ctx=None)
 
def is_fp_sort (s)
 
def is_fprm_sort (s)
 
def RoundNearestTiesToEven (ctx=None)
 
def RNE (ctx=None)
 
def RoundNearestTiesToAway (ctx=None)
 
def RNA (ctx=None)
 
def RoundTowardPositive (ctx=None)
 
def RTP (ctx=None)
 
def RoundTowardNegative (ctx=None)
 
def RTN (ctx=None)
 
def RoundTowardZero (ctx=None)
 
def RTZ (ctx=None)
 
def is_fprm (a)
 
def is_fprm_value (a)
 
def is_fp (a)
 
def is_fp_value (a)
 
def FPSort (ebits, sbits, ctx=None)
 
def fpNaN (s)
 
def fpPlusInfinity (s)
 
def fpMinusInfinity (s)
 
def fpInfinity (s, negative)
 
def fpPlusZero (s)
 
def fpMinusZero (s)
 
def fpZero (s, negative)
 
def FPVal (sig, exp=None, fps=None, ctx=None)
 
def FP (name, fpsort, ctx=None)
 
def FPs (names, fpsort, ctx=None)
 
def fpAbs (a, ctx=None)
 
def fpNeg (a, ctx=None)
 
def fpAdd (rm, a, b, ctx=None)
 
def fpSub (rm, a, b, ctx=None)
 
def fpMul (rm, a, b, ctx=None)
 
def fpDiv (rm, a, b, ctx=None)
 
def fpRem (a, b, ctx=None)
 
def fpMin (a, b, ctx=None)
 
def fpMax (a, b, ctx=None)
 
def fpFMA (rm, a, b, c, ctx=None)
 
def fpSqrt (rm, a, ctx=None)
 
def fpRoundToIntegral (rm, a, ctx=None)
 
def fpIsNaN (a, ctx=None)
 
def fpIsInf (a, ctx=None)
 
def fpIsZero (a, ctx=None)
 
def fpIsNormal (a, ctx=None)
 
def fpIsSubnormal (a, ctx=None)
 
def fpIsNegative (a, ctx=None)
 
def fpIsPositive (a, ctx=None)
 
def fpLT (a, b, ctx=None)
 
def fpLEQ (a, b, ctx=None)
 
def fpGT (a, b, ctx=None)
 
def fpGEQ (a, b, ctx=None)
 
def fpEQ (a, b, ctx=None)
 
def fpNEQ (a, b, ctx=None)
 
def fpFP (sgn, exp, sig, ctx=None)
 
def fpToFP (a1, a2=None, a3=None, ctx=None)
 
def fpBVToFP (v, sort, ctx=None)
 
def fpFPToFP (rm, v, sort, ctx=None)
 
def fpRealToFP (rm, v, sort, ctx=None)
 
def fpSignedToFP (rm, v, sort, ctx=None)
 
def fpUnsignedToFP (rm, v, sort, ctx=None)
 
def fpToFPUnsigned (rm, x, s, ctx=None)
 
def fpToSBV (rm, x, s, ctx=None)
 
def fpToUBV (rm, x, s, ctx=None)
 
def fpToReal (x, ctx=None)
 
def fpToIEEEBV (x, ctx=None)
 
def StringSort (ctx=None)
 
def CharSort (ctx=None)
 
def SeqSort (s)
 
def CharVal (ch, ctx=None)
 
def CharFromBv (bv)
 
def CharToBv (ch, ctx=None)
 
def CharToInt (ch, ctx=None)
 
def CharIsDigit (ch, ctx=None)
 
def is_seq (a)
 
def is_string (a)
 
def is_string_value (a)
 
def StringVal (s, ctx=None)
 
def String (name, ctx=None)
 
def Strings (names, ctx=None)
 
def SubString (s, offset, length)
 
def SubSeq (s, offset, length)
 
def Empty (s)
 
def Full (s)
 
def Unit (a)
 
def PrefixOf (a, b)
 
def SuffixOf (a, b)
 
def Contains (a, b)
 
def Replace (s, src, dst)
 
def IndexOf (s, substr, offset=None)
 
def LastIndexOf (s, substr)
 
def Length (s)
 
def SeqMap (f, s)
 
def SeqMapI (f, i, s)
 
def SeqFoldLeft (f, a, s)
 
def SeqFoldLeftI (f, i, a, s)
 
def StrToInt (s)
 
def IntToStr (s)
 
def StrToCode (s)
 
def StrFromCode (c)
 
def Re (s, ctx=None)
 
def ReSort (s)
 
def is_re (s)
 
def InRe (s, re)
 
def Union (*args)
 
def Intersect (*args)
 
def Plus (re)
 
def Option (re)
 
def Complement (re)
 
def Star (re)
 
def Loop (re, lo, hi=0)
 
def Range (lo, hi, ctx=None)
 
def Diff (a, b, ctx=None)
 
def AllChar (regex_sort, ctx=None)
 
def PartialOrder (a, index)
 
def LinearOrder (a, index)
 
def TreeOrder (a, index)
 
def PiecewiseLinearOrder (a, index)
 
def TransitiveClosure (f)
 
def to_Ast (ptr)
 
def to_ContextObj (ptr)
 
def to_AstVectorObj (ptr)
 
def on_clause_eh (ctx, p, n, dep, clause)
 
def ensure_prop_closures ()
 
def user_prop_push (ctx, cb)
 
def user_prop_pop (ctx, cb, num_scopes)
 
def user_prop_fresh (ctx, _new_ctx)
 
def user_prop_fixed (ctx, cb, id, value)
 
def user_prop_created (ctx, cb, id)
 
def user_prop_final (ctx, cb)
 
def user_prop_eq (ctx, cb, x, y)
 
def user_prop_diseq (ctx, cb, x, y)
 
def user_prop_decide (ctx, cb, t, idx, phase)
 
def PropagateFunction (name, *sig)
 

Variables

 Z3_DEBUG = __debug__
 
 sat = CheckSatResult(Z3_L_TRUE)
 
 unsat = CheckSatResult(Z3_L_FALSE)
 
 unknown = CheckSatResult(Z3_L_UNDEF)
 

Function Documentation

◆ Abs()

def z3py.Abs (   arg)
Create the absolute value of an arithmetic expression

Definition at line 9065 of file z3py.py.

9065 def Abs(arg):
9066  """Create the absolute value of an arithmetic expression"""
9067  return If(arg > 0, arg, -arg)
9068 
9069 
def Abs(arg)
Definition: z3py.py:9065
def If(a, b, c, ctx=None)
Definition: z3py.py:1399

◆ AllChar()

def z3py.AllChar (   regex_sort,
  ctx = None 
)
Create a regular expression that accepts all single character strings

Definition at line 11471 of file z3py.py.

11471 def AllChar(regex_sort, ctx=None):
11472  """Create a regular expression that accepts all single character strings
11473  """
11474  return ReRef(Z3_mk_re_allchar(regex_sort.ctx_ref(), regex_sort.ast), regex_sort.ctx)
11475 
11476 # Special Relations
11477 
11478 
Z3_ast Z3_API Z3_mk_re_allchar(Z3_context c, Z3_sort regex_sort)
Create a regular expression that accepts all singleton sequences of the regular expression sort.
def AllChar(regex_sort, ctx=None)
Definition: z3py.py:11471

◆ And()

def z3py.And ( args)
Create a Z3 and-expression or and-probe.

>>> p, q, r = Bools('p q r')
>>> And(p, q, r)
And(p, q, r)
>>> P = BoolVector('p', 5)
>>> And(P)
And(p__0, p__1, p__2, p__3, p__4)

Definition at line 1889 of file z3py.py.

1889 def And(*args):
1890  """Create a Z3 and-expression or and-probe.
1891 
1892  >>> p, q, r = Bools('p q r')
1893  >>> And(p, q, r)
1894  And(p, q, r)
1895  >>> P = BoolVector('p', 5)
1896  >>> And(P)
1897  And(p__0, p__1, p__2, p__3, p__4)
1898  """
1899  last_arg = None
1900  if len(args) > 0:
1901  last_arg = args[len(args) - 1]
1902  if isinstance(last_arg, Context):
1903  ctx = args[len(args) - 1]
1904  args = args[:len(args) - 1]
1905  elif len(args) == 1 and isinstance(args[0], AstVector):
1906  ctx = args[0].ctx
1907  args = [a for a in args[0]]
1908  else:
1909  ctx = None
1910  args = _get_args(args)
1911  ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1912  if z3_debug():
1913  _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
1914  if _has_probe(args):
1915  return _probe_and(args, ctx)
1916  else:
1917  args = _coerce_expr_list(args, ctx)
1918  _args, sz = _to_ast_array(args)
1919  return BoolRef(Z3_mk_and(ctx.ref(), sz, _args), ctx)
1920 
1921 
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].
def z3_debug()
Definition: z3py.py:62
def And(*args)
Definition: z3py.py:1889

Referenced by BoolRef.__and__(), Fixedpoint.add_rule(), Goal.as_expr(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), and Fixedpoint.update_rule().

◆ AndThen()

def z3py.AndThen ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in sequence.

>>> x, y = Ints('x y')
>>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)

Definition at line 8430 of file z3py.py.

8430 def AndThen(*ts, **ks):
8431  """Return a tactic that applies the tactics in `*ts` in sequence.
8432 
8433  >>> x, y = Ints('x y')
8434  >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
8435  >>> t(And(x == 0, y > x + 1))
8436  [[Not(y <= 1)]]
8437  >>> t(And(x == 0, y > x + 1)).as_expr()
8438  Not(y <= 1)
8439  """
8440  if z3_debug():
8441  _z3_assert(len(ts) >= 2, "At least two arguments expected")
8442  ctx = ks.get("ctx", None)
8443  num = len(ts)
8444  r = ts[0]
8445  for i in range(num - 1):
8446  r = _and_then(r, ts[i + 1], ctx)
8447  return r
8448 
8449 
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:4136
def AndThen(*ts, **ks)
Definition: z3py.py:8430

Referenced by Then().

◆ append_log()

def z3py.append_log (   s)
Append user-defined string to interaction log. 

Definition at line 119 of file z3py.py.

119 def append_log(s):
120  """Append user-defined string to interaction log. """
121  Z3_append_log(s)
122 
123 
void Z3_API Z3_append_log(Z3_string string)
Append user-defined string to interaction log.
def append_log(s)
Definition: z3py.py:119

◆ args2params()

def z3py.args2params (   arguments,
  keywords,
  ctx = None 
)
Convert python arguments into a Z3_params object.
A ':' is added to the keywords, and '_' is replaced with '-'

>>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
(params model true relevancy 2 elim_and true)

Definition at line 5512 of file z3py.py.

5512 def args2params(arguments, keywords, ctx=None):
5513  """Convert python arguments into a Z3_params object.
5514  A ':' is added to the keywords, and '_' is replaced with '-'
5515 
5516  >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
5517  (params model true relevancy 2 elim_and true)
5518  """
5519  if z3_debug():
5520  _z3_assert(len(arguments) % 2 == 0, "Argument list must have an even number of elements.")
5521  prev = None
5522  r = ParamsRef(ctx)
5523  for a in arguments:
5524  if prev is None:
5525  prev = a
5526  else:
5527  r.set(prev, a)
5528  prev = None
5529  for k in keywords:
5530  v = keywords[k]
5531  r.set(k, v)
5532  return r
5533 
5534 
def args2params(arguments, keywords, ctx=None)
Definition: z3py.py:5512

Referenced by Tactic.apply(), Solver.set(), Fixedpoint.set(), Optimize.set(), simplify(), Simplifier.using_params(), and With().

◆ Array()

def z3py.Array (   name,
sorts 
)
Return an array constant named `name` with the given domain and range sorts.

>>> a = Array('a', IntSort(), IntSort())
>>> a.sort()
Array(Int, Int)
>>> a[0]
a[0]

Definition at line 4779 of file z3py.py.

4779 def Array(name, *sorts):
4780  """Return an array constant named `name` with the given domain and range sorts.
4781 
4782  >>> a = Array('a', IntSort(), IntSort())
4783  >>> a.sort()
4784  Array(Int, Int)
4785  >>> a[0]
4786  a[0]
4787  """
4788  s = ArraySort(sorts)
4789  ctx = s.ctx
4790  return ArrayRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), s.ast), ctx)
4791 
4792 
Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)
Declare and create a constant.
def ArraySort(*sig)
Definition: z3py.py:4746
def Array(name, *sorts)
Definition: z3py.py:4779
def to_symbol(s, ctx=None)
Definition: z3py.py:124

◆ ArraySort()

def z3py.ArraySort ( sig)
Return the Z3 array sort with the given domain and range sorts.

>>> A = ArraySort(IntSort(), BoolSort())
>>> A
Array(Int, Bool)
>>> A.domain()
Int
>>> A.range()
Bool
>>> AA = ArraySort(IntSort(), A)
>>> AA
Array(Int, Array(Int, Bool))

Definition at line 4746 of file z3py.py.

4746 def ArraySort(*sig):
4747  """Return the Z3 array sort with the given domain and range sorts.
4748 
4749  >>> A = ArraySort(IntSort(), BoolSort())
4750  >>> A
4751  Array(Int, Bool)
4752  >>> A.domain()
4753  Int
4754  >>> A.range()
4755  Bool
4756  >>> AA = ArraySort(IntSort(), A)
4757  >>> AA
4758  Array(Int, Array(Int, Bool))
4759  """
4760  sig = _get_args(sig)
4761  if z3_debug():
4762  _z3_assert(len(sig) > 1, "At least two arguments expected")
4763  arity = len(sig) - 1
4764  r = sig[arity]
4765  d = sig[0]
4766  if z3_debug():
4767  for s in sig:
4768  _z3_assert(is_sort(s), "Z3 sort expected")
4769  _z3_assert(s.ctx == r.ctx, "Context mismatch")
4770  ctx = d.ctx
4771  if len(sig) == 2:
4772  return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
4773  dom = (Sort * arity)()
4774  for i in range(arity):
4775  dom[i] = sig[i].ast
4776  return ArraySortRef(Z3_mk_array_sort_n(ctx.ref(), arity, dom, r.ast), ctx)
4777 
4778 
Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)
Create an array type with N arguments.
Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)
Create an array type.
def is_sort(s)
Definition: z3py.py:647

Referenced by Array(), Context.MkArraySort(), and SetSort().

◆ AtLeast()

def z3py.AtLeast ( args)
Create an at-least Pseudo-Boolean k constraint.

>>> a, b, c = Bools('a b c')
>>> f = AtLeast(a, b, c, 2)

Definition at line 9088 of file z3py.py.

9088 def AtLeast(*args):
9089  """Create an at-least Pseudo-Boolean k constraint.
9090 
9091  >>> a, b, c = Bools('a b c')
9092  >>> f = AtLeast(a, b, c, 2)
9093  """
9094  args = _get_args(args)
9095  if z3_debug():
9096  _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9097  ctx = _ctx_from_ast_arg_list(args)
9098  if z3_debug():
9099  _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9100  args1 = _coerce_expr_list(args[:-1], ctx)
9101  k = args[-1]
9102  _args, sz = _to_ast_array(args1)
9103  return BoolRef(Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
9104 
9105 
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.
def AtLeast(*args)
Definition: z3py.py:9088

◆ AtMost()

def z3py.AtMost ( args)
Create an at-most Pseudo-Boolean k constraint.

>>> a, b, c = Bools('a b c')
>>> f = AtMost(a, b, c, 2)

Definition at line 9070 of file z3py.py.

9070 def AtMost(*args):
9071  """Create an at-most Pseudo-Boolean k constraint.
9072 
9073  >>> a, b, c = Bools('a b c')
9074  >>> f = AtMost(a, b, c, 2)
9075  """
9076  args = _get_args(args)
9077  if z3_debug():
9078  _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9079  ctx = _ctx_from_ast_arg_list(args)
9080  if z3_debug():
9081  _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9082  args1 = _coerce_expr_list(args[:-1], ctx)
9083  k = args[-1]
9084  _args, sz = _to_ast_array(args1)
9085  return BoolRef(Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
9086 
9087 
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.
def AtMost(*args)
Definition: z3py.py:9070

◆ BitVec()

def z3py.BitVec (   name,
  bv,
  ctx = None 
)
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
If `ctx=None`, then the global context is used.

>>> x  = BitVec('x', 16)
>>> is_bv(x)
True
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> word = BitVecSort(16)
>>> x2 = BitVec('x', word)
>>> eq(x, x2)
True

Definition at line 4083 of file z3py.py.

4083 def BitVec(name, bv, ctx=None):
4084  """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
4085  If `ctx=None`, then the global context is used.
4086 
4087  >>> x = BitVec('x', 16)
4088  >>> is_bv(x)
4089  True
4090  >>> x.size()
4091  16
4092  >>> x.sort()
4093  BitVec(16)
4094  >>> word = BitVecSort(16)
4095  >>> x2 = BitVec('x', word)
4096  >>> eq(x, x2)
4097  True
4098  """
4099  if isinstance(bv, BitVecSortRef):
4100  ctx = bv.ctx
4101  else:
4102  ctx = _get_ctx(ctx)
4103  bv = BitVecSort(bv, ctx)
4104  return BitVecRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), bv.ast), ctx)
4105 
4106 
def BitVec(name, bv, ctx=None)
Definition: z3py.py:4083
def BitVecSort(sz, ctx=None)
Definition: z3py.py:4051

Referenced by BitVecs().

◆ BitVecs()

def z3py.BitVecs (   names,
  bv,
  ctx = None 
)
Return a tuple of bit-vector constants of size bv.

>>> x, y, z = BitVecs('x y z', 16)
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> Sum(x, y, z)
0 + x + y + z
>>> Product(x, y, z)
1*x*y*z
>>> simplify(Product(x, y, z))
x*y*z

Definition at line 4107 of file z3py.py.

4107 def BitVecs(names, bv, ctx=None):
4108  """Return a tuple of bit-vector constants of size bv.
4109 
4110  >>> x, y, z = BitVecs('x y z', 16)
4111  >>> x.size()
4112  16
4113  >>> x.sort()
4114  BitVec(16)
4115  >>> Sum(x, y, z)
4116  0 + x + y + z
4117  >>> Product(x, y, z)
4118  1*x*y*z
4119  >>> simplify(Product(x, y, z))
4120  x*y*z
4121  """
4122  ctx = _get_ctx(ctx)
4123  if isinstance(names, str):
4124  names = names.split(" ")
4125  return [BitVec(name, bv, ctx) for name in names]
4126 
4127 
def BitVecs(names, bv, ctx=None)
Definition: z3py.py:4107

◆ BitVecSort()

def z3py.BitVecSort (   sz,
  ctx = None 
)
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.

>>> Byte = BitVecSort(8)
>>> Word = BitVecSort(16)
>>> Byte
BitVec(8)
>>> x = Const('x', Byte)
>>> eq(x, BitVec('x', 8))
True

Definition at line 4051 of file z3py.py.

4051 def BitVecSort(sz, ctx=None):
4052  """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
4053 
4054  >>> Byte = BitVecSort(8)
4055  >>> Word = BitVecSort(16)
4056  >>> Byte
4057  BitVec(8)
4058  >>> x = Const('x', Byte)
4059  >>> eq(x, BitVec('x', 8))
4060  True
4061  """
4062  ctx = _get_ctx(ctx)
4063  return BitVecSortRef(Z3_mk_bv_sort(ctx.ref(), sz), ctx)
4064 
4065 
Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)
Create a bit-vector type of the given size.

Referenced by BitVec(), BitVecVal(), Context.mkBitVecSort(), and Context.MkBitVecSort().

◆ BitVecVal()

def z3py.BitVecVal (   val,
  bv,
  ctx = None 
)
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.

>>> v = BitVecVal(10, 32)
>>> v
10
>>> print("0x%.8x" % v.as_long())
0x0000000a

Definition at line 4066 of file z3py.py.

4066 def BitVecVal(val, bv, ctx=None):
4067  """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
4068 
4069  >>> v = BitVecVal(10, 32)
4070  >>> v
4071  10
4072  >>> print("0x%.8x" % v.as_long())
4073  0x0000000a
4074  """
4075  if is_bv_sort(bv):
4076  ctx = bv.ctx
4077  return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), bv.ast), ctx)
4078  else:
4079  ctx = _get_ctx(ctx)
4080  return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), BitVecSort(bv, ctx).ast), ctx)
4081 
4082 
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)
Create a numeral of a given sort.
def is_bv_sort(s)
Definition: z3py.py:3522
def BitVecVal(val, bv, ctx=None)
Definition: z3py.py:4066

◆ Bool()

def z3py.Bool (   name,
  ctx = None 
)
Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.

>>> p = Bool('p')
>>> q = Bool('q')
>>> And(p, q)
And(p, q)

Definition at line 1768 of file z3py.py.

1768 def Bool(name, ctx=None):
1769  """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
1770 
1771  >>> p = Bool('p')
1772  >>> q = Bool('q')
1773  >>> And(p, q)
1774  And(p, q)
1775  """
1776  ctx = _get_ctx(ctx)
1777  return BoolRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), BoolSort(ctx).ast), ctx)
1778 
1779 
def BoolSort(ctx=None)
Definition: z3py.py:1731
def Bool(name, ctx=None)
Definition: z3py.py:1768

Referenced by Solver.assert_and_track(), Optimize.assert_and_track(), Bools(), and BoolVector().

◆ Bools()

def z3py.Bools (   names,
  ctx = None 
)
Return a tuple of Boolean constants.

`names` is a single string containing all names separated by blank spaces.
If `ctx=None`, then the global context is used.

>>> p, q, r = Bools('p q r')
>>> And(p, Or(q, r))
And(p, Or(q, r))

Definition at line 1780 of file z3py.py.

1780 def Bools(names, ctx=None):
1781  """Return a tuple of Boolean constants.
1782 
1783  `names` is a single string containing all names separated by blank spaces.
1784  If `ctx=None`, then the global context is used.
1785 
1786  >>> p, q, r = Bools('p q r')
1787  >>> And(p, Or(q, r))
1788  And(p, Or(q, r))
1789  """
1790  ctx = _get_ctx(ctx)
1791  if isinstance(names, str):
1792  names = names.split(" ")
1793  return [Bool(name, ctx) for name in names]
1794 
1795 
def Bools(names, ctx=None)
Definition: z3py.py:1780

◆ BoolSort()

def z3py.BoolSort (   ctx = None)
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.

>>> BoolSort()
Bool
>>> p = Const('p', BoolSort())
>>> is_bool(p)
True
>>> r = Function('r', IntSort(), IntSort(), BoolSort())
>>> r(0, 1)
r(0, 1)
>>> is_bool(r(0, 1))
True

Definition at line 1731 of file z3py.py.

1731 def BoolSort(ctx=None):
1732  """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
1733 
1734  >>> BoolSort()
1735  Bool
1736  >>> p = Const('p', BoolSort())
1737  >>> is_bool(p)
1738  True
1739  >>> r = Function('r', IntSort(), IntSort(), BoolSort())
1740  >>> r(0, 1)
1741  r(0, 1)
1742  >>> is_bool(r(0, 1))
1743  True
1744  """
1745  ctx = _get_ctx(ctx)
1746  return BoolSortRef(Z3_mk_bool_sort(ctx.ref()), ctx)
1747 
1748 
Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)
Create the Boolean type.

Referenced by Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Bool(), Solver.check(), FreshBool(), Context.getBoolSort(), If(), Implies(), Context.mkBoolSort(), Not(), SetSort(), QuantifierRef.sort(), and Xor().

◆ BoolVal()

def z3py.BoolVal (   val,
  ctx = None 
)
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.

>>> BoolVal(True)
True
>>> is_true(BoolVal(True))
True
>>> is_true(True)
False
>>> is_false(BoolVal(False))
True

Definition at line 1749 of file z3py.py.

1749 def BoolVal(val, ctx=None):
1750  """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.
1751 
1752  >>> BoolVal(True)
1753  True
1754  >>> is_true(BoolVal(True))
1755  True
1756  >>> is_true(True)
1757  False
1758  >>> is_false(BoolVal(False))
1759  True
1760  """
1761  ctx = _get_ctx(ctx)
1762  if val:
1763  return BoolRef(Z3_mk_true(ctx.ref()), ctx)
1764  else:
1765  return BoolRef(Z3_mk_false(ctx.ref()), ctx)
1766 
1767 
Z3_ast Z3_API Z3_mk_true(Z3_context c)
Create an AST node representing true.
Z3_ast Z3_API Z3_mk_false(Z3_context c)
Create an AST node representing false.
def BoolVal(val, ctx=None)
Definition: z3py.py:1749

Referenced by Goal.as_expr(), ApplyResult.as_expr(), BoolSortRef.cast(), UserPropagateBase.conflict(), AlgebraicNumRef.index(), is_quantifier(), and Solver.to_smt2().

◆ BoolVector()

def z3py.BoolVector (   prefix,
  sz,
  ctx = None 
)
Return a list of Boolean constants of size `sz`.

The constants are named using the given prefix.
If `ctx=None`, then the global context is used.

>>> P = BoolVector('p', 3)
>>> P
[p__0, p__1, p__2]
>>> And(P)
And(p__0, p__1, p__2)

Definition at line 1796 of file z3py.py.

1796 def BoolVector(prefix, sz, ctx=None):
1797  """Return a list of Boolean constants of size `sz`.
1798 
1799  The constants are named using the given prefix.
1800  If `ctx=None`, then the global context is used.
1801 
1802  >>> P = BoolVector('p', 3)
1803  >>> P
1804  [p__0, p__1, p__2]
1805  >>> And(P)
1806  And(p__0, p__1, p__2)
1807  """
1808  return [Bool("%s__%s" % (prefix, i)) for i in range(sz)]
1809 
1810 
def BoolVector(prefix, sz, ctx=None)
Definition: z3py.py:1796

◆ BV2Int()

def z3py.BV2Int (   a,
  is_signed = False 
)
Return the Z3 expression BV2Int(a).

>>> b = BitVec('b', 3)
>>> BV2Int(b).sort()
Int
>>> x = Int('x')
>>> x > BV2Int(b)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=False)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=True)
x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
>>> solve(x > BV2Int(b), b == 1, x < 3)
[x = 2, b = 1]

Definition at line 4019 of file z3py.py.

4019 def BV2Int(a, is_signed=False):
4020  """Return the Z3 expression BV2Int(a).
4021 
4022  >>> b = BitVec('b', 3)
4023  >>> BV2Int(b).sort()
4024  Int
4025  >>> x = Int('x')
4026  >>> x > BV2Int(b)
4027  x > BV2Int(b)
4028  >>> x > BV2Int(b, is_signed=False)
4029  x > BV2Int(b)
4030  >>> x > BV2Int(b, is_signed=True)
4031  x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
4032  >>> solve(x > BV2Int(b), b == 1, x < 3)
4033  [x = 2, b = 1]
4034  """
4035  if z3_debug():
4036  _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4037  ctx = a.ctx
4038  # investigate problem with bv2int
4039  return ArithRef(Z3_mk_bv2int(ctx.ref(), a.as_ast(), is_signed), ctx)
4040 
4041 
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...
def is_bv(a)
Definition: z3py.py:3990
def BV2Int(a, is_signed=False)
Definition: z3py.py:4019

◆ BVAddNoOverflow()

def z3py.BVAddNoOverflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector addition does not overflow

Definition at line 4505 of file z3py.py.

4505 def BVAddNoOverflow(a, b, signed):
4506  """A predicate the determines that bit-vector addition does not overflow"""
4507  _check_bv_args(a, b)
4508  a, b = _coerce_exprs(a, b)
4509  return BoolRef(Z3_mk_bvadd_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4510 
4511 
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.
def BVAddNoOverflow(a, b, signed)
Definition: z3py.py:4505

◆ BVAddNoUnderflow()

def z3py.BVAddNoUnderflow (   a,
  b 
)
A predicate the determines that signed bit-vector addition does not underflow

Definition at line 4512 of file z3py.py.

4512 def BVAddNoUnderflow(a, b):
4513  """A predicate the determines that signed bit-vector addition does not underflow"""
4514  _check_bv_args(a, b)
4515  a, b = _coerce_exprs(a, b)
4516  return BoolRef(Z3_mk_bvadd_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4517 
4518 
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.
def BVAddNoUnderflow(a, b)
Definition: z3py.py:4512

◆ BVMulNoOverflow()

def z3py.BVMulNoOverflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector multiplication does not overflow

Definition at line 4547 of file z3py.py.

4547 def BVMulNoOverflow(a, b, signed):
4548  """A predicate the determines that bit-vector multiplication does not overflow"""
4549  _check_bv_args(a, b)
4550  a, b = _coerce_exprs(a, b)
4551  return BoolRef(Z3_mk_bvmul_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4552 
4553 
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.
def BVMulNoOverflow(a, b, signed)
Definition: z3py.py:4547

◆ BVMulNoUnderflow()

def z3py.BVMulNoUnderflow (   a,
  b 
)
A predicate the determines that bit-vector signed multiplication does not underflow

Definition at line 4554 of file z3py.py.

4554 def BVMulNoUnderflow(a, b):
4555  """A predicate the determines that bit-vector signed multiplication does not underflow"""
4556  _check_bv_args(a, b)
4557  a, b = _coerce_exprs(a, b)
4558  return BoolRef(Z3_mk_bvmul_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4559 
4560 
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...
def BVMulNoUnderflow(a, b)
Definition: z3py.py:4554

◆ BVRedAnd()

def z3py.BVRedAnd (   a)
Return the reduction-and expression of `a`.

Definition at line 4491 of file z3py.py.

4491 def BVRedAnd(a):
4492  """Return the reduction-and expression of `a`."""
4493  if z3_debug():
4494  _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4495  return BitVecRef(Z3_mk_bvredand(a.ctx_ref(), a.as_ast()), a.ctx)
4496 
4497 
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.
def BVRedAnd(a)
Definition: z3py.py:4491

◆ BVRedOr()

def z3py.BVRedOr (   a)
Return the reduction-or expression of `a`.

Definition at line 4498 of file z3py.py.

4498 def BVRedOr(a):
4499  """Return the reduction-or expression of `a`."""
4500  if z3_debug():
4501  _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4502  return BitVecRef(Z3_mk_bvredor(a.ctx_ref(), a.as_ast()), a.ctx)
4503 
4504 
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.
def BVRedOr(a)
Definition: z3py.py:4498

◆ BVSDivNoOverflow()

def z3py.BVSDivNoOverflow (   a,
  b 
)
A predicate the determines that bit-vector signed division does not overflow

Definition at line 4533 of file z3py.py.

4533 def BVSDivNoOverflow(a, b):
4534  """A predicate the determines that bit-vector signed division does not overflow"""
4535  _check_bv_args(a, b)
4536  a, b = _coerce_exprs(a, b)
4537  return BoolRef(Z3_mk_bvsdiv_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4538 
4539 
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.
def BVSDivNoOverflow(a, b)
Definition: z3py.py:4533

◆ BVSNegNoOverflow()

def z3py.BVSNegNoOverflow (   a)
A predicate the determines that bit-vector unary negation does not overflow

Definition at line 4540 of file z3py.py.

4540 def BVSNegNoOverflow(a):
4541  """A predicate the determines that bit-vector unary negation does not overflow"""
4542  if z3_debug():
4543  _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4544  return BoolRef(Z3_mk_bvneg_no_overflow(a.ctx_ref(), a.as_ast()), a.ctx)
4545 
4546 
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.
def BVSNegNoOverflow(a)
Definition: z3py.py:4540

◆ BVSubNoOverflow()

def z3py.BVSubNoOverflow (   a,
  b 
)
A predicate the determines that bit-vector subtraction does not overflow

Definition at line 4519 of file z3py.py.

4519 def BVSubNoOverflow(a, b):
4520  """A predicate the determines that bit-vector subtraction does not overflow"""
4521  _check_bv_args(a, b)
4522  a, b = _coerce_exprs(a, b)
4523  return BoolRef(Z3_mk_bvsub_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4524 
4525 
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.
def BVSubNoOverflow(a, b)
Definition: z3py.py:4519

◆ BVSubNoUnderflow()

def z3py.BVSubNoUnderflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector subtraction does not underflow

Definition at line 4526 of file z3py.py.

4526 def BVSubNoUnderflow(a, b, signed):
4527  """A predicate the determines that bit-vector subtraction does not underflow"""
4528  _check_bv_args(a, b)
4529  a, b = _coerce_exprs(a, b)
4530  return BoolRef(Z3_mk_bvsub_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4531 
4532 
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.
def BVSubNoUnderflow(a, b, signed)
Definition: z3py.py:4526

◆ Cbrt()

def z3py.Cbrt (   a,
  ctx = None 
)
 Return a Z3 expression which represents the cubic root of a.

>>> x = Real('x')
>>> Cbrt(x)
x**(1/3)

Definition at line 3470 of file z3py.py.

3470 def Cbrt(a, ctx=None):
3471  """ Return a Z3 expression which represents the cubic root of a.
3472 
3473  >>> x = Real('x')
3474  >>> Cbrt(x)
3475  x**(1/3)
3476  """
3477  if not is_expr(a):
3478  ctx = _get_ctx(ctx)
3479  a = RealVal(a, ctx)
3480  return a ** "1/3"
3481 
def is_expr(a)
Definition: z3py.py:1260
def Cbrt(a, ctx=None)
Definition: z3py.py:3470
def RealVal(val, ctx=None)
Definition: z3py.py:3246

◆ CharFromBv()

def z3py.CharFromBv (   bv)

Definition at line 10989 of file z3py.py.

10989 def CharFromBv(bv):
10990  if not is_expr(bv):
10991  raise Z3Exception("Bit-vector expression needed")
10992  return _to_expr_ref(Z3_mk_char_from_bv(bv.ctx_ref(), bv.as_ast()), bv.ctx)
10993 
Z3_ast Z3_API Z3_mk_char_from_bv(Z3_context c, Z3_ast bv)
Create a character from a bit-vector (code point).
def CharFromBv(bv)
Definition: z3py.py:10989

◆ CharIsDigit()

def z3py.CharIsDigit (   ch,
  ctx = None 
)

Definition at line 11002 of file z3py.py.

11002 def CharIsDigit(ch, ctx=None):
11003  ch = _coerce_char(ch, ctx)
11004  return ch.is_digit()
11005 
def CharIsDigit(ch, ctx=None)
Definition: z3py.py:11002

◆ CharSort()

def z3py.CharSort (   ctx = None)
Create a character sort
>>> ch = CharSort()
>>> print(ch)
Char

Definition at line 10888 of file z3py.py.

10888 def CharSort(ctx=None):
10889  """Create a character sort
10890  >>> ch = CharSort()
10891  >>> print(ch)
10892  Char
10893  """
10894  ctx = _get_ctx(ctx)
10895  return CharSortRef(Z3_mk_char_sort(ctx.ref()), ctx)
10896 
10897 
Z3_sort Z3_API Z3_mk_char_sort(Z3_context c)
Create a sort for unicode characters.
def CharSort(ctx=None)
Definition: z3py.py:10888

Referenced by Context.mkCharSort().

◆ CharToBv()

def z3py.CharToBv (   ch,
  ctx = None 
)

Definition at line 10994 of file z3py.py.

10994 def CharToBv(ch, ctx=None):
10995  ch = _coerce_char(ch, ctx)
10996  return ch.to_bv()
10997 
def CharToBv(ch, ctx=None)
Definition: z3py.py:10994

◆ CharToInt()

def z3py.CharToInt (   ch,
  ctx = None 
)

Definition at line 10998 of file z3py.py.

10998 def CharToInt(ch, ctx=None):
10999  ch = _coerce_char(ch, ctx)
11000  return ch.to_int()
11001 
def CharToInt(ch, ctx=None)
Definition: z3py.py:10998

◆ CharVal()

def z3py.CharVal (   ch,
  ctx = None 
)

Definition at line 10981 of file z3py.py.

10981 def CharVal(ch, ctx=None):
10982  ctx = _get_ctx(ctx)
10983  if isinstance(ch, str):
10984  ch = ord(ch)
10985  if not isinstance(ch, int):
10986  raise Z3Exception("character value should be an ordinal")
10987  return _to_expr_ref(Z3_mk_char(ctx.ref(), ch), ctx)
10988 
Z3_ast Z3_API Z3_mk_char(Z3_context c, unsigned ch)
Create a character literal.
def CharVal(ch, ctx=None)
Definition: z3py.py:10981

Referenced by SeqRef.__gt__().

◆ Complement()

def z3py.Complement (   re)
Create the complement regular expression.

Definition at line 11413 of file z3py.py.

11413 def Complement(re):
11414  """Create the complement regular expression."""
11415  return ReRef(Z3_mk_re_complement(re.ctx_ref(), re.as_ast()), re.ctx)
11416 
11417 
Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)
Create the complement of the regular language re.
def Complement(re)
Definition: z3py.py:11413

◆ Concat()

def z3py.Concat ( args)
Create a Z3 bit-vector concatenation expression.

>>> v = BitVecVal(1, 4)
>>> Concat(v, v+1, v)
Concat(Concat(1, 1 + 1), 1)
>>> simplify(Concat(v, v+1, v))
289
>>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
121

Definition at line 4128 of file z3py.py.

4128 def Concat(*args):
4129  """Create a Z3 bit-vector concatenation expression.
4130 
4131  >>> v = BitVecVal(1, 4)
4132  >>> Concat(v, v+1, v)
4133  Concat(Concat(1, 1 + 1), 1)
4134  >>> simplify(Concat(v, v+1, v))
4135  289
4136  >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
4137  121
4138  """
4139  args = _get_args(args)
4140  sz = len(args)
4141  if z3_debug():
4142  _z3_assert(sz >= 2, "At least two arguments expected.")
4143 
4144  ctx = None
4145  for a in args:
4146  if is_expr(a):
4147  ctx = a.ctx
4148  break
4149  if is_seq(args[0]) or isinstance(args[0], str):
4150  args = [_coerce_seq(s, ctx) for s in args]
4151  if z3_debug():
4152  _z3_assert(all([is_seq(a) for a in args]), "All arguments must be sequence expressions.")
4153  v = (Ast * sz)()
4154  for i in range(sz):
4155  v[i] = args[i].as_ast()
4156  return SeqRef(Z3_mk_seq_concat(ctx.ref(), sz, v), ctx)
4157 
4158  if is_re(args[0]):
4159  if z3_debug():
4160  _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
4161  v = (Ast * sz)()
4162  for i in range(sz):
4163  v[i] = args[i].as_ast()
4164  return ReRef(Z3_mk_re_concat(ctx.ref(), sz, v), ctx)
4165 
4166  if z3_debug():
4167  _z3_assert(all([is_bv(a) for a in args]), "All arguments must be Z3 bit-vector expressions.")
4168  r = args[0]
4169  for i in range(sz - 1):
4170  r = BitVecRef(Z3_mk_concat(ctx.ref(), r.as_ast(), args[i + 1].as_ast()), ctx)
4171  return r
4172 
4173 
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
def Concat(*args)
Definition: z3py.py:4128
def is_seq(a)
Definition: z3py.py:11027
def is_re(s)
Definition: z3py.py:11327

Referenced by SeqRef.__add__(), and SeqRef.__radd__().

◆ Cond()

def z3py.Cond (   p,
  t1,
  t2,
  ctx = None 
)
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.

>>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))

Definition at line 8887 of file z3py.py.

8887 def Cond(p, t1, t2, ctx=None):
8888  """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
8889 
8890  >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
8891  """
8892  p = _to_probe(p, ctx)
8893  t1 = _to_tactic(t1, ctx)
8894  t2 = _to_tactic(t2, ctx)
8895  return Tactic(Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
8896 
Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...
def Cond(p, t1, t2, ctx=None)
Definition: z3py.py:8887

Referenced by If().

◆ Const()

def z3py.Const (   name,
  sort 
)
Create a constant of the given sort.

>>> Const('x', IntSort())
x

Definition at line 1455 of file z3py.py.

1455 def Const(name, sort):
1456  """Create a constant of the given sort.
1457 
1458  >>> Const('x', IntSort())
1459  x
1460  """
1461  if z3_debug():
1462  _z3_assert(isinstance(sort, SortRef), "Z3 sort expected")
1463  ctx = sort.ctx
1464  return _to_expr_ref(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), sort.ast), ctx)
1465 
1466 
def Const(name, sort)
Definition: z3py.py:1455

Referenced by Consts().

◆ Consts()

def z3py.Consts (   names,
  sort 
)
Create several constants of the given sort.

`names` is a string containing the names of all constants to be created.
Blank spaces separate the names of different constants.

>>> x, y, z = Consts('x y z', IntSort())
>>> x + y + z
x + y + z

Definition at line 1467 of file z3py.py.

1467 def Consts(names, sort):
1468  """Create several constants of the given sort.
1469 
1470  `names` is a string containing the names of all constants to be created.
1471  Blank spaces separate the names of different constants.
1472 
1473  >>> x, y, z = Consts('x y z', IntSort())
1474  >>> x + y + z
1475  x + y + z
1476  """
1477  if isinstance(names, str):
1478  names = names.split(" ")
1479  return [Const(name, sort) for name in names]
1480 
1481 
def Consts(names, sort)
Definition: z3py.py:1467

◆ Contains()

def z3py.Contains (   a,
  b 
)
Check if 'a' contains 'b'
>>> s1 = Contains("abc", "ab")
>>> simplify(s1)
True
>>> s2 = Contains("abc", "bc")
>>> simplify(s2)
True
>>> x, y, z = Strings('x y z')
>>> s3 = Contains(Concat(x,y,z), y)
>>> simplify(s3)
True

Definition at line 11158 of file z3py.py.

11158 def Contains(a, b):
11159  """Check if 'a' contains 'b'
11160  >>> s1 = Contains("abc", "ab")
11161  >>> simplify(s1)
11162  True
11163  >>> s2 = Contains("abc", "bc")
11164  >>> simplify(s2)
11165  True
11166  >>> x, y, z = Strings('x y z')
11167  >>> s3 = Contains(Concat(x,y,z), y)
11168  >>> simplify(s3)
11169  True
11170  """
11171  ctx = _get_ctx2(a, b)
11172  a = _coerce_seq(a, ctx)
11173  b = _coerce_seq(b, ctx)
11174  return BoolRef(Z3_mk_seq_contains(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11175 
11176 
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.
def Contains(a, b)
Definition: z3py.py:11158

◆ CreateDatatypes()

def z3py.CreateDatatypes ( ds)
Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.

In the following example we define a Tree-List using two mutually recursive datatypes.

>>> TreeList = Datatype('TreeList')
>>> Tree     = Datatype('Tree')
>>> # Tree has two constructors: leaf and node
>>> Tree.declare('leaf', ('val', IntSort()))
>>> # a node contains a list of trees
>>> Tree.declare('node', ('children', TreeList))
>>> TreeList.declare('nil')
>>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
>>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
>>> Tree.val(Tree.leaf(10))
val(leaf(10))
>>> simplify(Tree.val(Tree.leaf(10)))
10
>>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
>>> n1
node(cons(leaf(10), cons(leaf(20), nil)))
>>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
>>> simplify(n2 == n1)
False
>>> simplify(TreeList.car(Tree.children(n2)) == n1)
True

Definition at line 5204 of file z3py.py.

5204 def CreateDatatypes(*ds):
5205  """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
5206 
5207  In the following example we define a Tree-List using two mutually recursive datatypes.
5208 
5209  >>> TreeList = Datatype('TreeList')
5210  >>> Tree = Datatype('Tree')
5211  >>> # Tree has two constructors: leaf and node
5212  >>> Tree.declare('leaf', ('val', IntSort()))
5213  >>> # a node contains a list of trees
5214  >>> Tree.declare('node', ('children', TreeList))
5215  >>> TreeList.declare('nil')
5216  >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
5217  >>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
5218  >>> Tree.val(Tree.leaf(10))
5219  val(leaf(10))
5220  >>> simplify(Tree.val(Tree.leaf(10)))
5221  10
5222  >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
5223  >>> n1
5224  node(cons(leaf(10), cons(leaf(20), nil)))
5225  >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
5226  >>> simplify(n2 == n1)
5227  False
5228  >>> simplify(TreeList.car(Tree.children(n2)) == n1)
5229  True
5230  """
5231  ds = _get_args(ds)
5232  if z3_debug():
5233  _z3_assert(len(ds) > 0, "At least one Datatype must be specified")
5234  _z3_assert(all([isinstance(d, Datatype) for d in ds]), "Arguments must be Datatypes")
5235  _z3_assert(all([d.ctx == ds[0].ctx for d in ds]), "Context mismatch")
5236  _z3_assert(all([d.constructors != [] for d in ds]), "Non-empty Datatypes expected")
5237  ctx = ds[0].ctx
5238  num = len(ds)
5239  names = (Symbol * num)()
5240  out = (Sort * num)()
5241  clists = (ConstructorList * num)()
5242  to_delete = []
5243  for i in range(num):
5244  d = ds[i]
5245  names[i] = to_symbol(d.name, ctx)
5246  num_cs = len(d.constructors)
5247  cs = (Constructor * num_cs)()
5248  for j in range(num_cs):
5249  c = d.constructors[j]
5250  cname = to_symbol(c[0], ctx)
5251  rname = to_symbol(c[1], ctx)
5252  fs = c[2]
5253  num_fs = len(fs)
5254  fnames = (Symbol * num_fs)()
5255  sorts = (Sort * num_fs)()
5256  refs = (ctypes.c_uint * num_fs)()
5257  for k in range(num_fs):
5258  fname = fs[k][0]
5259  ftype = fs[k][1]
5260  fnames[k] = to_symbol(fname, ctx)
5261  if isinstance(ftype, Datatype):
5262  if z3_debug():
5263  _z3_assert(
5264  ds.count(ftype) == 1,
5265  "One and only one occurrence of each datatype is expected",
5266  )
5267  sorts[k] = None
5268  refs[k] = ds.index(ftype)
5269  else:
5270  if z3_debug():
5271  _z3_assert(is_sort(ftype), "Z3 sort expected")
5272  sorts[k] = ftype.ast
5273  refs[k] = 0
5274  cs[j] = Z3_mk_constructor(ctx.ref(), cname, rname, num_fs, fnames, sorts, refs)
5275  to_delete.append(ScopedConstructor(cs[j], ctx))
5276  clists[i] = Z3_mk_constructor_list(ctx.ref(), num_cs, cs)
5277  to_delete.append(ScopedConstructorList(clists[i], ctx))
5278  Z3_mk_datatypes(ctx.ref(), num, names, out, clists)
5279  result = []
5280  # Create a field for every constructor, recognizer and accessor
5281  for i in range(num):
5282  dref = DatatypeSortRef(out[i], ctx)
5283  num_cs = dref.num_constructors()
5284  for j in range(num_cs):
5285  cref = dref.constructor(j)
5286  cref_name = cref.name()
5287  cref_arity = cref.arity()
5288  if cref.arity() == 0:
5289  cref = cref()
5290  setattr(dref, cref_name, cref)
5291  rref = dref.recognizer(j)
5292  setattr(dref, "is_" + cref_name, rref)
5293  for k in range(cref_arity):
5294  aref = dref.accessor(j, k)
5295  setattr(dref, aref.name(), aref)
5296  result.append(dref)
5297  return tuple(result)
5298 
5299 
Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort_opt const sorts[], unsigned sort_refs[])
Create a constructor.
void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
Create mutually recursive datatypes.
Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
Create list of constructors.
def CreateDatatypes(*ds)
Definition: z3py.py:5204

Referenced by Datatype.create().

◆ DatatypeSort()

def z3py.DatatypeSort (   name,
  ctx = None 
)
Create a reference to a sort that was declared, or will be declared, as a recursive datatype

Definition at line 5404 of file z3py.py.

5404 def DatatypeSort(name, ctx = None):
5405  """Create a reference to a sort that was declared, or will be declared, as a recursive datatype"""
5406  ctx = _get_ctx(ctx)
5407  return DatatypeSortRef(Z3_mk_datatype_sort(ctx.ref(), to_symbol(name, ctx)), ctx)
5408 
Z3_sort Z3_API Z3_mk_datatype_sort(Z3_context c, Z3_symbol name)
create a forward reference to a recursive datatype being declared. The forward reference can be used ...
def DatatypeSort(name, ctx=None)
Definition: z3py.py:5404

Referenced by Context.MkDatatypeSort(), and Context.MkDatatypeSorts().

◆ DeclareSort()

def z3py.DeclareSort (   name,
  ctx = None 
)
Create a new uninterpreted sort named `name`.

If `ctx=None`, then the new sort is declared in the global Z3Py context.

>>> A = DeclareSort('A')
>>> a = Const('a', A)
>>> b = Const('b', A)
>>> a.sort() == A
True
>>> b.sort() == A
True
>>> a == b
a == b

Definition at line 695 of file z3py.py.

695 def DeclareSort(name, ctx=None):
696  """Create a new uninterpreted sort named `name`.
697 
698  If `ctx=None`, then the new sort is declared in the global Z3Py context.
699 
700  >>> A = DeclareSort('A')
701  >>> a = Const('a', A)
702  >>> b = Const('b', A)
703  >>> a.sort() == A
704  True
705  >>> b.sort() == A
706  True
707  >>> a == b
708  a == b
709  """
710  ctx = _get_ctx(ctx)
711  return SortRef(Z3_mk_uninterpreted_sort(ctx.ref(), to_symbol(name, ctx)), ctx)
712 
Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)
Create a free (uninterpreted) type using the given name (symbol).
def DeclareSort(name, ctx=None)
Definition: z3py.py:695

◆ DeclareTypeVar()

def z3py.DeclareTypeVar (   name,
  ctx = None 
)
Create a new type variable named `name`.

If `ctx=None`, then the new sort is declared in the global Z3Py context.

Definition at line 723 of file z3py.py.

723 def DeclareTypeVar(name, ctx=None):
724  """Create a new type variable named `name`.
725 
726  If `ctx=None`, then the new sort is declared in the global Z3Py context.
727 
728  """
729  ctx = _get_ctx(ctx)
730  return TypeVarRef(Z3_mk_type_variable(ctx.ref(), to_symbol(name, ctx)), ctx)
731 
732 
Z3_sort Z3_API Z3_mk_type_variable(Z3_context c, Z3_symbol s)
Create a type variable.
def DeclareTypeVar(name, ctx=None)
Definition: z3py.py:723

◆ Default()

def z3py.Default (   a)
 Return a default value for array expression.
>>> b = K(IntSort(), 1)
>>> prove(Default(b) == 1)
proved

Definition at line 4825 of file z3py.py.

4825 def Default(a):
4826  """ Return a default value for array expression.
4827  >>> b = K(IntSort(), 1)
4828  >>> prove(Default(b) == 1)
4829  proved
4830  """
4831  if z3_debug():
4832  _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4833  return a.default()
4834 
4835 
def is_array_sort(a)
Definition: z3py.py:4653
def Default(a)
Definition: z3py.py:4825

◆ describe_probes()

def z3py.describe_probes ( )
Display a (tabular) description of all available probes in Z3.

Definition at line 8808 of file z3py.py.

8808 def describe_probes():
8809  """Display a (tabular) description of all available probes in Z3."""
8810  if in_html_mode():
8811  even = True
8812  print('<table border="1" cellpadding="2" cellspacing="0">')
8813  for p in probes():
8814  if even:
8815  print('<tr style="background-color:#CFCFCF">')
8816  even = False
8817  else:
8818  print("<tr>")
8819  even = True
8820  print("<td>%s</td><td>%s</td></tr>" % (p, insert_line_breaks(probe_description(p), 40)))
8821  print("</table>")
8822  else:
8823  for p in probes():
8824  print("%s : %s" % (p, probe_description(p)))
8825 
8826 
def probe_description(name, ctx=None)
Definition: z3py.py:8799
def describe_probes()
Definition: z3py.py:8808
def probes(ctx=None)
Definition: z3py.py:8788

◆ describe_tactics()

def z3py.describe_tactics ( )
Display a (tabular) description of all available tactics in Z3.

Definition at line 8602 of file z3py.py.

8602 def describe_tactics():
8603  """Display a (tabular) description of all available tactics in Z3."""
8604  if in_html_mode():
8605  even = True
8606  print('<table border="1" cellpadding="2" cellspacing="0">')
8607  for t in tactics():
8608  if even:
8609  print('<tr style="background-color:#CFCFCF">')
8610  even = False
8611  else:
8612  print("<tr>")
8613  even = True
8614  print("<td>%s</td><td>%s</td></tr>" % (t, insert_line_breaks(tactic_description(t), 40)))
8615  print("</table>")
8616  else:
8617  for t in tactics():
8618  print("%s : %s" % (t, tactic_description(t)))
8619 
8620 
def tactics(ctx=None)
Definition: z3py.py:8582
def tactic_description(name, ctx=None)
Definition: z3py.py:8593
def describe_tactics()
Definition: z3py.py:8602

◆ deserialize()

def z3py.deserialize (   st)
inverse function to the serialize method on ExprRef.
It is made available to make it easier for users to serialize expressions back and forth between
strings. Solvers can be serialized using the 'sexpr()' method.

Definition at line 1137 of file z3py.py.

1137 def deserialize(st):
1138  """inverse function to the serialize method on ExprRef.
1139  It is made available to make it easier for users to serialize expressions back and forth between
1140  strings. Solvers can be serialized using the 'sexpr()' method.
1141  """
1142  s = Solver()
1143  s.from_string(st)
1144  if len(s.assertions()) != 1:
1145  raise Z3Exception("single assertion expected")
1146  fml = s.assertions()[0]
1147  if fml.num_args() != 1:
1148  raise Z3Exception("dummy function 'F' expected")
1149  return fml.arg(0)
1150 
def deserialize(st)
Definition: z3py.py:1137

◆ Diff()

def z3py.Diff (   a,
  b,
  ctx = None 
)
Create the difference regular expression

Definition at line 11463 of file z3py.py.

11463 def Diff(a, b, ctx=None):
11464  """Create the difference regular expression
11465  """
11466  if z3_debug():
11467  _z3_assert(is_expr(a), "expression expected")
11468  _z3_assert(is_expr(b), "expression expected")
11469  return ReRef(Z3_mk_re_diff(a.ctx_ref(), a.ast, b.ast), a.ctx)
11470 
Z3_ast Z3_API Z3_mk_re_diff(Z3_context c, Z3_ast re1, Z3_ast re2)
Create the difference of regular expressions.
def Diff(a, b, ctx=None)
Definition: z3py.py:11463

◆ disable_trace()

def z3py.disable_trace (   msg)

Definition at line 79 of file z3py.py.

79 def disable_trace(msg):
80  Z3_disable_trace(msg)
81 
82 
void Z3_API Z3_disable_trace(Z3_string tag)
Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
def disable_trace(msg)
Definition: z3py.py:79

◆ DisjointSum()

def z3py.DisjointSum (   name,
  sorts,
  ctx = None 
)
Create a named tagged union sort base on a set of underlying sorts
Example:
    >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])

Definition at line 5421 of file z3py.py.

5421 def DisjointSum(name, sorts, ctx=None):
5422  """Create a named tagged union sort base on a set of underlying sorts
5423  Example:
5424  >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
5425  """
5426  sum = Datatype(name, ctx)
5427  for i in range(len(sorts)):
5428  sum.declare("inject%d" % i, ("project%d" % i, sorts[i]))
5429  sum = sum.create()
5430  return sum, [(sum.constructor(i), sum.accessor(i, 0)) for i in range(len(sorts))]
5431 
5432 
def DisjointSum(name, sorts, ctx=None)
Definition: z3py.py:5421

◆ Distinct()

def z3py.Distinct ( args)
Create a Z3 distinct expression.

>>> x = Int('x')
>>> y = Int('y')
>>> Distinct(x, y)
x != y
>>> z = Int('z')
>>> Distinct(x, y, z)
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z))
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z), blast_distinct=True)
And(Not(x == y), Not(x == z), Not(y == z))

Definition at line 1422 of file z3py.py.

1422 def Distinct(*args):
1423  """Create a Z3 distinct expression.
1424 
1425  >>> x = Int('x')
1426  >>> y = Int('y')
1427  >>> Distinct(x, y)
1428  x != y
1429  >>> z = Int('z')
1430  >>> Distinct(x, y, z)
1431  Distinct(x, y, z)
1432  >>> simplify(Distinct(x, y, z))
1433  Distinct(x, y, z)
1434  >>> simplify(Distinct(x, y, z), blast_distinct=True)
1435  And(Not(x == y), Not(x == z), Not(y == z))
1436  """
1437  args = _get_args(args)
1438  ctx = _ctx_from_ast_arg_list(args)
1439  if z3_debug():
1440  _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
1441  args = _coerce_expr_list(args, ctx)
1442  _args, sz = _to_ast_array(args)
1443  return BoolRef(Z3_mk_distinct(ctx.ref(), sz, _args), ctx)
1444 
1445 
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).
def Distinct(*args)
Definition: z3py.py:1422

◆ Empty()

def z3py.Empty (   s)
Create the empty sequence of the given sort
>>> e = Empty(StringSort())
>>> e2 = StringVal("")
>>> print(e.eq(e2))
True
>>> e3 = Empty(SeqSort(IntSort()))
>>> print(e3)
Empty(Seq(Int))
>>> e4 = Empty(ReSort(SeqSort(IntSort())))
>>> print(e4)
Empty(ReSort(Seq(Int)))

Definition at line 11088 of file z3py.py.

11088 def Empty(s):
11089  """Create the empty sequence of the given sort
11090  >>> e = Empty(StringSort())
11091  >>> e2 = StringVal("")
11092  >>> print(e.eq(e2))
11093  True
11094  >>> e3 = Empty(SeqSort(IntSort()))
11095  >>> print(e3)
11096  Empty(Seq(Int))
11097  >>> e4 = Empty(ReSort(SeqSort(IntSort())))
11098  >>> print(e4)
11099  Empty(ReSort(Seq(Int)))
11100  """
11101  if isinstance(s, SeqSortRef):
11102  return SeqRef(Z3_mk_seq_empty(s.ctx_ref(), s.ast), s.ctx)
11103  if isinstance(s, ReSortRef):
11104  return ReRef(Z3_mk_re_empty(s.ctx_ref(), s.ast), s.ctx)
11105  raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
11106 
11107 
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)
Create an empty sequence of the sequence sort seq.
Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)
Create an empty regular expression of sort re.
def Empty(s)
Definition: z3py.py:11088

◆ EmptySet()

def z3py.EmptySet (   s)
Create the empty set
>>> EmptySet(IntSort())
K(Int, False)

Definition at line 4968 of file z3py.py.

4968 def EmptySet(s):
4969  """Create the empty set
4970  >>> EmptySet(IntSort())
4971  K(Int, False)
4972  """
4973  ctx = s.ctx
4974  return ArrayRef(Z3_mk_empty_set(ctx.ref(), s.ast), ctx)
4975 
4976 
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.
def EmptySet(s)
Definition: z3py.py:4968

◆ enable_trace()

def z3py.enable_trace (   msg)

Definition at line 75 of file z3py.py.

75 def enable_trace(msg):
76  Z3_enable_trace(msg)
77 
78 
void Z3_API Z3_enable_trace(Z3_string tag)
Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
def enable_trace(msg)
Definition: z3py.py:75

◆ ensure_prop_closures()

def z3py.ensure_prop_closures ( )

Definition at line 11582 of file z3py.py.

11582 def ensure_prop_closures():
11583  global _prop_closures
11584  if _prop_closures is None:
11585  _prop_closures = PropClosures()
11586 
11587 
def ensure_prop_closures()
Definition: z3py.py:11582

Referenced by UserPropagateBase.__init__().

◆ EnumSort()

def z3py.EnumSort (   name,
  values,
  ctx = None 
)
Return a new enumeration sort named `name` containing the given values.

The result is a pair (sort, list of constants).
Example:
    >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])

Definition at line 5433 of file z3py.py.

5433 def EnumSort(name, values, ctx=None):
5434  """Return a new enumeration sort named `name` containing the given values.
5435 
5436  The result is a pair (sort, list of constants).
5437  Example:
5438  >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
5439  """
5440  if z3_debug():
5441  _z3_assert(isinstance(name, str), "Name must be a string")
5442  _z3_assert(all([isinstance(v, str) for v in values]), "Enumeration sort values must be strings")
5443  _z3_assert(len(values) > 0, "At least one value expected")
5444  ctx = _get_ctx(ctx)
5445  num = len(values)
5446  _val_names = (Symbol * num)()
5447  for i in range(num):
5448  _val_names[i] = to_symbol(values[i], ctx)
5449  _values = (FuncDecl * num)()
5450  _testers = (FuncDecl * num)()
5451  name = to_symbol(name, ctx)
5452  S = DatatypeSortRef(Z3_mk_enumeration_sort(ctx.ref(), name, num, _val_names, _values, _testers), ctx)
5453  V = []
5454  for i in range(num):
5455  V.append(FuncDeclRef(_values[i], ctx))
5456  V = [a() for a in V]
5457  return S, V
5458 
Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
Create a enumeration sort.
def EnumSort(name, values, ctx=None)
Definition: z3py.py:5433

Referenced by Context.MkEnumSort().

◆ eq()

def z3py.eq (   a,
  b 
)
Return `True` if `a` and `b` are structurally identical AST nodes.

>>> x = Int('x')
>>> y = Int('y')
>>> eq(x, y)
False
>>> eq(x + 1, x + 1)
True
>>> eq(x + 1, 1 + x)
False
>>> eq(simplify(x + 1), simplify(1 + x))
True

Definition at line 472 of file z3py.py.

472 def eq(a, b):
473  """Return `True` if `a` and `b` are structurally identical AST nodes.
474 
475  >>> x = Int('x')
476  >>> y = Int('y')
477  >>> eq(x, y)
478  False
479  >>> eq(x + 1, x + 1)
480  True
481  >>> eq(x + 1, 1 + x)
482  False
483  >>> eq(simplify(x + 1), simplify(1 + x))
484  True
485  """
486  if z3_debug():
487  _z3_assert(is_ast(a) and is_ast(b), "Z3 ASTs expected")
488  return a.eq(b)
489 
490 
def is_ast(a)
Definition: z3py.py:451
def eq(a, b)
Definition: z3py.py:472

Referenced by substitute().

◆ Exists()

def z3py.Exists (   vs,
  body,
  weight = 1,
  qid = "",
  skid = "",
  patterns = [],
  no_patterns = [] 
)
Create a Z3 exists formula.

The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.


>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> q = Exists([x, y], f(x, y) >= x, skid="foo")
>>> q
Exists([x, y], f(x, y) >= x)
>>> is_quantifier(q)
True
>>> r = Tactic('nnf')(q).as_expr()
>>> is_quantifier(r)
False

Definition at line 2290 of file z3py.py.

2290 def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2291  """Create a Z3 exists formula.
2292 
2293  The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
2294 
2295 
2296  >>> f = Function('f', IntSort(), IntSort(), IntSort())
2297  >>> x = Int('x')
2298  >>> y = Int('y')
2299  >>> q = Exists([x, y], f(x, y) >= x, skid="foo")
2300  >>> q
2301  Exists([x, y], f(x, y) >= x)
2302  >>> is_quantifier(q)
2303  True
2304  >>> r = Tactic('nnf')(q).as_expr()
2305  >>> is_quantifier(r)
2306  False
2307  """
2308  return _mk_quantifier(False, vs, body, weight, qid, skid, patterns, no_patterns)
2309 
2310 
def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Definition: z3py.py:2290

Referenced by Fixedpoint.abstract().

◆ Ext()

def z3py.Ext (   a,
  b 
)
Return extensionality index for one-dimensional arrays.
>> a, b = Consts('a b', SetSort(IntSort()))
>> Ext(a, b)
Ext(a, b)

Definition at line 4914 of file z3py.py.

4914 def Ext(a, b):
4915  """Return extensionality index for one-dimensional arrays.
4916  >> a, b = Consts('a b', SetSort(IntSort()))
4917  >> Ext(a, b)
4918  Ext(a, b)
4919  """
4920  ctx = a.ctx
4921  if z3_debug():
4922  _z3_assert(is_array_sort(a) and (is_array(b) or b.is_lambda()), "arguments must be arrays")
4923  return _to_expr_ref(Z3_mk_array_ext(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
4924 
4925 
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...
def is_array(a)
Definition: z3py.py:4657
def Ext(a, b)
Definition: z3py.py:4914

◆ Extract()

def z3py.Extract (   high,
  low,
  a 
)
Create a Z3 bit-vector extraction expression.
Extract is overloaded to also work on sequence extraction.
The functions SubString and SubSeq are redirected to Extract.
For this case, the arguments are reinterpreted as:
    high - is a sequence (string)
    low  - is an offset
    a    - is the length to be extracted

>>> x = BitVec('x', 8)
>>> Extract(6, 2, x)
Extract(6, 2, x)
>>> Extract(6, 2, x).sort()
BitVec(5)
>>> simplify(Extract(StringVal("abcd"),2,1))
"c"

Definition at line 4174 of file z3py.py.

4174 def Extract(high, low, a):
4175  """Create a Z3 bit-vector extraction expression.
4176  Extract is overloaded to also work on sequence extraction.
4177  The functions SubString and SubSeq are redirected to Extract.
4178  For this case, the arguments are reinterpreted as:
4179  high - is a sequence (string)
4180  low - is an offset
4181  a - is the length to be extracted
4182 
4183  >>> x = BitVec('x', 8)
4184  >>> Extract(6, 2, x)
4185  Extract(6, 2, x)
4186  >>> Extract(6, 2, x).sort()
4187  BitVec(5)
4188  >>> simplify(Extract(StringVal("abcd"),2,1))
4189  "c"
4190  """
4191  if isinstance(high, str):
4192  high = StringVal(high)
4193  if is_seq(high):
4194  s = high
4195  offset, length = _coerce_exprs(low, a, s.ctx)
4196  return SeqRef(Z3_mk_seq_extract(s.ctx_ref(), s.as_ast(), offset.as_ast(), length.as_ast()), s.ctx)
4197  if z3_debug():
4198  _z3_assert(low <= high, "First argument must be greater than or equal to second argument")
4199  _z3_assert(_is_int(high) and high >= 0 and _is_int(low) and low >= 0,
4200  "First and second arguments must be non negative integers")
4201  _z3_assert(is_bv(a), "Third argument must be a Z3 bit-vector expression")
4202  return BitVecRef(Z3_mk_extract(a.ctx_ref(), high, low, a.as_ast()), a.ctx)
4203 
4204 
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.
def Extract(high, low, a)
Definition: z3py.py:4174
def StringVal(s, ctx=None)
Definition: z3py.py:11054

Referenced by SubSeq(), and SubString().

◆ FailIf()

def z3py.FailIf (   p,
  ctx = None 
)
Return a tactic that fails if the probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.

In the following example, the tactic applies 'simplify' if and only if there are
more than 2 constraints in the goal.

>>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]

Definition at line 8845 of file z3py.py.

8845 def FailIf(p, ctx=None):
8846  """Return a tactic that fails if the probe `p` evaluates to true.
8847  Otherwise, it returns the input goal unmodified.
8848 
8849  In the following example, the tactic applies 'simplify' if and only if there are
8850  more than 2 constraints in the goal.
8851 
8852  >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
8853  >>> x, y = Ints('x y')
8854  >>> g = Goal()
8855  >>> g.add(x > 0)
8856  >>> g.add(y > 0)
8857  >>> t(g)
8858  [[x > 0, y > 0]]
8859  >>> g.add(x == y + 1)
8860  >>> t(g)
8861  [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
8862  """
8863  p = _to_probe(p, ctx)
8864  return Tactic(Z3_tactic_fail_if(p.ctx.ref(), p.probe), p.ctx)
8865 
8866 
Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)
Return a tactic that fails if the probe p evaluates to false.
def FailIf(p, ctx=None)
Definition: z3py.py:8845

◆ FiniteDomainSort()

def z3py.FiniteDomainSort (   name,
  sz,
  ctx = None 
)
Create a named finite domain sort of a given size sz

Definition at line 7783 of file z3py.py.

7783 def FiniteDomainSort(name, sz, ctx=None):
7784  """Create a named finite domain sort of a given size sz"""
7785  if not isinstance(name, Symbol):
7786  name = to_symbol(name)
7787  ctx = _get_ctx(ctx)
7788  return FiniteDomainSortRef(Z3_mk_finite_domain_sort(ctx.ref(), name, sz), ctx)
7789 
7790 
Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size)
Create a named finite domain sort.
def FiniteDomainSort(name, sz, ctx=None)
Definition: z3py.py:7783

Referenced by Context.MkFiniteDomainSort().

◆ FiniteDomainVal()

def z3py.FiniteDomainVal (   val,
  sort,
  ctx = None 
)
Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.

>>> s = FiniteDomainSort('S', 256)
>>> FiniteDomainVal(255, s)
255
>>> FiniteDomainVal('100', s)
100

Definition at line 7853 of file z3py.py.

7853 def FiniteDomainVal(val, sort, ctx=None):
7854  """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
7855 
7856  >>> s = FiniteDomainSort('S', 256)
7857  >>> FiniteDomainVal(255, s)
7858  255
7859  >>> FiniteDomainVal('100', s)
7860  100
7861  """
7862  if z3_debug():
7863  _z3_assert(is_finite_domain_sort(sort), "Expected finite-domain sort")
7864  ctx = sort.ctx
7865  return FiniteDomainNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
7866 
7867 
def FiniteDomainVal(val, sort, ctx=None)
Definition: z3py.py:7853
def is_finite_domain_sort(s)
Definition: z3py.py:7791

◆ Float128()

def z3py.Float128 (   ctx = None)
Floating-point 128-bit (quadruple) sort.

Definition at line 9573 of file z3py.py.

9573 def Float128(ctx=None):
9574  """Floating-point 128-bit (quadruple) sort."""
9575  ctx = _get_ctx(ctx)
9576  return FPSortRef(Z3_mk_fpa_sort_128(ctx.ref()), ctx)
9577 
9578 
Z3_sort Z3_API Z3_mk_fpa_sort_128(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.
def Float128(ctx=None)
Definition: z3py.py:9573

◆ Float16()

def z3py.Float16 (   ctx = None)
Floating-point 16-bit (half) sort.

Definition at line 9537 of file z3py.py.

9537 def Float16(ctx=None):
9538  """Floating-point 16-bit (half) sort."""
9539  ctx = _get_ctx(ctx)
9540  return FPSortRef(Z3_mk_fpa_sort_16(ctx.ref()), ctx)
9541 
9542 
Z3_sort Z3_API Z3_mk_fpa_sort_16(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.
def Float16(ctx=None)
Definition: z3py.py:9537

◆ Float32()

def z3py.Float32 (   ctx = None)
Floating-point 32-bit (single) sort.

Definition at line 9549 of file z3py.py.

9549 def Float32(ctx=None):
9550  """Floating-point 32-bit (single) sort."""
9551  ctx = _get_ctx(ctx)
9552  return FPSortRef(Z3_mk_fpa_sort_32(ctx.ref()), ctx)
9553 
9554 
Z3_sort Z3_API Z3_mk_fpa_sort_32(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.
def Float32(ctx=None)
Definition: z3py.py:9549

◆ Float64()

def z3py.Float64 (   ctx = None)
Floating-point 64-bit (double) sort.

Definition at line 9561 of file z3py.py.

9561 def Float64(ctx=None):
9562  """Floating-point 64-bit (double) sort."""
9563  ctx = _get_ctx(ctx)
9564  return FPSortRef(Z3_mk_fpa_sort_64(ctx.ref()), ctx)
9565 
9566 
Z3_sort Z3_API Z3_mk_fpa_sort_64(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.
def Float64(ctx=None)
Definition: z3py.py:9561

◆ FloatDouble()

def z3py.FloatDouble (   ctx = None)
Floating-point 64-bit (double) sort.

Definition at line 9567 of file z3py.py.

9567 def FloatDouble(ctx=None):
9568  """Floating-point 64-bit (double) sort."""
9569  ctx = _get_ctx(ctx)
9570  return FPSortRef(Z3_mk_fpa_sort_double(ctx.ref()), ctx)
9571 
9572 
Z3_sort Z3_API Z3_mk_fpa_sort_double(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.
def FloatDouble(ctx=None)
Definition: z3py.py:9567

◆ FloatHalf()

def z3py.FloatHalf (   ctx = None)
Floating-point 16-bit (half) sort.

Definition at line 9543 of file z3py.py.

9543 def FloatHalf(ctx=None):
9544  """Floating-point 16-bit (half) sort."""
9545  ctx = _get_ctx(ctx)
9546  return FPSortRef(Z3_mk_fpa_sort_half(ctx.ref()), ctx)
9547 
9548 
Z3_sort Z3_API Z3_mk_fpa_sort_half(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.
def FloatHalf(ctx=None)
Definition: z3py.py:9543

◆ FloatQuadruple()

def z3py.FloatQuadruple (   ctx = None)
Floating-point 128-bit (quadruple) sort.

Definition at line 9579 of file z3py.py.

9579 def FloatQuadruple(ctx=None):
9580  """Floating-point 128-bit (quadruple) sort."""
9581  ctx = _get_ctx(ctx)
9582  return FPSortRef(Z3_mk_fpa_sort_quadruple(ctx.ref()), ctx)
9583 
9584 
Z3_sort Z3_API Z3_mk_fpa_sort_quadruple(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.
def FloatQuadruple(ctx=None)
Definition: z3py.py:9579

◆ FloatSingle()

def z3py.FloatSingle (   ctx = None)
Floating-point 32-bit (single) sort.

Definition at line 9555 of file z3py.py.

9555 def FloatSingle(ctx=None):
9556  """Floating-point 32-bit (single) sort."""
9557  ctx = _get_ctx(ctx)
9558  return FPSortRef(Z3_mk_fpa_sort_single(ctx.ref()), ctx)
9559 
9560 
Z3_sort Z3_API Z3_mk_fpa_sort_single(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.
def FloatSingle(ctx=None)
Definition: z3py.py:9555

◆ ForAll()

def z3py.ForAll (   vs,
  body,
  weight = 1,
  qid = "",
  skid = "",
  patterns = [],
  no_patterns = [] 
)
Create a Z3 forall formula.

The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> ForAll([x, y], f(x, y) >= x)
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, weight=10)
ForAll([x, y], f(x, y) >= x)

Definition at line 2272 of file z3py.py.

2272 def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2273  """Create a Z3 forall formula.
2274 
2275  The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
2276 
2277  >>> f = Function('f', IntSort(), IntSort(), IntSort())
2278  >>> x = Int('x')
2279  >>> y = Int('y')
2280  >>> ForAll([x, y], f(x, y) >= x)
2281  ForAll([x, y], f(x, y) >= x)
2282  >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
2283  ForAll([x, y], f(x, y) >= x)
2284  >>> ForAll([x, y], f(x, y) >= x, weight=10)
2285  ForAll([x, y], f(x, y) >= x)
2286  """
2287  return _mk_quantifier(True, vs, body, weight, qid, skid, patterns, no_patterns)
2288 
2289 
def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Definition: z3py.py:2272

Referenced by Fixedpoint.abstract().

◆ FP()

def z3py.FP (   name,
  fpsort,
  ctx = None 
)
Return a floating-point constant named `name`.
`fpsort` is the floating-point sort.
If `ctx=None`, then the global context is used.

>>> x  = FP('x', FPSort(8, 24))
>>> is_fp(x)
True
>>> x.ebits()
8
>>> x.sort()
FPSort(8, 24)
>>> word = FPSort(8, 24)
>>> x2 = FP('x', word)
>>> eq(x, x2)
True

Definition at line 10205 of file z3py.py.

10205 def FP(name, fpsort, ctx=None):
10206  """Return a floating-point constant named `name`.
10207  `fpsort` is the floating-point sort.
10208  If `ctx=None`, then the global context is used.
10209 
10210  >>> x = FP('x', FPSort(8, 24))
10211  >>> is_fp(x)
10212  True
10213  >>> x.ebits()
10214  8
10215  >>> x.sort()
10216  FPSort(8, 24)
10217  >>> word = FPSort(8, 24)
10218  >>> x2 = FP('x', word)
10219  >>> eq(x, x2)
10220  True
10221  """
10222  if isinstance(fpsort, FPSortRef) and ctx is None:
10223  ctx = fpsort.ctx
10224  else:
10225  ctx = _get_ctx(ctx)
10226  return FPRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), fpsort.ast), ctx)
10227 
10228 
def FP(name, fpsort, ctx=None)
Definition: z3py.py:10205

Referenced by FPs().

◆ fpAbs()

def z3py.fpAbs (   a,
  ctx = None 
)
Create a Z3 floating-point absolute value expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FPVal(1.0, s)
>>> fpAbs(x)
fpAbs(1)
>>> y = FPVal(-20.0, s)
>>> y
-1.25*(2**4)
>>> fpAbs(y)
fpAbs(-1.25*(2**4))
>>> fpAbs(-1.25*(2**4))
fpAbs(-1.25*(2**4))
>>> fpAbs(x).sort()
FPSort(8, 24)

Definition at line 10248 of file z3py.py.

10248 def fpAbs(a, ctx=None):
10249  """Create a Z3 floating-point absolute value expression.
10250 
10251  >>> s = FPSort(8, 24)
10252  >>> rm = RNE()
10253  >>> x = FPVal(1.0, s)
10254  >>> fpAbs(x)
10255  fpAbs(1)
10256  >>> y = FPVal(-20.0, s)
10257  >>> y
10258  -1.25*(2**4)
10259  >>> fpAbs(y)
10260  fpAbs(-1.25*(2**4))
10261  >>> fpAbs(-1.25*(2**4))
10262  fpAbs(-1.25*(2**4))
10263  >>> fpAbs(x).sort()
10264  FPSort(8, 24)
10265  """
10266  ctx = _get_ctx(ctx)
10267  [a] = _coerce_fp_expr_list([a], ctx)
10268  return FPRef(Z3_mk_fpa_abs(ctx.ref(), a.as_ast()), ctx)
10269 
10270 
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.
def fpAbs(a, ctx=None)
Definition: z3py.py:10248

◆ fpAdd()

def z3py.fpAdd (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point addition expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpAdd(rm, x, y)
x + y
>>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
fpAdd(RTZ(), x, y)
>>> fpAdd(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10339 of file z3py.py.

10339 def fpAdd(rm, a, b, ctx=None):
10340  """Create a Z3 floating-point addition expression.
10341 
10342  >>> s = FPSort(8, 24)
10343  >>> rm = RNE()
10344  >>> x = FP('x', s)
10345  >>> y = FP('y', s)
10346  >>> fpAdd(rm, x, y)
10347  x + y
10348  >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
10349  fpAdd(RTZ(), x, y)
10350  >>> fpAdd(rm, x, y).sort()
10351  FPSort(8, 24)
10352  """
10353  return _mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
10354 
10355 
def fpAdd(rm, a, b, ctx=None)
Definition: z3py.py:10339

Referenced by FPRef.__add__(), and FPRef.__radd__().

◆ fpBVToFP()

def z3py.fpBVToFP (   v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a bit-vector term to a floating-point term.

>>> x_bv = BitVecVal(0x3F800000, 32)
>>> x_fp = fpBVToFP(x_bv, Float32())
>>> x_fp
fpToFP(1065353216)
>>> simplify(x_fp)
1

Definition at line 10661 of file z3py.py.

10661 def fpBVToFP(v, sort, ctx=None):
10662  """Create a Z3 floating-point conversion expression that represents the
10663  conversion from a bit-vector term to a floating-point term.
10664 
10665  >>> x_bv = BitVecVal(0x3F800000, 32)
10666  >>> x_fp = fpBVToFP(x_bv, Float32())
10667  >>> x_fp
10668  fpToFP(1065353216)
10669  >>> simplify(x_fp)
10670  1
10671  """
10672  _z3_assert(is_bv(v), "First argument must be a Z3 bit-vector expression")
10673  _z3_assert(is_fp_sort(sort), "Second argument must be a Z3 floating-point sort.")
10674  ctx = _get_ctx(ctx)
10675  return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), v.ast, sort.ast), ctx)
10676 
10677 
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.
def is_fp_sort(s)
Definition: z3py.py:9589
def fpBVToFP(v, sort, ctx=None)
Definition: z3py.py:10661

◆ fpDiv()

def z3py.fpDiv (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point division expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpDiv(rm, x, y)
x / y
>>> fpDiv(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10386 of file z3py.py.

10386 def fpDiv(rm, a, b, ctx=None):
10387  """Create a Z3 floating-point division expression.
10388 
10389  >>> s = FPSort(8, 24)
10390  >>> rm = RNE()
10391  >>> x = FP('x', s)
10392  >>> y = FP('y', s)
10393  >>> fpDiv(rm, x, y)
10394  x / y
10395  >>> fpDiv(rm, x, y).sort()
10396  FPSort(8, 24)
10397  """
10398  return _mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
10399 
10400 
def fpDiv(rm, a, b, ctx=None)
Definition: z3py.py:10386

Referenced by FPRef.__div__(), and FPRef.__rdiv__().

◆ fpEQ()

def z3py.fpEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `fpEQ(other, self)`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpEQ(x, y)
fpEQ(x, y)
>>> fpEQ(x, y).sexpr()
'(fp.eq x y)'

Definition at line 10569 of file z3py.py.

10569 def fpEQ(a, b, ctx=None):
10570  """Create the Z3 floating-point expression `fpEQ(other, self)`.
10571 
10572  >>> x, y = FPs('x y', FPSort(8, 24))
10573  >>> fpEQ(x, y)
10574  fpEQ(x, y)
10575  >>> fpEQ(x, y).sexpr()
10576  '(fp.eq x y)'
10577  """
10578  return _mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
10579 
10580 
def fpEQ(a, b, ctx=None)
Definition: z3py.py:10569

Referenced by fpNEQ().

◆ fpFMA()

def z3py.fpFMA (   rm,
  a,
  b,
  c,
  ctx = None 
)
Create a Z3 floating-point fused multiply-add expression.

Definition at line 10445 of file z3py.py.

10445 def fpFMA(rm, a, b, c, ctx=None):
10446  """Create a Z3 floating-point fused multiply-add expression.
10447  """
10448  return _mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
10449 
10450 
def fpFMA(rm, a, b, c, ctx=None)
Definition: z3py.py:10445

◆ fpFP()

def z3py.fpFP (   sgn,
  exp,
  sig,
  ctx = None 
)
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.

>>> s = FPSort(8, 24)
>>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
>>> print(x)
fpFP(1, 127, 4194304)
>>> xv = FPVal(-1.5, s)
>>> print(xv)
-1.5
>>> slvr = Solver()
>>> slvr.add(fpEQ(x, xv))
>>> slvr.check()
sat
>>> xv = FPVal(+1.5, s)
>>> print(xv)
1.5
>>> slvr = Solver()
>>> slvr.add(fpEQ(x, xv))
>>> slvr.check()
unsat

Definition at line 10593 of file z3py.py.

10593 def fpFP(sgn, exp, sig, ctx=None):
10594  """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.
10595 
10596  >>> s = FPSort(8, 24)
10597  >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
10598  >>> print(x)
10599  fpFP(1, 127, 4194304)
10600  >>> xv = FPVal(-1.5, s)
10601  >>> print(xv)
10602  -1.5
10603  >>> slvr = Solver()
10604  >>> slvr.add(fpEQ(x, xv))
10605  >>> slvr.check()
10606  sat
10607  >>> xv = FPVal(+1.5, s)
10608  >>> print(xv)
10609  1.5
10610  >>> slvr = Solver()
10611  >>> slvr.add(fpEQ(x, xv))
10612  >>> slvr.check()
10613  unsat
10614  """
10615  _z3_assert(is_bv(sgn) and is_bv(exp) and is_bv(sig), "sort mismatch")
10616  _z3_assert(sgn.sort().size() == 1, "sort mismatch")
10617  ctx = _get_ctx(ctx)
10618  _z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx, "context mismatch")
10619  return FPRef(Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
10620 
10621 
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.
def fpFP(sgn, exp, sig, ctx=None)
Definition: z3py.py:10593

◆ fpFPToFP()

def z3py.fpFPToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a floating-point term to a floating-point term of different precision.

>>> x_sgl = FPVal(1.0, Float32())
>>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
>>> x_dbl
fpToFP(RNE(), 1)
>>> simplify(x_dbl)
1
>>> x_dbl.sort()
FPSort(11, 53)

Definition at line 10678 of file z3py.py.

10678 def fpFPToFP(rm, v, sort, ctx=None):
10679  """Create a Z3 floating-point conversion expression that represents the
10680  conversion from a floating-point term to a floating-point term of different precision.
10681 
10682  >>> x_sgl = FPVal(1.0, Float32())
10683  >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
10684  >>> x_dbl
10685  fpToFP(RNE(), 1)
10686  >>> simplify(x_dbl)
10687  1
10688  >>> x_dbl.sort()
10689  FPSort(11, 53)
10690  """
10691  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10692  _z3_assert(is_fp(v), "Second argument must be a Z3 floating-point expression.")
10693  _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10694  ctx = _get_ctx(ctx)
10695  return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10696 
10697 
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.
def fpFPToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10678
def is_fprm(a)
Definition: z3py.py:9849
def is_fp(a)
Definition: z3py.py:10005

◆ fpGEQ()

def z3py.fpGEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other >= self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGEQ(x, y)
x >= y
>>> (x >= y).sexpr()
'(fp.geq x y)'

Definition at line 10557 of file z3py.py.

10557 def fpGEQ(a, b, ctx=None):
10558  """Create the Z3 floating-point expression `other >= self`.
10559 
10560  >>> x, y = FPs('x y', FPSort(8, 24))
10561  >>> fpGEQ(x, y)
10562  x >= y
10563  >>> (x >= y).sexpr()
10564  '(fp.geq x y)'
10565  """
10566  return _mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
10567 
10568 
def fpGEQ(a, b, ctx=None)
Definition: z3py.py:10557

Referenced by FPRef.__ge__().

◆ fpGT()

def z3py.fpGT (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other > self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGT(x, y)
x > y
>>> (x > y).sexpr()
'(fp.gt x y)'

Definition at line 10545 of file z3py.py.

10545 def fpGT(a, b, ctx=None):
10546  """Create the Z3 floating-point expression `other > self`.
10547 
10548  >>> x, y = FPs('x y', FPSort(8, 24))
10549  >>> fpGT(x, y)
10550  x > y
10551  >>> (x > y).sexpr()
10552  '(fp.gt x y)'
10553  """
10554  return _mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
10555 
10556 
def fpGT(a, b, ctx=None)
Definition: z3py.py:10545

Referenced by FPRef.__gt__().

◆ fpInfinity()

def z3py.fpInfinity (   s,
  negative 
)
Create a Z3 floating-point +oo or -oo term.

Definition at line 10133 of file z3py.py.

10133 def fpInfinity(s, negative):
10134  """Create a Z3 floating-point +oo or -oo term."""
10135  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10136  _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10137  return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
10138 
10139 
Z3_ast Z3_API Z3_mk_fpa_inf(Z3_context c, Z3_sort s, bool negative)
Create a floating-point infinity of sort s.
def fpInfinity(s, negative)
Definition: z3py.py:10133

◆ fpIsInf()

def z3py.fpIsInf (   a,
  ctx = None 
)
Create a Z3 floating-point isInfinite expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> fpIsInf(x)
fpIsInf(x)

Definition at line 10475 of file z3py.py.

10475 def fpIsInf(a, ctx=None):
10476  """Create a Z3 floating-point isInfinite expression.
10477 
10478  >>> s = FPSort(8, 24)
10479  >>> x = FP('x', s)
10480  >>> fpIsInf(x)
10481  fpIsInf(x)
10482  """
10483  return _mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
10484 
10485 
def fpIsInf(a, ctx=None)
Definition: z3py.py:10475

◆ fpIsNaN()

def z3py.fpIsNaN (   a,
  ctx = None 
)
Create a Z3 floating-point isNaN expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpIsNaN(x)
fpIsNaN(x)

Definition at line 10463 of file z3py.py.

10463 def fpIsNaN(a, ctx=None):
10464  """Create a Z3 floating-point isNaN expression.
10465 
10466  >>> s = FPSort(8, 24)
10467  >>> x = FP('x', s)
10468  >>> y = FP('y', s)
10469  >>> fpIsNaN(x)
10470  fpIsNaN(x)
10471  """
10472  return _mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
10473 
10474 
def fpIsNaN(a, ctx=None)
Definition: z3py.py:10463

◆ fpIsNegative()

def z3py.fpIsNegative (   a,
  ctx = None 
)
Create a Z3 floating-point isNegative expression.

Definition at line 10504 of file z3py.py.

10504 def fpIsNegative(a, ctx=None):
10505  """Create a Z3 floating-point isNegative expression.
10506  """
10507  return _mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
10508 
10509 
def fpIsNegative(a, ctx=None)
Definition: z3py.py:10504

◆ fpIsNormal()

def z3py.fpIsNormal (   a,
  ctx = None 
)
Create a Z3 floating-point isNormal expression.

Definition at line 10492 of file z3py.py.

10492 def fpIsNormal(a, ctx=None):
10493  """Create a Z3 floating-point isNormal expression.
10494  """
10495  return _mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
10496 
10497 
def fpIsNormal(a, ctx=None)
Definition: z3py.py:10492

◆ fpIsPositive()

def z3py.fpIsPositive (   a,
  ctx = None 
)
Create a Z3 floating-point isPositive expression.

Definition at line 10510 of file z3py.py.

10510 def fpIsPositive(a, ctx=None):
10511  """Create a Z3 floating-point isPositive expression.
10512  """
10513  return _mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
10514 
10515 
def fpIsPositive(a, ctx=None)
Definition: z3py.py:10510

◆ fpIsSubnormal()

def z3py.fpIsSubnormal (   a,
  ctx = None 
)
Create a Z3 floating-point isSubnormal expression.

Definition at line 10498 of file z3py.py.

10498 def fpIsSubnormal(a, ctx=None):
10499  """Create a Z3 floating-point isSubnormal expression.
10500  """
10501  return _mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
10502 
10503 
def fpIsSubnormal(a, ctx=None)
Definition: z3py.py:10498

◆ fpIsZero()

def z3py.fpIsZero (   a,
  ctx = None 
)
Create a Z3 floating-point isZero expression.

Definition at line 10486 of file z3py.py.

10486 def fpIsZero(a, ctx=None):
10487  """Create a Z3 floating-point isZero expression.
10488  """
10489  return _mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
10490 
10491 
def fpIsZero(a, ctx=None)
Definition: z3py.py:10486

◆ fpLEQ()

def z3py.fpLEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other <= self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLEQ(x, y)
x <= y
>>> (x <= y).sexpr()
'(fp.leq x y)'

Definition at line 10533 of file z3py.py.

10533 def fpLEQ(a, b, ctx=None):
10534  """Create the Z3 floating-point expression `other <= self`.
10535 
10536  >>> x, y = FPs('x y', FPSort(8, 24))
10537  >>> fpLEQ(x, y)
10538  x <= y
10539  >>> (x <= y).sexpr()
10540  '(fp.leq x y)'
10541  """
10542  return _mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
10543 
10544 
def fpLEQ(a, b, ctx=None)
Definition: z3py.py:10533

Referenced by FPRef.__le__().

◆ fpLT()

def z3py.fpLT (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other < self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLT(x, y)
x < y
>>> (x < y).sexpr()
'(fp.lt x y)'

Definition at line 10521 of file z3py.py.

10521 def fpLT(a, b, ctx=None):
10522  """Create the Z3 floating-point expression `other < self`.
10523 
10524  >>> x, y = FPs('x y', FPSort(8, 24))
10525  >>> fpLT(x, y)
10526  x < y
10527  >>> (x < y).sexpr()
10528  '(fp.lt x y)'
10529  """
10530  return _mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
10531 
10532 
def fpLT(a, b, ctx=None)
Definition: z3py.py:10521

Referenced by FPRef.__lt__().

◆ fpMax()

def z3py.fpMax (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point maximum expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMax(x, y)
fpMax(x, y)
>>> fpMax(x, y).sort()
FPSort(8, 24)

Definition at line 10430 of file z3py.py.

10430 def fpMax(a, b, ctx=None):
10431  """Create a Z3 floating-point maximum expression.
10432 
10433  >>> s = FPSort(8, 24)
10434  >>> rm = RNE()
10435  >>> x = FP('x', s)
10436  >>> y = FP('y', s)
10437  >>> fpMax(x, y)
10438  fpMax(x, y)
10439  >>> fpMax(x, y).sort()
10440  FPSort(8, 24)
10441  """
10442  return _mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
10443 
10444 
def fpMax(a, b, ctx=None)
Definition: z3py.py:10430

◆ fpMin()

def z3py.fpMin (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point minimum expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMin(x, y)
fpMin(x, y)
>>> fpMin(x, y).sort()
FPSort(8, 24)

Definition at line 10415 of file z3py.py.

10415 def fpMin(a, b, ctx=None):
10416  """Create a Z3 floating-point minimum expression.
10417 
10418  >>> s = FPSort(8, 24)
10419  >>> rm = RNE()
10420  >>> x = FP('x', s)
10421  >>> y = FP('y', s)
10422  >>> fpMin(x, y)
10423  fpMin(x, y)
10424  >>> fpMin(x, y).sort()
10425  FPSort(8, 24)
10426  """
10427  return _mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
10428 
10429 
def fpMin(a, b, ctx=None)
Definition: z3py.py:10415

◆ fpMinusInfinity()

def z3py.fpMinusInfinity (   s)
Create a Z3 floating-point -oo term.

Definition at line 10127 of file z3py.py.

10127 def fpMinusInfinity(s):
10128  """Create a Z3 floating-point -oo term."""
10129  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10130  return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, True), s.ctx)
10131 
10132 
def fpMinusInfinity(s)
Definition: z3py.py:10127

Referenced by FPVal().

◆ fpMinusZero()

def z3py.fpMinusZero (   s)
Create a Z3 floating-point -0.0 term.

Definition at line 10146 of file z3py.py.

10146 def fpMinusZero(s):
10147  """Create a Z3 floating-point -0.0 term."""
10148  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10149  return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, True), s.ctx)
10150 
10151 
Z3_ast Z3_API Z3_mk_fpa_zero(Z3_context c, Z3_sort s, bool negative)
Create a floating-point zero of sort s.
def fpMinusZero(s)
Definition: z3py.py:10146

Referenced by FPVal().

◆ fpMul()

def z3py.fpMul (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point multiplication expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMul(rm, x, y)
x * y
>>> fpMul(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10371 of file z3py.py.

10371 def fpMul(rm, a, b, ctx=None):
10372  """Create a Z3 floating-point multiplication expression.
10373 
10374  >>> s = FPSort(8, 24)
10375  >>> rm = RNE()
10376  >>> x = FP('x', s)
10377  >>> y = FP('y', s)
10378  >>> fpMul(rm, x, y)
10379  x * y
10380  >>> fpMul(rm, x, y).sort()
10381  FPSort(8, 24)
10382  """
10383  return _mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
10384 
10385 
def fpMul(rm, a, b, ctx=None)
Definition: z3py.py:10371

Referenced by FPRef.__mul__(), and FPRef.__rmul__().

◆ fpNaN()

def z3py.fpNaN (   s)
Create a Z3 floating-point NaN term.

>>> s = FPSort(8, 24)
>>> set_fpa_pretty(True)
>>> fpNaN(s)
NaN
>>> pb = get_fpa_pretty()
>>> set_fpa_pretty(False)
>>> fpNaN(s)
fpNaN(FPSort(8, 24))
>>> set_fpa_pretty(pb)

Definition at line 10093 of file z3py.py.

10093 def fpNaN(s):
10094  """Create a Z3 floating-point NaN term.
10095 
10096  >>> s = FPSort(8, 24)
10097  >>> set_fpa_pretty(True)
10098  >>> fpNaN(s)
10099  NaN
10100  >>> pb = get_fpa_pretty()
10101  >>> set_fpa_pretty(False)
10102  >>> fpNaN(s)
10103  fpNaN(FPSort(8, 24))
10104  >>> set_fpa_pretty(pb)
10105  """
10106  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10107  return FPNumRef(Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
10108 
10109 
Z3_ast Z3_API Z3_mk_fpa_nan(Z3_context c, Z3_sort s)
Create a floating-point NaN of sort s.
def fpNaN(s)
Definition: z3py.py:10093

Referenced by FPVal().

◆ fpNeg()

def z3py.fpNeg (   a,
  ctx = None 
)
Create a Z3 floating-point addition expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> fpNeg(x)
-x
>>> fpNeg(x).sort()
FPSort(8, 24)

Definition at line 10271 of file z3py.py.

10271 def fpNeg(a, ctx=None):
10272  """Create a Z3 floating-point addition expression.
10273 
10274  >>> s = FPSort(8, 24)
10275  >>> rm = RNE()
10276  >>> x = FP('x', s)
10277  >>> fpNeg(x)
10278  -x
10279  >>> fpNeg(x).sort()
10280  FPSort(8, 24)
10281  """
10282  ctx = _get_ctx(ctx)
10283  [a] = _coerce_fp_expr_list([a], ctx)
10284  return FPRef(Z3_mk_fpa_neg(ctx.ref(), a.as_ast()), ctx)
10285 
10286 
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.
def fpNeg(a, ctx=None)
Definition: z3py.py:10271

Referenced by FPRef.__neg__().

◆ fpNEQ()

def z3py.fpNEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `Not(fpEQ(other, self))`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpNEQ(x, y)
Not(fpEQ(x, y))
>>> (x != y).sexpr()
'(distinct x y)'

Definition at line 10581 of file z3py.py.

10581 def fpNEQ(a, b, ctx=None):
10582  """Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
10583 
10584  >>> x, y = FPs('x y', FPSort(8, 24))
10585  >>> fpNEQ(x, y)
10586  Not(fpEQ(x, y))
10587  >>> (x != y).sexpr()
10588  '(distinct x y)'
10589  """
10590  return Not(fpEQ(a, b, ctx))
10591 
10592 
def Not(a, ctx=None)
Definition: z3py.py:1855
def fpNEQ(a, b, ctx=None)
Definition: z3py.py:10581

◆ fpPlusInfinity()

def z3py.fpPlusInfinity (   s)
Create a Z3 floating-point +oo term.

>>> s = FPSort(8, 24)
>>> pb = get_fpa_pretty()
>>> set_fpa_pretty(True)
>>> fpPlusInfinity(s)
+oo
>>> set_fpa_pretty(False)
>>> fpPlusInfinity(s)
fpPlusInfinity(FPSort(8, 24))
>>> set_fpa_pretty(pb)

Definition at line 10110 of file z3py.py.

10110 def fpPlusInfinity(s):
10111  """Create a Z3 floating-point +oo term.
10112 
10113  >>> s = FPSort(8, 24)
10114  >>> pb = get_fpa_pretty()
10115  >>> set_fpa_pretty(True)
10116  >>> fpPlusInfinity(s)
10117  +oo
10118  >>> set_fpa_pretty(False)
10119  >>> fpPlusInfinity(s)
10120  fpPlusInfinity(FPSort(8, 24))
10121  >>> set_fpa_pretty(pb)
10122  """
10123  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10124  return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, False), s.ctx)
10125 
10126 
def fpPlusInfinity(s)
Definition: z3py.py:10110

Referenced by FPVal().

◆ fpPlusZero()

def z3py.fpPlusZero (   s)
Create a Z3 floating-point +0.0 term.

Definition at line 10140 of file z3py.py.

10140 def fpPlusZero(s):
10141  """Create a Z3 floating-point +0.0 term."""
10142  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10143  return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, False), s.ctx)
10144 
10145 
def fpPlusZero(s)
Definition: z3py.py:10140

Referenced by FPVal().

◆ fpRealToFP()

def z3py.fpRealToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a real term to a floating-point term.

>>> x_r = RealVal(1.5)
>>> x_fp = fpRealToFP(RNE(), x_r, Float32())
>>> x_fp
fpToFP(RNE(), 3/2)
>>> simplify(x_fp)
1.5

Definition at line 10698 of file z3py.py.

10698 def fpRealToFP(rm, v, sort, ctx=None):
10699  """Create a Z3 floating-point conversion expression that represents the
10700  conversion from a real term to a floating-point term.
10701 
10702  >>> x_r = RealVal(1.5)
10703  >>> x_fp = fpRealToFP(RNE(), x_r, Float32())
10704  >>> x_fp
10705  fpToFP(RNE(), 3/2)
10706  >>> simplify(x_fp)
10707  1.5
10708  """
10709  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10710  _z3_assert(is_real(v), "Second argument must be a Z3 expression or real sort.")
10711  _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10712  ctx = _get_ctx(ctx)
10713  return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10714 
10715 
Z3_ast Z3_API Z3_mk_fpa_to_fp_real(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a term of real sort into a term of FloatingPoint sort.
def fpRealToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10698
def is_real(a)
Definition: z3py.py:2755

◆ fpRem()

def z3py.fpRem (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point remainder expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpRem(x, y)
fpRem(x, y)
>>> fpRem(x, y).sort()
FPSort(8, 24)

Definition at line 10401 of file z3py.py.

10401 def fpRem(a, b, ctx=None):
10402  """Create a Z3 floating-point remainder expression.
10403 
10404  >>> s = FPSort(8, 24)
10405  >>> x = FP('x', s)
10406  >>> y = FP('y', s)
10407  >>> fpRem(x, y)
10408  fpRem(x, y)
10409  >>> fpRem(x, y).sort()
10410  FPSort(8, 24)
10411  """
10412  return _mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
10413 
10414 
def fpRem(a, b, ctx=None)
Definition: z3py.py:10401

Referenced by FPRef.__mod__(), and FPRef.__rmod__().

◆ fpRoundToIntegral()

def z3py.fpRoundToIntegral (   rm,
  a,
  ctx = None 
)
Create a Z3 floating-point roundToIntegral expression.

Definition at line 10457 of file z3py.py.

10457 def fpRoundToIntegral(rm, a, ctx=None):
10458  """Create a Z3 floating-point roundToIntegral expression.
10459  """
10460  return _mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
10461 
10462 
def fpRoundToIntegral(rm, a, ctx=None)
Definition: z3py.py:10457

◆ FPs()

def z3py.FPs (   names,
  fpsort,
  ctx = None 
)
Return an array of floating-point constants.

>>> x, y, z = FPs('x y z', FPSort(8, 24))
>>> x.sort()
FPSort(8, 24)
>>> x.sbits()
24
>>> x.ebits()
8
>>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
(x + y) * z

Definition at line 10229 of file z3py.py.

10229 def FPs(names, fpsort, ctx=None):
10230  """Return an array of floating-point constants.
10231 
10232  >>> x, y, z = FPs('x y z', FPSort(8, 24))
10233  >>> x.sort()
10234  FPSort(8, 24)
10235  >>> x.sbits()
10236  24
10237  >>> x.ebits()
10238  8
10239  >>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
10240  (x + y) * z
10241  """
10242  ctx = _get_ctx(ctx)
10243  if isinstance(names, str):
10244  names = names.split(" ")
10245  return [FP(name, fpsort, ctx) for name in names]
10246 
10247 
def FPs(names, fpsort, ctx=None)
Definition: z3py.py:10229

◆ fpSignedToFP()

def z3py.fpSignedToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a signed bit-vector term (encoding an integer) to a floating-point term.

>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
>>> x_fp
fpToFP(RNE(), 4294967291)
>>> simplify(x_fp)
-1.25*(2**2)

Definition at line 10716 of file z3py.py.

10716 def fpSignedToFP(rm, v, sort, ctx=None):
10717  """Create a Z3 floating-point conversion expression that represents the
10718  conversion from a signed bit-vector term (encoding an integer) to a floating-point term.
10719 
10720  >>> x_signed = BitVecVal(-5, BitVecSort(32))
10721  >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
10722  >>> x_fp
10723  fpToFP(RNE(), 4294967291)
10724  >>> simplify(x_fp)
10725  -1.25*(2**2)
10726  """
10727  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10728  _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10729  _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10730  ctx = _get_ctx(ctx)
10731  return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10732 
10733 
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.
def fpSignedToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10716

◆ FPSort()

def z3py.FPSort (   ebits,
  sbits,
  ctx = None 
)
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.

>>> Single = FPSort(8, 24)
>>> Double = FPSort(11, 53)
>>> Single
FPSort(8, 24)
>>> x = Const('x', Single)
>>> eq(x, FP('x', FPSort(8, 24)))
True

Definition at line 10034 of file z3py.py.

10034 def FPSort(ebits, sbits, ctx=None):
10035  """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
10036 
10037  >>> Single = FPSort(8, 24)
10038  >>> Double = FPSort(11, 53)
10039  >>> Single
10040  FPSort(8, 24)
10041  >>> x = Const('x', Single)
10042  >>> eq(x, FP('x', FPSort(8, 24)))
10043  True
10044  """
10045  ctx = _get_ctx(ctx)
10046  return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
10047 
10048 
Z3_sort Z3_API Z3_mk_fpa_sort(Z3_context c, unsigned ebits, unsigned sbits)
Create a FloatingPoint sort.
def FPSort(ebits, sbits, ctx=None)
Definition: z3py.py:10034

Referenced by get_default_fp_sort(), Context.mkFPSort(), Context.MkFPSort(), Context.MkFPSort128(), Context.mkFPSort128(), Context.MkFPSort16(), Context.mkFPSort16(), Context.MkFPSort32(), Context.mkFPSort32(), Context.MkFPSort64(), Context.mkFPSort64(), Context.MkFPSortDouble(), Context.mkFPSortDouble(), Context.MkFPSortHalf(), Context.mkFPSortHalf(), Context.MkFPSortQuadruple(), Context.mkFPSortQuadruple(), Context.MkFPSortSingle(), and Context.mkFPSortSingle().

◆ fpSqrt()

def z3py.fpSqrt (   rm,
  a,
  ctx = None 
)
Create a Z3 floating-point square root expression.

Definition at line 10451 of file z3py.py.

10451 def fpSqrt(rm, a, ctx=None):
10452  """Create a Z3 floating-point square root expression.
10453  """
10454  return _mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
10455 
10456 
def fpSqrt(rm, a, ctx=None)
Definition: z3py.py:10451

◆ fpSub()

def z3py.fpSub (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point subtraction expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpSub(rm, x, y)
x - y
>>> fpSub(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10356 of file z3py.py.

10356 def fpSub(rm, a, b, ctx=None):
10357  """Create a Z3 floating-point subtraction expression.
10358 
10359  >>> s = FPSort(8, 24)
10360  >>> rm = RNE()
10361  >>> x = FP('x', s)
10362  >>> y = FP('y', s)
10363  >>> fpSub(rm, x, y)
10364  x - y
10365  >>> fpSub(rm, x, y).sort()
10366  FPSort(8, 24)
10367  """
10368  return _mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
10369 
10370 
def fpSub(rm, a, b, ctx=None)
Definition: z3py.py:10356

Referenced by FPRef.__rsub__(), and FPRef.__sub__().

◆ fpToFP()

def z3py.fpToFP (   a1,
  a2 = None,
  a3 = None,
  ctx = None 
)
Create a Z3 floating-point conversion expression from other term sorts
to floating-point.

From a bit-vector term in IEEE 754-2008 format:
>>> x = FPVal(1.0, Float32())
>>> x_bv = fpToIEEEBV(x)
>>> simplify(fpToFP(x_bv, Float32()))
1

From a floating-point term with different precision:
>>> x = FPVal(1.0, Float32())
>>> x_db = fpToFP(RNE(), x, Float64())
>>> x_db.sort()
FPSort(11, 53)

From a real term:
>>> x_r = RealVal(1.5)
>>> simplify(fpToFP(RNE(), x_r, Float32()))
1.5

From a signed bit-vector term:
>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> simplify(fpToFP(RNE(), x_signed, Float32()))
-1.25*(2**2)

Definition at line 10622 of file z3py.py.

10622 def fpToFP(a1, a2=None, a3=None, ctx=None):
10623  """Create a Z3 floating-point conversion expression from other term sorts
10624  to floating-point.
10625 
10626  From a bit-vector term in IEEE 754-2008 format:
10627  >>> x = FPVal(1.0, Float32())
10628  >>> x_bv = fpToIEEEBV(x)
10629  >>> simplify(fpToFP(x_bv, Float32()))
10630  1
10631 
10632  From a floating-point term with different precision:
10633  >>> x = FPVal(1.0, Float32())
10634  >>> x_db = fpToFP(RNE(), x, Float64())
10635  >>> x_db.sort()
10636  FPSort(11, 53)
10637 
10638  From a real term:
10639  >>> x_r = RealVal(1.5)
10640  >>> simplify(fpToFP(RNE(), x_r, Float32()))
10641  1.5
10642 
10643  From a signed bit-vector term:
10644  >>> x_signed = BitVecVal(-5, BitVecSort(32))
10645  >>> simplify(fpToFP(RNE(), x_signed, Float32()))
10646  -1.25*(2**2)
10647  """
10648  ctx = _get_ctx(ctx)
10649  if is_bv(a1) and is_fp_sort(a2):
10650  return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), a1.ast, a2.ast), ctx)
10651  elif is_fprm(a1) and is_fp(a2) and is_fp_sort(a3):
10652  return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10653  elif is_fprm(a1) and is_real(a2) and is_fp_sort(a3):
10654  return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10655  elif is_fprm(a1) and is_bv(a2) and is_fp_sort(a3):
10656  return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10657  else:
10658  raise Z3Exception("Unsupported combination of arguments for conversion to floating-point term.")
10659 
10660 
def fpToFP(a1, a2=None, a3=None, ctx=None)
Definition: z3py.py:10622

◆ fpToFPUnsigned()

def z3py.fpToFPUnsigned (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.

Definition at line 10752 of file z3py.py.

10752 def fpToFPUnsigned(rm, x, s, ctx=None):
10753  """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression."""
10754  if z3_debug():
10755  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10756  _z3_assert(is_bv(x), "Second argument must be a Z3 bit-vector expression")
10757  _z3_assert(is_fp_sort(s), "Third argument must be Z3 floating-point sort")
10758  ctx = _get_ctx(ctx)
10759  return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, x.ast, s.ast), ctx)
10760 
10761 
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.
def fpToFPUnsigned(rm, x, s, ctx=None)
Definition: z3py.py:10752

◆ fpToIEEEBV()

def z3py.fpToIEEEBV (   x,
  ctx = None 
)
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

The size of the resulting bit-vector is automatically determined.

Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
knows only one NaN and it will always produce the same bit-vector representation of
that NaN.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToIEEEBV(x)
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10826 of file z3py.py.

10826 def fpToIEEEBV(x, ctx=None):
10827  """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
10828 
10829  The size of the resulting bit-vector is automatically determined.
10830 
10831  Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
10832  knows only one NaN and it will always produce the same bit-vector representation of
10833  that NaN.
10834 
10835  >>> x = FP('x', FPSort(8, 24))
10836  >>> y = fpToIEEEBV(x)
10837  >>> print(is_fp(x))
10838  True
10839  >>> print(is_bv(y))
10840  True
10841  >>> print(is_fp(y))
10842  False
10843  >>> print(is_bv(x))
10844  False
10845  """
10846  if z3_debug():
10847  _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
10848  ctx = _get_ctx(ctx)
10849  return BitVecRef(Z3_mk_fpa_to_ieee_bv(ctx.ref(), x.ast), ctx)
10850 
10851 
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
def fpToIEEEBV(x, ctx=None)
Definition: z3py.py:10826

◆ fpToReal()

def z3py.fpToReal (   x,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to real.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToReal(x)
>>> print(is_fp(x))
True
>>> print(is_real(y))
True
>>> print(is_fp(y))
False
>>> print(is_real(x))
False

Definition at line 10806 of file z3py.py.

10806 def fpToReal(x, ctx=None):
10807  """Create a Z3 floating-point conversion expression, from floating-point expression to real.
10808 
10809  >>> x = FP('x', FPSort(8, 24))
10810  >>> y = fpToReal(x)
10811  >>> print(is_fp(x))
10812  True
10813  >>> print(is_real(y))
10814  True
10815  >>> print(is_fp(y))
10816  False
10817  >>> print(is_real(x))
10818  False
10819  """
10820  if z3_debug():
10821  _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
10822  ctx = _get_ctx(ctx)
10823  return ArithRef(Z3_mk_fpa_to_real(ctx.ref(), x.ast), ctx)
10824 
10825 
Z3_ast Z3_API Z3_mk_fpa_to_real(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a real-numbered term.
def fpToReal(x, ctx=None)
Definition: z3py.py:10806

◆ fpToSBV()

def z3py.fpToSBV (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToSBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10762 of file z3py.py.

10762 def fpToSBV(rm, x, s, ctx=None):
10763  """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
10764 
10765  >>> x = FP('x', FPSort(8, 24))
10766  >>> y = fpToSBV(RTZ(), x, BitVecSort(32))
10767  >>> print(is_fp(x))
10768  True
10769  >>> print(is_bv(y))
10770  True
10771  >>> print(is_fp(y))
10772  False
10773  >>> print(is_bv(x))
10774  False
10775  """
10776  if z3_debug():
10777  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10778  _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10779  _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10780  ctx = _get_ctx(ctx)
10781  return BitVecRef(Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10782 
10783 
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.
def fpToSBV(rm, x, s, ctx=None)
Definition: z3py.py:10762

◆ fpToUBV()

def z3py.fpToUBV (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToUBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10784 of file z3py.py.

10784 def fpToUBV(rm, x, s, ctx=None):
10785  """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
10786 
10787  >>> x = FP('x', FPSort(8, 24))
10788  >>> y = fpToUBV(RTZ(), x, BitVecSort(32))
10789  >>> print(is_fp(x))
10790  True
10791  >>> print(is_bv(y))
10792  True
10793  >>> print(is_fp(y))
10794  False
10795  >>> print(is_bv(x))
10796  False
10797  """
10798  if z3_debug():
10799  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10800  _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10801  _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10802  ctx = _get_ctx(ctx)
10803  return BitVecRef(Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10804 
10805 
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.
def fpToUBV(rm, x, s, ctx=None)
Definition: z3py.py:10784

◆ fpUnsignedToFP()

def z3py.fpUnsignedToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.

>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
>>> x_fp
fpToFPUnsigned(RNE(), 4294967291)
>>> simplify(x_fp)
1*(2**32)

Definition at line 10734 of file z3py.py.

10734 def fpUnsignedToFP(rm, v, sort, ctx=None):
10735  """Create a Z3 floating-point conversion expression that represents the
10736  conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.
10737 
10738  >>> x_signed = BitVecVal(-5, BitVecSort(32))
10739  >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
10740  >>> x_fp
10741  fpToFPUnsigned(RNE(), 4294967291)
10742  >>> simplify(x_fp)
10743  1*(2**32)
10744  """
10745  _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10746  _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10747  _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10748  ctx = _get_ctx(ctx)
10749  return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10750 
10751 
def fpUnsignedToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10734

◆ FPVal()

def z3py.FPVal (   sig,
  exp = None,
  fps = None,
  ctx = None 
)
Return a floating-point value of value `val` and sort `fps`.
If `ctx=None`, then the global context is used.

>>> v = FPVal(20.0, FPSort(8, 24))
>>> v
1.25*(2**4)
>>> print("0x%.8x" % v.exponent_as_long(False))
0x00000004
>>> v = FPVal(2.25, FPSort(8, 24))
>>> v
1.125*(2**1)
>>> v = FPVal(-2.25, FPSort(8, 24))
>>> v
-1.125*(2**1)
>>> FPVal(-0.0, FPSort(8, 24))
-0.0
>>> FPVal(0.0, FPSort(8, 24))
+0.0
>>> FPVal(+0.0, FPSort(8, 24))
+0.0

Definition at line 10159 of file z3py.py.

10159 def FPVal(sig, exp=None, fps=None, ctx=None):
10160  """Return a floating-point value of value `val` and sort `fps`.
10161  If `ctx=None`, then the global context is used.
10162 
10163  >>> v = FPVal(20.0, FPSort(8, 24))
10164  >>> v
10165  1.25*(2**4)
10166  >>> print("0x%.8x" % v.exponent_as_long(False))
10167  0x00000004
10168  >>> v = FPVal(2.25, FPSort(8, 24))
10169  >>> v
10170  1.125*(2**1)
10171  >>> v = FPVal(-2.25, FPSort(8, 24))
10172  >>> v
10173  -1.125*(2**1)
10174  >>> FPVal(-0.0, FPSort(8, 24))
10175  -0.0
10176  >>> FPVal(0.0, FPSort(8, 24))
10177  +0.0
10178  >>> FPVal(+0.0, FPSort(8, 24))
10179  +0.0
10180  """
10181  ctx = _get_ctx(ctx)
10182  if is_fp_sort(exp):
10183  fps = exp
10184  exp = None
10185  elif fps is None:
10186  fps = _dflt_fps(ctx)
10187  _z3_assert(is_fp_sort(fps), "sort mismatch")
10188  if exp is None:
10189  exp = 0
10190  val = _to_float_str(sig)
10191  if val == "NaN" or val == "nan":
10192  return fpNaN(fps)
10193  elif val == "-0.0":
10194  return fpMinusZero(fps)
10195  elif val == "0.0" or val == "+0.0":
10196  return fpPlusZero(fps)
10197  elif val == "+oo" or val == "+inf" or val == "+Inf":
10198  return fpPlusInfinity(fps)
10199  elif val == "-oo" or val == "-inf" or val == "-Inf":
10200  return fpMinusInfinity(fps)
10201  else:
10202  return FPNumRef(Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
10203 
10204 
def FPVal(sig, exp=None, fps=None, ctx=None)
Definition: z3py.py:10159

Referenced by set_default_fp_sort().

◆ fpZero()

def z3py.fpZero (   s,
  negative 
)
Create a Z3 floating-point +0.0 or -0.0 term.

Definition at line 10152 of file z3py.py.

10152 def fpZero(s, negative):
10153  """Create a Z3 floating-point +0.0 or -0.0 term."""
10154  _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10155  _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10156  return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
10157 
10158 
def fpZero(s, negative)
Definition: z3py.py:10152

◆ FreshBool()

def z3py.FreshBool (   prefix = "b",
  ctx = None 
)
Return a fresh Boolean constant in the given context using the given prefix.

If `ctx=None`, then the global context is used.

>>> b1 = FreshBool()
>>> b2 = FreshBool()
>>> eq(b1, b2)
False

Definition at line 1811 of file z3py.py.

1811 def FreshBool(prefix="b", ctx=None):
1812  """Return a fresh Boolean constant in the given context using the given prefix.
1813 
1814  If `ctx=None`, then the global context is used.
1815 
1816  >>> b1 = FreshBool()
1817  >>> b2 = FreshBool()
1818  >>> eq(b1, b2)
1819  False
1820  """
1821  ctx = _get_ctx(ctx)
1822  return BoolRef(Z3_mk_fresh_const(ctx.ref(), prefix, BoolSort(ctx).ast), ctx)
1823 
1824 
Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)
Declare and create a fresh constant.
def FreshBool(prefix="b", ctx=None)
Definition: z3py.py:1811

◆ FreshConst()

def z3py.FreshConst (   sort,
  prefix = "c" 
)
Create a fresh constant of a specified sort

Definition at line 1482 of file z3py.py.

1482 def FreshConst(sort, prefix="c"):
1483  """Create a fresh constant of a specified sort"""
1484  ctx = _get_ctx(sort.ctx)
1485  return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
1486 
1487 
def FreshConst(sort, prefix="c")
Definition: z3py.py:1482

◆ FreshFunction()

def z3py.FreshFunction ( sig)
Create a new fresh Z3 uninterpreted function with the given sorts.

Definition at line 904 of file z3py.py.

904 def FreshFunction(*sig):
905  """Create a new fresh Z3 uninterpreted function with the given sorts.
906  """
907  sig = _get_args(sig)
908  if z3_debug():
909  _z3_assert(len(sig) > 0, "At least two arguments expected")
910  arity = len(sig) - 1
911  rng = sig[arity]
912  if z3_debug():
913  _z3_assert(is_sort(rng), "Z3 sort expected")
914  dom = (z3.Sort * arity)()
915  for i in range(arity):
916  if z3_debug():
917  _z3_assert(is_sort(sig[i]), "Z3 sort expected")
918  dom[i] = sig[i].ast
919  ctx = rng.ctx
920  return FuncDeclRef(Z3_mk_fresh_func_decl(ctx.ref(), "f", arity, dom, rng.ast), ctx)
921 
922 
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a fresh constant or function.
def FreshFunction(*sig)
Definition: z3py.py:904

◆ FreshInt()

def z3py.FreshInt (   prefix = "x",
  ctx = None 
)
Return a fresh integer constant in the given context using the given prefix.

>>> x = FreshInt()
>>> y = FreshInt()
>>> eq(x, y)
False
>>> x.sort()
Int

Definition at line 3333 of file z3py.py.

3333 def FreshInt(prefix="x", ctx=None):
3334  """Return a fresh integer constant in the given context using the given prefix.
3335 
3336  >>> x = FreshInt()
3337  >>> y = FreshInt()
3338  >>> eq(x, y)
3339  False
3340  >>> x.sort()
3341  Int
3342  """
3343  ctx = _get_ctx(ctx)
3344  return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, IntSort(ctx).ast), ctx)
3345 
3346 
def IntSort(ctx=None)
Definition: z3py.py:3188
def FreshInt(prefix="x", ctx=None)
Definition: z3py.py:3333

◆ FreshReal()

def z3py.FreshReal (   prefix = "b",
  ctx = None 
)
Return a fresh real constant in the given context using the given prefix.

>>> x = FreshReal()
>>> y = FreshReal()
>>> eq(x, y)
False
>>> x.sort()
Real

Definition at line 3390 of file z3py.py.

3390 def FreshReal(prefix="b", ctx=None):
3391  """Return a fresh real constant in the given context using the given prefix.
3392 
3393  >>> x = FreshReal()
3394  >>> y = FreshReal()
3395  >>> eq(x, y)
3396  False
3397  >>> x.sort()
3398  Real
3399  """
3400  ctx = _get_ctx(ctx)
3401  return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, RealSort(ctx).ast), ctx)
3402 
3403 
def RealSort(ctx=None)
Definition: z3py.py:3205
def FreshReal(prefix="b", ctx=None)
Definition: z3py.py:3390

◆ Full()

def z3py.Full (   s)
Create the regular expression that accepts the universal language
>>> e = Full(ReSort(SeqSort(IntSort())))
>>> print(e)
Full(ReSort(Seq(Int)))
>>> e1 = Full(ReSort(StringSort()))
>>> print(e1)
Full(ReSort(String))

Definition at line 11108 of file z3py.py.

11108 def Full(s):
11109  """Create the regular expression that accepts the universal language
11110  >>> e = Full(ReSort(SeqSort(IntSort())))
11111  >>> print(e)
11112  Full(ReSort(Seq(Int)))
11113  >>> e1 = Full(ReSort(StringSort()))
11114  >>> print(e1)
11115  Full(ReSort(String))
11116  """
11117  if isinstance(s, ReSortRef):
11118  return ReRef(Z3_mk_re_full(s.ctx_ref(), s.ast), s.ctx)
11119  raise Z3Exception("Non-sequence, non-regular expression sort passed to Full")
11120 
11121 
11122 
Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)
Create an universal regular expression of sort re.
def Full(s)
Definition: z3py.py:11108

◆ FullSet()

def z3py.FullSet (   s)
Create the full set
>>> FullSet(IntSort())
K(Int, True)

Definition at line 4977 of file z3py.py.

4977 def FullSet(s):
4978  """Create the full set
4979  >>> FullSet(IntSort())
4980  K(Int, True)
4981  """
4982  ctx = s.ctx
4983  return ArrayRef(Z3_mk_full_set(ctx.ref(), s.ast), ctx)
4984 
4985 
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.
def FullSet(s)
Definition: z3py.py:4977

◆ Function()

def z3py.Function (   name,
sig 
)
Create a new Z3 uninterpreted function with the given sorts.

>>> f = Function('f', IntSort(), IntSort())
>>> f(f(0))
f(f(0))

Definition at line 881 of file z3py.py.

881 def Function(name, *sig):
882  """Create a new Z3 uninterpreted function with the given sorts.
883 
884  >>> f = Function('f', IntSort(), IntSort())
885  >>> f(f(0))
886  f(f(0))
887  """
888  sig = _get_args(sig)
889  if z3_debug():
890  _z3_assert(len(sig) > 0, "At least two arguments expected")
891  arity = len(sig) - 1
892  rng = sig[arity]
893  if z3_debug():
894  _z3_assert(is_sort(rng), "Z3 sort expected")
895  dom = (Sort * arity)()
896  for i in range(arity):
897  if z3_debug():
898  _z3_assert(is_sort(sig[i]), "Z3 sort expected")
899  dom[i] = sig[i].ast
900  ctx = rng.ctx
901  return FuncDeclRef(Z3_mk_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
902 
903 
Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a constant or function.
def Function(name, *sig)
Definition: z3py.py:881

◆ get_as_array_func()

def z3py.get_as_array_func (   n)
Return the function declaration f associated with a Z3 expression of the form (_ as-array f).

Definition at line 6745 of file z3py.py.

6745 def get_as_array_func(n):
6746  """Return the function declaration f associated with a Z3 expression of the form (_ as-array f)."""
6747  if z3_debug():
6748  _z3_assert(is_as_array(n), "as-array Z3 expression expected.")
6749  return FuncDeclRef(Z3_get_as_array_func_decl(n.ctx.ref(), n.as_ast()), n.ctx)
6750 
Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)
Return the function declaration f associated with a (_ as_array f) node.
def is_as_array(n)
Definition: z3py.py:6740
def get_as_array_func(n)
Definition: z3py.py:6745

Referenced by ModelRef.get_interp().

◆ get_ctx()

def z3py.get_ctx (   ctx)

Definition at line 267 of file z3py.py.

267 def get_ctx(ctx):
268  return _get_ctx(ctx)
269 
270 
def get_ctx(ctx)
Definition: z3py.py:267

◆ get_default_fp_sort()

def z3py.get_default_fp_sort (   ctx = None)

Definition at line 9456 of file z3py.py.

9456 def get_default_fp_sort(ctx=None):
9457  return FPSort(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)
9458 
9459 
def get_default_fp_sort(ctx=None)
Definition: z3py.py:9456

Referenced by set_default_fp_sort().

◆ get_default_rounding_mode()

def z3py.get_default_rounding_mode (   ctx = None)
Retrieves the global default rounding mode.

Definition at line 9423 of file z3py.py.

9423 def get_default_rounding_mode(ctx=None):
9424  """Retrieves the global default rounding mode."""
9425  global _dflt_rounding_mode
9426  if _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
9427  return RTZ(ctx)
9428  elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
9429  return RTN(ctx)
9430  elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
9431  return RTP(ctx)
9432  elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
9433  return RNE(ctx)
9434  elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
9435  return RNA(ctx)
9436 
9437 
def RNE(ctx=None)
Definition: z3py.py:9804
def get_default_rounding_mode(ctx=None)
Definition: z3py.py:9423
def RTZ(ctx=None)
Definition: z3py.py:9844
def RTN(ctx=None)
Definition: z3py.py:9834
def RTP(ctx=None)
Definition: z3py.py:9824
def RNA(ctx=None)
Definition: z3py.py:9814

Referenced by set_default_fp_sort().

◆ get_full_version()

def z3py.get_full_version ( )

Definition at line 101 of file z3py.py.

101 def get_full_version():
102  return Z3_get_full_version()
103 
104 
Z3_string Z3_API Z3_get_full_version(void)
Return a string that fully describes the version of Z3 in use.
def get_full_version()
Definition: z3py.py:101

◆ get_map_func()

def z3py.get_map_func (   a)
Return the function declaration associated with a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a  = Map(f, b)
>>> eq(f, get_map_func(a))
True
>>> get_map_func(a)
f
>>> get_map_func(a)(0)
f(0)

Definition at line 4722 of file z3py.py.

4722 def get_map_func(a):
4723  """Return the function declaration associated with a Z3 map array expression.
4724 
4725  >>> f = Function('f', IntSort(), IntSort())
4726  >>> b = Array('b', IntSort(), IntSort())
4727  >>> a = Map(f, b)
4728  >>> eq(f, get_map_func(a))
4729  True
4730  >>> get_map_func(a)
4731  f
4732  >>> get_map_func(a)(0)
4733  f(0)
4734  """
4735  if z3_debug():
4736  _z3_assert(is_map(a), "Z3 array map expression expected.")
4737  return FuncDeclRef(
4739  a.ctx_ref(),
4740  Z3_get_decl_ast_parameter(a.ctx_ref(), a.decl().ast, 0),
4741  ),
4742  ctx=a.ctx,
4743  )
4744 
4745 
Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)
Convert an AST into a FUNC_DECL_AST. This is just type casting.
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
def is_map(a)
Definition: z3py.py:4697
def get_map_func(a)
Definition: z3py.py:4722

◆ get_param()

def z3py.get_param (   name)
Return the value of a Z3 global (or module) parameter

>>> get_param('nlsat.reorder')
'true'

Definition at line 307 of file z3py.py.

307 def get_param(name):
308  """Return the value of a Z3 global (or module) parameter
309 
310  >>> get_param('nlsat.reorder')
311  'true'
312  """
313  ptr = (ctypes.c_char_p * 1)()
314  if Z3_global_param_get(str(name), ptr):
315  r = z3core._to_pystr(ptr[0])
316  return r
317  raise Z3Exception("failed to retrieve value for '%s'" % name)
318 
bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)
Get a global (or module) parameter.
def get_param(name)
Definition: z3py.py:307

◆ get_var_index()

def z3py.get_var_index (   a)
Return the de-Bruijn index of the Z3 bounded variable `a`.

>>> x = Int('x')
>>> y = Int('y')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> # Z3 replaces x and y with bound variables when ForAll is executed.
>>> q = ForAll([x, y], f(x, y) == x + y)
>>> q.body()
f(Var(1), Var(0)) == Var(1) + Var(0)
>>> b = q.body()
>>> b.arg(0)
f(Var(1), Var(0))
>>> v1 = b.arg(0).arg(0)
>>> v2 = b.arg(0).arg(1)
>>> v1
Var(1)
>>> v2
Var(0)
>>> get_var_index(v1)
1
>>> get_var_index(v2)
0

Definition at line 1353 of file z3py.py.

1353 def get_var_index(a):
1354  """Return the de-Bruijn index of the Z3 bounded variable `a`.
1355 
1356  >>> x = Int('x')
1357  >>> y = Int('y')
1358  >>> is_var(x)
1359  False
1360  >>> is_const(x)
1361  True
1362  >>> f = Function('f', IntSort(), IntSort(), IntSort())
1363  >>> # Z3 replaces x and y with bound variables when ForAll is executed.
1364  >>> q = ForAll([x, y], f(x, y) == x + y)
1365  >>> q.body()
1366  f(Var(1), Var(0)) == Var(1) + Var(0)
1367  >>> b = q.body()
1368  >>> b.arg(0)
1369  f(Var(1), Var(0))
1370  >>> v1 = b.arg(0).arg(0)
1371  >>> v2 = b.arg(0).arg(1)
1372  >>> v1
1373  Var(1)
1374  >>> v2
1375  Var(0)
1376  >>> get_var_index(v1)
1377  1
1378  >>> get_var_index(v2)
1379  0
1380  """
1381  if z3_debug():
1382  _z3_assert(is_var(a), "Z3 bound variable expected")
1383  return int(Z3_get_index_value(a.ctx.ref(), a.as_ast()))
1384 
1385 
unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)
Return index of de-Bruijn bound variable.
def is_var(a)
Definition: z3py.py:1328
def get_var_index(a)
Definition: z3py.py:1353

◆ get_version()

def z3py.get_version ( )

Definition at line 92 of file z3py.py.

92 def get_version():
93  major = ctypes.c_uint(0)
94  minor = ctypes.c_uint(0)
95  build = ctypes.c_uint(0)
96  rev = ctypes.c_uint(0)
97  Z3_get_version(major, minor, build, rev)
98  return (major.value, minor.value, build.value, rev.value)
99 
100 
void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)
Return Z3 version number information.
def get_version()
Definition: z3py.py:92

◆ get_version_string()

def z3py.get_version_string ( )

Definition at line 83 of file z3py.py.

83 def get_version_string():
84  major = ctypes.c_uint(0)
85  minor = ctypes.c_uint(0)
86  build = ctypes.c_uint(0)
87  rev = ctypes.c_uint(0)
88  Z3_get_version(major, minor, build, rev)
89  return "%s.%s.%s" % (major.value, minor.value, build.value)
90 
91 
def get_version_string()
Definition: z3py.py:83

◆ help_simplify()

def z3py.help_simplify ( )
Return a string describing all options available for Z3 `simplify` procedure.

Definition at line 8929 of file z3py.py.

8929 def help_simplify():
8930  """Return a string describing all options available for Z3 `simplify` procedure."""
8931  print(Z3_simplify_get_help(main_ctx().ref()))
8932 
8933 
Z3_string Z3_API Z3_simplify_get_help(Z3_context c)
Return a string describing all available parameters.
def help_simplify()
Definition: z3py.py:8929
def main_ctx()
Definition: z3py.py:239

◆ If()

def z3py.If (   a,
  b,
  c,
  ctx = None 
)
Create a Z3 if-then-else expression.

>>> x = Int('x')
>>> y = Int('y')
>>> max = If(x > y, x, y)
>>> max
If(x > y, x, y)
>>> simplify(max)
If(x <= y, y, x)

Definition at line 1399 of file z3py.py.

1399 def If(a, b, c, ctx=None):
1400  """Create a Z3 if-then-else expression.
1401 
1402  >>> x = Int('x')
1403  >>> y = Int('y')
1404  >>> max = If(x > y, x, y)
1405  >>> max
1406  If(x > y, x, y)
1407  >>> simplify(max)
1408  If(x <= y, y, x)
1409  """
1410  if isinstance(a, Probe) or isinstance(b, Tactic) or isinstance(c, Tactic):
1411  return Cond(a, b, c, ctx)
1412  else:
1413  ctx = _get_ctx(_ctx_from_ast_arg_list([a, b, c], ctx))
1414  s = BoolSort(ctx)
1415  a = s.cast(a)
1416  b, c = _coerce_exprs(b, c, ctx)
1417  if z3_debug():
1418  _z3_assert(a.ctx == b.ctx, "Context mismatch")
1419  return _to_expr_ref(Z3_mk_ite(ctx.ref(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
1420 
1421 
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).

Referenced by BoolRef.__add__(), BoolRef.__mul__(), ArithRef.__mul__(), and Abs().

◆ Implies()

def z3py.Implies (   a,
  b,
  ctx = None 
)
Create a Z3 implies expression.

>>> p, q = Bools('p q')
>>> Implies(p, q)
Implies(p, q)

Definition at line 1825 of file z3py.py.

1825 def Implies(a, b, ctx=None):
1826  """Create a Z3 implies expression.
1827 
1828  >>> p, q = Bools('p q')
1829  >>> Implies(p, q)
1830  Implies(p, q)
1831  """
1832  ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1833  s = BoolSort(ctx)
1834  a = s.cast(a)
1835  b = s.cast(b)
1836  return BoolRef(Z3_mk_implies(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
1837 
1838 
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
def Implies(a, b, ctx=None)
Definition: z3py.py:1825

Referenced by Fixedpoint.add_rule(), and Fixedpoint.update_rule().

◆ IndexOf()

def z3py.IndexOf (   s,
  substr,
  offset = None 
)
Retrieve the index of substring within a string starting at a specified offset.
>>> simplify(IndexOf("abcabc", "bc", 0))
1
>>> simplify(IndexOf("abcabc", "bc", 2))
4

Definition at line 11192 of file z3py.py.

11192 def IndexOf(s, substr, offset=None):
11193  """Retrieve the index of substring within a string starting at a specified offset.
11194  >>> simplify(IndexOf("abcabc", "bc", 0))
11195  1
11196  >>> simplify(IndexOf("abcabc", "bc", 2))
11197  4
11198  """
11199  if offset is None:
11200  offset = IntVal(0)
11201  ctx = None
11202  if is_expr(offset):
11203  ctx = offset.ctx
11204  ctx = _get_ctx2(s, substr, ctx)
11205  s = _coerce_seq(s, ctx)
11206  substr = _coerce_seq(substr, ctx)
11207  if _is_int(offset):
11208  offset = IntVal(offset, ctx)
11209  return ArithRef(Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
11210 
11211 
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)
Return index of the first occurrence of substr in s starting from offset offset. If s does not contai...
def IndexOf(s, substr, offset=None)
Definition: z3py.py:11192
def IntVal(val, ctx=None)
Definition: z3py.py:3234

◆ InRe()

def z3py.InRe (   s,
  re 
)
Create regular expression membership test
>>> re = Union(Re("a"),Re("b"))
>>> print (simplify(InRe("a", re)))
True
>>> print (simplify(InRe("b", re)))
True
>>> print (simplify(InRe("c", re)))
False

Definition at line 11331 of file z3py.py.

11331 def InRe(s, re):
11332  """Create regular expression membership test
11333  >>> re = Union(Re("a"),Re("b"))
11334  >>> print (simplify(InRe("a", re)))
11335  True
11336  >>> print (simplify(InRe("b", re)))
11337  True
11338  >>> print (simplify(InRe("c", re)))
11339  False
11340  """
11341  s = _coerce_seq(s, re.ctx)
11342  return BoolRef(Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
11343 
11344 
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)
Check if seq is in the language generated by the regular expression re.
def InRe(s, re)
Definition: z3py.py:11331

◆ Int()

def z3py.Int (   name,
  ctx = None 
)
Return an integer constant named `name`. If `ctx=None`, then the global context is used.

>>> x = Int('x')
>>> is_int(x)
True
>>> is_int(x + 1)
True

Definition at line 3294 of file z3py.py.

3294 def Int(name, ctx=None):
3295  """Return an integer constant named `name`. If `ctx=None`, then the global context is used.
3296 
3297  >>> x = Int('x')
3298  >>> is_int(x)
3299  True
3300  >>> is_int(x + 1)
3301  True
3302  """
3303  ctx = _get_ctx(ctx)
3304  return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), IntSort(ctx).ast), ctx)
3305 
3306 
def Int(name, ctx=None)
Definition: z3py.py:3294

Referenced by Ints(), and IntVector().

◆ Int2BV()

def z3py.Int2BV (   a,
  num_bits 
)
Return the z3 expression Int2BV(a, num_bits).
It is a bit-vector of width num_bits and represents the
modulo of a by 2^num_bits

Definition at line 4042 of file z3py.py.

4042 def Int2BV(a, num_bits):
4043  """Return the z3 expression Int2BV(a, num_bits).
4044  It is a bit-vector of width num_bits and represents the
4045  modulo of a by 2^num_bits
4046  """
4047  ctx = a.ctx
4048  return BitVecRef(Z3_mk_int2bv(ctx.ref(), num_bits, a.as_ast()), ctx)
4049 
4050 
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.
def Int2BV(a, num_bits)
Definition: z3py.py:4042

◆ Intersect()

def z3py.Intersect ( args)
Create intersection of regular expressions.
>>> re = Intersect(Re("a"), Re("b"), Re("c"))

Definition at line 11365 of file z3py.py.

11365 def Intersect(*args):
11366  """Create intersection of regular expressions.
11367  >>> re = Intersect(Re("a"), Re("b"), Re("c"))
11368  """
11369  args = _get_args(args)
11370  sz = len(args)
11371  if z3_debug():
11372  _z3_assert(sz > 0, "At least one argument expected.")
11373  _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11374  if sz == 1:
11375  return args[0]
11376  ctx = args[0].ctx
11377  v = (Ast * sz)()
11378  for i in range(sz):
11379  v[i] = args[i].as_ast()
11380  return ReRef(Z3_mk_re_intersect(ctx.ref(), sz, v), ctx)
11381 
11382 
Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])
Create the intersection of the regular languages.
def Intersect(*args)
Definition: z3py.py:11365

◆ Ints()

def z3py.Ints (   names,
  ctx = None 
)
Return a tuple of Integer constants.

>>> x, y, z = Ints('x y z')
>>> Sum(x, y, z)
x + y + z

Definition at line 3307 of file z3py.py.

3307 def Ints(names, ctx=None):
3308  """Return a tuple of Integer constants.
3309 
3310  >>> x, y, z = Ints('x y z')
3311  >>> Sum(x, y, z)
3312  x + y + z
3313  """
3314  ctx = _get_ctx(ctx)
3315  if isinstance(names, str):
3316  names = names.split(" ")
3317  return [Int(name, ctx) for name in names]
3318 
3319 
def Ints(names, ctx=None)
Definition: z3py.py:3307

◆ IntSort()

def z3py.IntSort (   ctx = None)
Return the integer sort in the given context. If `ctx=None`, then the global context is used.

>>> IntSort()
Int
>>> x = Const('x', IntSort())
>>> is_int(x)
True
>>> x.sort() == IntSort()
True
>>> x.sort() == BoolSort()
False

Definition at line 3188 of file z3py.py.

3188 def IntSort(ctx=None):
3189  """Return the integer sort in the given context. If `ctx=None`, then the global context is used.
3190 
3191  >>> IntSort()
3192  Int
3193  >>> x = Const('x', IntSort())
3194  >>> is_int(x)
3195  True
3196  >>> x.sort() == IntSort()
3197  True
3198  >>> x.sort() == BoolSort()
3199  False
3200  """
3201  ctx = _get_ctx(ctx)
3202  return ArithSortRef(Z3_mk_int_sort(ctx.ref()), ctx)
3203 
3204 
Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)
Create the integer type.

Referenced by FreshInt(), Context.getIntSort(), Int(), IntVal(), and Context.mkIntSort().

◆ IntToStr()

def z3py.IntToStr (   s)
Convert integer expression to string

Definition at line 11273 of file z3py.py.

11273 def IntToStr(s):
11274  """Convert integer expression to string"""
11275  if not is_expr(s):
11276  s = _py2expr(s)
11277  return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
11278 
11279 
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.
def IntToStr(s)
Definition: z3py.py:11273

◆ IntVal()

def z3py.IntVal (   val,
  ctx = None 
)
Return a Z3 integer value. If `ctx=None`, then the global context is used.

>>> IntVal(1)
1
>>> IntVal("100")
100

Definition at line 3234 of file z3py.py.

3234 def IntVal(val, ctx=None):
3235  """Return a Z3 integer value. If `ctx=None`, then the global context is used.
3236 
3237  >>> IntVal(1)
3238  1
3239  >>> IntVal("100")
3240  100
3241  """
3242  ctx = _get_ctx(ctx)
3243  return IntNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), IntSort(ctx).ast), ctx)
3244 
3245 

Referenced by SeqRef.__getitem__(), BoolRef.__mul__(), SeqRef.at(), AlgebraicNumRef.index(), and IndexOf().

◆ IntVector()

def z3py.IntVector (   prefix,
  sz,
  ctx = None 
)
Return a list of integer constants of size `sz`.

>>> X = IntVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2

Definition at line 3320 of file z3py.py.

3320 def IntVector(prefix, sz, ctx=None):
3321  """Return a list of integer constants of size `sz`.
3322 
3323  >>> X = IntVector('x', 3)
3324  >>> X
3325  [x__0, x__1, x__2]
3326  >>> Sum(X)
3327  x__0 + x__1 + x__2
3328  """
3329  ctx = _get_ctx(ctx)
3330  return [Int("%s__%s" % (prefix, i), ctx) for i in range(sz)]
3331 
3332 
def IntVector(prefix, sz, ctx=None)
Definition: z3py.py:3320

◆ is_add()

def z3py.is_add (   a)
Return `True` if `a` is an expression of the form b + c.

>>> x, y = Ints('x y')
>>> is_add(x + y)
True
>>> is_add(x - y)
False

Definition at line 2842 of file z3py.py.

2842 def is_add(a):
2843  """Return `True` if `a` is an expression of the form b + c.
2844 
2845  >>> x, y = Ints('x y')
2846  >>> is_add(x + y)
2847  True
2848  >>> is_add(x - y)
2849  False
2850  """
2851  return is_app_of(a, Z3_OP_ADD)
2852 
2853 
def is_add(a)
Definition: z3py.py:2842
def is_app_of(a, k)
Definition: z3py.py:1386

◆ is_algebraic_value()

def z3py.is_algebraic_value (   a)
Return `True` if `a` is an algebraic value of sort Real.

>>> is_algebraic_value(RealVal("3/5"))
False
>>> n = simplify(Sqrt(2))
>>> n
1.4142135623?
>>> is_algebraic_value(n)
True

Definition at line 2828 of file z3py.py.

2828 def is_algebraic_value(a):
2829  """Return `True` if `a` is an algebraic value of sort Real.
2830 
2831  >>> is_algebraic_value(RealVal("3/5"))
2832  False
2833  >>> n = simplify(Sqrt(2))
2834  >>> n
2835  1.4142135623?
2836  >>> is_algebraic_value(n)
2837  True
2838  """
2839  return is_arith(a) and a.is_real() and _is_algebraic(a.ctx, a.as_ast())
2840 
2841 
def is_algebraic_value(a)
Definition: z3py.py:2828
def is_arith(a)
Definition: z3py.py:2715

◆ is_and()

def z3py.is_and (   a)
Return `True` if `a` is a Z3 and expression.

>>> p, q = Bools('p q')
>>> is_and(And(p, q))
True
>>> is_and(Or(p, q))
False

Definition at line 1661 of file z3py.py.

1661 def is_and(a):
1662  """Return `True` if `a` is a Z3 and expression.
1663 
1664  >>> p, q = Bools('p q')
1665  >>> is_and(And(p, q))
1666  True
1667  >>> is_and(Or(p, q))
1668  False
1669  """
1670  return is_app_of(a, Z3_OP_AND)
1671 
1672 
def is_and(a)
Definition: z3py.py:1661

◆ is_app()

def z3py.is_app (   a)
Return `True` if `a` is a Z3 function application.

Note that, constants are function applications with 0 arguments.

>>> a = Int('a')
>>> is_app(a)
True
>>> is_app(a + 1)
True
>>> is_app(IntSort())
False
>>> is_app(1)
False
>>> is_app(IntVal(1))
True
>>> x = Int('x')
>>> is_app(ForAll(x, x >= 0))
False

Definition at line 1283 of file z3py.py.

1283 def is_app(a):
1284  """Return `True` if `a` is a Z3 function application.
1285 
1286  Note that, constants are function applications with 0 arguments.
1287 
1288  >>> a = Int('a')
1289  >>> is_app(a)
1290  True
1291  >>> is_app(a + 1)
1292  True
1293  >>> is_app(IntSort())
1294  False
1295  >>> is_app(1)
1296  False
1297  >>> is_app(IntVal(1))
1298  True
1299  >>> x = Int('x')
1300  >>> is_app(ForAll(x, x >= 0))
1301  False
1302  """
1303  if not isinstance(a, ExprRef):
1304  return False
1305  k = _ast_kind(a.ctx, a)
1306  return k == Z3_NUMERAL_AST or k == Z3_APP_AST
1307 
1308 
def is_app(a)
Definition: z3py.py:1283

Referenced by ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app_of(), is_const(), is_quantifier(), Lambda(), ExprRef.num_args(), and RecAddDefinition().

◆ is_app_of()

def z3py.is_app_of (   a,
  k 
)
Return `True` if `a` is an application of the given kind `k`.

>>> x = Int('x')
>>> n = x + 1
>>> is_app_of(n, Z3_OP_ADD)
True
>>> is_app_of(n, Z3_OP_MUL)
False

Definition at line 1386 of file z3py.py.

1386 def is_app_of(a, k):
1387  """Return `True` if `a` is an application of the given kind `k`.
1388 
1389  >>> x = Int('x')
1390  >>> n = x + 1
1391  >>> is_app_of(n, Z3_OP_ADD)
1392  True
1393  >>> is_app_of(n, Z3_OP_MUL)
1394  False
1395  """
1396  return is_app(a) and a.decl().kind() == k
1397 
1398 

Referenced by is_add(), is_and(), is_const_array(), is_default(), is_distinct(), is_div(), is_eq(), is_false(), is_ge(), is_gt(), is_idiv(), is_implies(), is_is_int(), is_K(), is_le(), is_lt(), is_map(), is_mod(), is_mul(), is_not(), is_or(), is_select(), is_store(), is_sub(), is_to_int(), is_to_real(), and is_true().

◆ is_arith()

def z3py.is_arith (   a)
Return `True` if `a` is an arithmetical expression.

>>> x = Int('x')
>>> is_arith(x)
True
>>> is_arith(x + 1)
True
>>> is_arith(1)
False
>>> is_arith(IntVal(1))
True
>>> y = Real('y')
>>> is_arith(y)
True
>>> is_arith(y + 1)
True

Definition at line 2715 of file z3py.py.

2715 def is_arith(a):
2716  """Return `True` if `a` is an arithmetical expression.
2717 
2718  >>> x = Int('x')
2719  >>> is_arith(x)
2720  True
2721  >>> is_arith(x + 1)
2722  True
2723  >>> is_arith(1)
2724  False
2725  >>> is_arith(IntVal(1))
2726  True
2727  >>> y = Real('y')
2728  >>> is_arith(y)
2729  True
2730  >>> is_arith(y + 1)
2731  True
2732  """
2733  return isinstance(a, ArithRef)
2734 
2735 

Referenced by is_algebraic_value(), is_int(), is_int_value(), is_rational_value(), and is_real().

◆ is_arith_sort()

def z3py.is_arith_sort (   s)
Return `True` if s is an arithmetical sort (type).

>>> is_arith_sort(IntSort())
True
>>> is_arith_sort(RealSort())
True
>>> is_arith_sort(BoolSort())
False
>>> n = Int('x') + 1
>>> is_arith_sort(n.sort())
True

Definition at line 2414 of file z3py.py.

2414 def is_arith_sort(s):
2415  """Return `True` if s is an arithmetical sort (type).
2416 
2417  >>> is_arith_sort(IntSort())
2418  True
2419  >>> is_arith_sort(RealSort())
2420  True
2421  >>> is_arith_sort(BoolSort())
2422  False
2423  >>> n = Int('x') + 1
2424  >>> is_arith_sort(n.sort())
2425  True
2426  """
2427  return isinstance(s, ArithSortRef)
2428 
2429 
def is_arith_sort(s)
Definition: z3py.py:2414

Referenced by ArithSortRef.subsort().

◆ is_array()

def z3py.is_array (   a)
Return `True` if `a` is a Z3 array expression.

>>> a = Array('a', IntSort(), IntSort())
>>> is_array(a)
True
>>> is_array(Store(a, 0, 1))
True
>>> is_array(a[0])
False

Definition at line 4657 of file z3py.py.

4657 def is_array(a):
4658  """Return `True` if `a` is a Z3 array expression.
4659 
4660  >>> a = Array('a', IntSort(), IntSort())
4661  >>> is_array(a)
4662  True
4663  >>> is_array(Store(a, 0, 1))
4664  True
4665  >>> is_array(a[0])
4666  False
4667  """
4668  return isinstance(a, ArrayRef)
4669 
4670 

Referenced by Ext(), and Map().

◆ is_array_sort()

def z3py.is_array_sort (   a)

Definition at line 4653 of file z3py.py.

4653 def is_array_sort(a):
4654  return Z3_get_sort_kind(a.ctx.ref(), Z3_get_sort(a.ctx.ref(), a.ast)) == Z3_ARRAY_SORT
4655 
4656 
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)
Return the sort kind (e.g., array, tuple, int, bool, etc).
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by Default(), Ext(), Select(), and Update().

◆ is_as_array()

def z3py.is_as_array (   n)
Return true if n is a Z3 expression of the form (_ as-array f).

Definition at line 6740 of file z3py.py.

6740 def is_as_array(n):
6741  """Return true if n is a Z3 expression of the form (_ as-array f)."""
6742  return isinstance(n, ExprRef) and Z3_is_as_array(n.ctx.ref(), n.as_ast())
6743 
6744 
bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)
The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....

Referenced by get_as_array_func(), and ModelRef.get_interp().

◆ is_ast()

def z3py.is_ast (   a)
Return `True` if `a` is an AST node.

>>> is_ast(10)
False
>>> is_ast(IntVal(10))
True
>>> is_ast(Int('x'))
True
>>> is_ast(BoolSort())
True
>>> is_ast(Function('f', IntSort(), IntSort()))
True
>>> is_ast("x")
False
>>> is_ast(Solver())
False

Definition at line 451 of file z3py.py.

451 def is_ast(a):
452  """Return `True` if `a` is an AST node.
453 
454  >>> is_ast(10)
455  False
456  >>> is_ast(IntVal(10))
457  True
458  >>> is_ast(Int('x'))
459  True
460  >>> is_ast(BoolSort())
461  True
462  >>> is_ast(Function('f', IntSort(), IntSort()))
463  True
464  >>> is_ast("x")
465  False
466  >>> is_ast(Solver())
467  False
468  """
469  return isinstance(a, AstRef)
470 
471 

Referenced by eq(), AstRef.eq(), and ReSort().

◆ is_bool()

def z3py.is_bool (   a)
Return `True` if `a` is a Z3 Boolean expression.

>>> p = Bool('p')
>>> is_bool(p)
True
>>> q = Bool('q')
>>> is_bool(And(p, q))
True
>>> x = Real('x')
>>> is_bool(x)
False
>>> is_bool(x == 0)
True

Definition at line 1611 of file z3py.py.

1611 def is_bool(a):
1612  """Return `True` if `a` is a Z3 Boolean expression.
1613 
1614  >>> p = Bool('p')
1615  >>> is_bool(p)
1616  True
1617  >>> q = Bool('q')
1618  >>> is_bool(And(p, q))
1619  True
1620  >>> x = Real('x')
1621  >>> is_bool(x)
1622  False
1623  >>> is_bool(x == 0)
1624  True
1625  """
1626  return isinstance(a, BoolRef)
1627 
1628 
def is_bool(a)
Definition: z3py.py:1611

Referenced by is_quantifier(), and prove().

◆ is_bv()

def z3py.is_bv (   a)
Return `True` if `a` is a Z3 bit-vector expression.

>>> b = BitVec('b', 32)
>>> is_bv(b)
True
>>> is_bv(b + 10)
True
>>> is_bv(Int('x'))
False

Definition at line 3990 of file z3py.py.

3990 def is_bv(a):
3991  """Return `True` if `a` is a Z3 bit-vector expression.
3992 
3993  >>> b = BitVec('b', 32)
3994  >>> is_bv(b)
3995  True
3996  >>> is_bv(b + 10)
3997  True
3998  >>> is_bv(Int('x'))
3999  False
4000  """
4001  return isinstance(a, BitVecRef)
4002 
4003 

Referenced by BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), Concat(), Extract(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), is_bv_value(), Product(), RepeatBitVec(), SignExt(), Sum(), and ZeroExt().

◆ is_bv_sort()

def z3py.is_bv_sort (   s)
Return True if `s` is a Z3 bit-vector sort.

>>> is_bv_sort(BitVecSort(32))
True
>>> is_bv_sort(IntSort())
False

Definition at line 3522 of file z3py.py.

3522 def is_bv_sort(s):
3523  """Return True if `s` is a Z3 bit-vector sort.
3524 
3525  >>> is_bv_sort(BitVecSort(32))
3526  True
3527  >>> is_bv_sort(IntSort())
3528  False
3529  """
3530  return isinstance(s, BitVecSortRef)
3531 
3532 

Referenced by BitVecVal(), fpToSBV(), fpToUBV(), and BitVecSortRef.subsort().

◆ is_bv_value()

def z3py.is_bv_value (   a)
Return `True` if `a` is a Z3 bit-vector numeral value.

>>> b = BitVec('b', 32)
>>> is_bv_value(b)
False
>>> b = BitVecVal(10, 32)
>>> b
10
>>> is_bv_value(b)
True

Definition at line 4004 of file z3py.py.

4004 def is_bv_value(a):
4005  """Return `True` if `a` is a Z3 bit-vector numeral value.
4006 
4007  >>> b = BitVec('b', 32)
4008  >>> is_bv_value(b)
4009  False
4010  >>> b = BitVecVal(10, 32)
4011  >>> b
4012  10
4013  >>> is_bv_value(b)
4014  True
4015  """
4016  return is_bv(a) and _is_numeral(a.ctx, a.as_ast())
4017 
4018 
def is_bv_value(a)
Definition: z3py.py:4004

◆ is_const()

def z3py.is_const (   a)
Return `True` if `a` is Z3 constant/variable expression.

>>> a = Int('a')
>>> is_const(a)
True
>>> is_const(a + 1)
False
>>> is_const(1)
False
>>> is_const(IntVal(1))
True
>>> x = Int('x')
>>> is_const(ForAll(x, x >= 0))
False

Definition at line 1309 of file z3py.py.

1309 def is_const(a):
1310  """Return `True` if `a` is Z3 constant/variable expression.
1311 
1312  >>> a = Int('a')
1313  >>> is_const(a)
1314  True
1315  >>> is_const(a + 1)
1316  False
1317  >>> is_const(1)
1318  False
1319  >>> is_const(IntVal(1))
1320  True
1321  >>> x = Int('x')
1322  >>> is_const(ForAll(x, x >= 0))
1323  False
1324  """
1325  return is_app(a) and a.num_args() == 0
1326 
1327 
def is_const(a)
Definition: z3py.py:1309

Referenced by ModelRef.__getitem__(), Solver.assert_and_track(), Optimize.assert_and_track(), ModelRef.get_interp(), is_quantifier(), and prove().

◆ is_const_array()

def z3py.is_const_array (   a)
Return `True` if `a` is a Z3 constant array.

>>> a = K(IntSort(), 10)
>>> is_const_array(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_const_array(a)
False

Definition at line 4671 of file z3py.py.

4671 def is_const_array(a):
4672  """Return `True` if `a` is a Z3 constant array.
4673 
4674  >>> a = K(IntSort(), 10)
4675  >>> is_const_array(a)
4676  True
4677  >>> a = Array('a', IntSort(), IntSort())
4678  >>> is_const_array(a)
4679  False
4680  """
4681  return is_app_of(a, Z3_OP_CONST_ARRAY)
4682 
4683 
def is_const_array(a)
Definition: z3py.py:4671

◆ is_default()

def z3py.is_default (   a)
Return `True` if `a` is a Z3 default array expression.
>>> d = Default(K(IntSort(), 10))
>>> is_default(d)
True

Definition at line 4713 of file z3py.py.

4713 def is_default(a):
4714  """Return `True` if `a` is a Z3 default array expression.
4715  >>> d = Default(K(IntSort(), 10))
4716  >>> is_default(d)
4717  True
4718  """
4719  return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
4720 
4721 
def is_default(a)
Definition: z3py.py:4713

◆ is_distinct()

def z3py.is_distinct (   a)
Return `True` if `a` is a Z3 distinct expression.

>>> x, y, z = Ints('x y z')
>>> is_distinct(x == y)
False
>>> is_distinct(Distinct(x, y, z))
True

Definition at line 1719 of file z3py.py.

1719 def is_distinct(a):
1720  """Return `True` if `a` is a Z3 distinct expression.
1721 
1722  >>> x, y, z = Ints('x y z')
1723  >>> is_distinct(x == y)
1724  False
1725  >>> is_distinct(Distinct(x, y, z))
1726  True
1727  """
1728  return is_app_of(a, Z3_OP_DISTINCT)
1729 
1730 
def is_distinct(a)
Definition: z3py.py:1719

◆ is_div()

def z3py.is_div (   a)
Return `True` if `a` is an expression of the form b / c.

>>> x, y = Reals('x y')
>>> is_div(x / y)
True
>>> is_div(x + y)
False
>>> x, y = Ints('x y')
>>> is_div(x / y)
False
>>> is_idiv(x / y)
True

Definition at line 2878 of file z3py.py.

2878 def is_div(a):
2879  """Return `True` if `a` is an expression of the form b / c.
2880 
2881  >>> x, y = Reals('x y')
2882  >>> is_div(x / y)
2883  True
2884  >>> is_div(x + y)
2885  False
2886  >>> x, y = Ints('x y')
2887  >>> is_div(x / y)
2888  False
2889  >>> is_idiv(x / y)
2890  True
2891  """
2892  return is_app_of(a, Z3_OP_DIV)
2893 
2894 
def is_div(a)
Definition: z3py.py:2878

◆ is_eq()

def z3py.is_eq (   a)
Return `True` if `a` is a Z3 equality expression.

>>> x, y = Ints('x y')
>>> is_eq(x == y)
True

Definition at line 1709 of file z3py.py.

1709 def is_eq(a):
1710  """Return `True` if `a` is a Z3 equality expression.
1711 
1712  >>> x, y = Ints('x y')
1713  >>> is_eq(x == y)
1714  True
1715  """
1716  return is_app_of(a, Z3_OP_EQ)
1717 
1718 
def is_eq(a)
Definition: z3py.py:1709

Referenced by AstRef.__bool__().

◆ is_expr()

def z3py.is_expr (   a)
Return `True` if `a` is a Z3 expression.

>>> a = Int('a')
>>> is_expr(a)
True
>>> is_expr(a + 1)
True
>>> is_expr(IntSort())
False
>>> is_expr(1)
False
>>> is_expr(IntVal(1))
True
>>> x = Int('x')
>>> is_expr(ForAll(x, x >= 0))
True
>>> is_expr(FPVal(1.0))
True

Definition at line 1260 of file z3py.py.

1260 def is_expr(a):
1261  """Return `True` if `a` is a Z3 expression.
1262 
1263  >>> a = Int('a')
1264  >>> is_expr(a)
1265  True
1266  >>> is_expr(a + 1)
1267  True
1268  >>> is_expr(IntSort())
1269  False
1270  >>> is_expr(1)
1271  False
1272  >>> is_expr(IntVal(1))
1273  True
1274  >>> x = Int('x')
1275  >>> is_expr(ForAll(x, x >= 0))
1276  True
1277  >>> is_expr(FPVal(1.0))
1278  True
1279  """
1280  return isinstance(a, ExprRef)
1281 
1282 

Referenced by SeqRef.__gt__(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Cbrt(), CharFromBv(), CharIsDigit(), Concat(), deserialize(), Diff(), AlgebraicNumRef.index(), IndexOf(), IntToStr(), is_quantifier(), is_var(), K(), Loop(), MultiPattern(), Option(), Plus(), Range(), Replace(), SeqMapI(), simplify(), Sqrt(), Star(), StrFromCode(), StrToCode(), substitute(), substitute_funs(), substitute_vars(), and ModelRef.update_value().

◆ is_false()

def z3py.is_false (   a)
Return `True` if `a` is the Z3 false expression.

>>> p = Bool('p')
>>> is_false(p)
False
>>> is_false(False)
False
>>> is_false(BoolVal(False))
True

Definition at line 1647 of file z3py.py.

1647 def is_false(a):
1648  """Return `True` if `a` is the Z3 false expression.
1649 
1650  >>> p = Bool('p')
1651  >>> is_false(p)
1652  False
1653  >>> is_false(False)
1654  False
1655  >>> is_false(BoolVal(False))
1656  True
1657  """
1658  return is_app_of(a, Z3_OP_FALSE)
1659 
1660 
def is_false(a)
Definition: z3py.py:1647

Referenced by AstRef.__bool__().

◆ is_finite_domain()

def z3py.is_finite_domain (   a)
Return `True` if `a` is a Z3 finite-domain expression.

>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain(b)
True
>>> is_finite_domain(Int('x'))
False

Definition at line 7814 of file z3py.py.

7814 def is_finite_domain(a):
7815  """Return `True` if `a` is a Z3 finite-domain expression.
7816 
7817  >>> s = FiniteDomainSort('S', 100)
7818  >>> b = Const('b', s)
7819  >>> is_finite_domain(b)
7820  True
7821  >>> is_finite_domain(Int('x'))
7822  False
7823  """
7824  return isinstance(a, FiniteDomainRef)
7825 
7826 
def is_finite_domain(a)
Definition: z3py.py:7814

Referenced by is_finite_domain_value().

◆ is_finite_domain_sort()

def z3py.is_finite_domain_sort (   s)
Return True if `s` is a Z3 finite-domain sort.

>>> is_finite_domain_sort(FiniteDomainSort('S', 100))
True
>>> is_finite_domain_sort(IntSort())
False

Definition at line 7791 of file z3py.py.

7791 def is_finite_domain_sort(s):
7792  """Return True if `s` is a Z3 finite-domain sort.
7793 
7794  >>> is_finite_domain_sort(FiniteDomainSort('S', 100))
7795  True
7796  >>> is_finite_domain_sort(IntSort())
7797  False
7798  """
7799  return isinstance(s, FiniteDomainSortRef)
7800 
7801 

Referenced by FiniteDomainVal().

◆ is_finite_domain_value()

def z3py.is_finite_domain_value (   a)
Return `True` if `a` is a Z3 finite-domain value.

>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain_value(b)
False
>>> b = FiniteDomainVal(10, s)
>>> b
10
>>> is_finite_domain_value(b)
True

Definition at line 7868 of file z3py.py.

7868 def is_finite_domain_value(a):
7869  """Return `True` if `a` is a Z3 finite-domain value.
7870 
7871  >>> s = FiniteDomainSort('S', 100)
7872  >>> b = Const('b', s)
7873  >>> is_finite_domain_value(b)
7874  False
7875  >>> b = FiniteDomainVal(10, s)
7876  >>> b
7877  10
7878  >>> is_finite_domain_value(b)
7879  True
7880  """
7881  return is_finite_domain(a) and _is_numeral(a.ctx, a.as_ast())
7882 
7883 
def is_finite_domain_value(a)
Definition: z3py.py:7868

◆ is_fp()

def z3py.is_fp (   a)
Return `True` if `a` is a Z3 floating-point expression.

>>> b = FP('b', FPSort(8, 24))
>>> is_fp(b)
True
>>> is_fp(b + 1.0)
True
>>> is_fp(Int('x'))
False

Definition at line 10005 of file z3py.py.

10005 def is_fp(a):
10006  """Return `True` if `a` is a Z3 floating-point expression.
10007 
10008  >>> b = FP('b', FPSort(8, 24))
10009  >>> is_fp(b)
10010  True
10011  >>> is_fp(b + 1.0)
10012  True
10013  >>> is_fp(Int('x'))
10014  False
10015  """
10016  return isinstance(a, FPRef)
10017 
10018 

Referenced by fpFPToFP(), fpIsPositive(), fpNeg(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp_value(), and set_default_fp_sort().

◆ is_fp_sort()

def z3py.is_fp_sort (   s)
Return True if `s` is a Z3 floating-point sort.

>>> is_fp_sort(FPSort(8, 24))
True
>>> is_fp_sort(IntSort())
False

Definition at line 9589 of file z3py.py.

9589 def is_fp_sort(s):
9590  """Return True if `s` is a Z3 floating-point sort.
9591 
9592  >>> is_fp_sort(FPSort(8, 24))
9593  True
9594  >>> is_fp_sort(IntSort())
9595  False
9596  """
9597  return isinstance(s, FPSortRef)
9598 
9599 

Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), and FPVal().

◆ is_fp_value()

def z3py.is_fp_value (   a)
Return `True` if `a` is a Z3 floating-point numeral value.

>>> b = FP('b', FPSort(8, 24))
>>> is_fp_value(b)
False
>>> b = FPVal(1.0, FPSort(8, 24))
>>> b
1
>>> is_fp_value(b)
True

Definition at line 10019 of file z3py.py.

10019 def is_fp_value(a):
10020  """Return `True` if `a` is a Z3 floating-point numeral value.
10021 
10022  >>> b = FP('b', FPSort(8, 24))
10023  >>> is_fp_value(b)
10024  False
10025  >>> b = FPVal(1.0, FPSort(8, 24))
10026  >>> b
10027  1
10028  >>> is_fp_value(b)
10029  True
10030  """
10031  return is_fp(a) and _is_numeral(a.ctx, a.ast)
10032 
10033 
def is_fp_value(a)
Definition: z3py.py:10019

◆ is_fprm()

def z3py.is_fprm (   a)
Return `True` if `a` is a Z3 floating-point rounding mode expression.

>>> rm = RNE()
>>> is_fprm(rm)
True
>>> rm = 1.0
>>> is_fprm(rm)
False

Definition at line 9849 of file z3py.py.

9849 def is_fprm(a):
9850  """Return `True` if `a` is a Z3 floating-point rounding mode expression.
9851 
9852  >>> rm = RNE()
9853  >>> is_fprm(rm)
9854  True
9855  >>> rm = 1.0
9856  >>> is_fprm(rm)
9857  False
9858  """
9859  return isinstance(a, FPRMRef)
9860 
9861 

Referenced by fpFPToFP(), fpNeg(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), and is_fprm_value().

◆ is_fprm_sort()

def z3py.is_fprm_sort (   s)
Return True if `s` is a Z3 floating-point rounding mode sort.

>>> is_fprm_sort(FPSort(8, 24))
False
>>> is_fprm_sort(RNE().sort())
True

Definition at line 9600 of file z3py.py.

9600 def is_fprm_sort(s):
9601  """Return True if `s` is a Z3 floating-point rounding mode sort.
9602 
9603  >>> is_fprm_sort(FPSort(8, 24))
9604  False
9605  >>> is_fprm_sort(RNE().sort())
9606  True
9607  """
9608  return isinstance(s, FPRMSortRef)
9609 
9610 # FP Expressions
9611 
9612 
def is_fprm_sort(s)
Definition: z3py.py:9600

◆ is_fprm_value()

def z3py.is_fprm_value (   a)
Return `True` if `a` is a Z3 floating-point rounding mode numeral value.

Definition at line 9862 of file z3py.py.

9862 def is_fprm_value(a):
9863  """Return `True` if `a` is a Z3 floating-point rounding mode numeral value."""
9864  return is_fprm(a) and _is_numeral(a.ctx, a.ast)
9865 
9866 # FP Numerals
9867 
9868 
def is_fprm_value(a)
Definition: z3py.py:9862

Referenced by set_default_rounding_mode().

◆ is_func_decl()

def z3py.is_func_decl (   a)
Return `True` if `a` is a Z3 function declaration.

>>> f = Function('f', IntSort(), IntSort())
>>> is_func_decl(f)
True
>>> x = Real('x')
>>> is_func_decl(x)
False

Definition at line 868 of file z3py.py.

868 def is_func_decl(a):
869  """Return `True` if `a` is a Z3 function declaration.
870 
871  >>> f = Function('f', IntSort(), IntSort())
872  >>> is_func_decl(f)
873  True
874  >>> x = Real('x')
875  >>> is_func_decl(x)
876  False
877  """
878  return isinstance(a, FuncDeclRef)
879 
880 
def is_func_decl(a)
Definition: z3py.py:868

Referenced by Map(), prove(), substitute_funs(), and ModelRef.update_value().

◆ is_ge()

def z3py.is_ge (   a)
Return `True` if `a` is an expression of the form b >= c.

>>> x, y = Ints('x y')
>>> is_ge(x >= y)
True
>>> is_ge(x == y)
False

Definition at line 2943 of file z3py.py.

2943 def is_ge(a):
2944  """Return `True` if `a` is an expression of the form b >= c.
2945 
2946  >>> x, y = Ints('x y')
2947  >>> is_ge(x >= y)
2948  True
2949  >>> is_ge(x == y)
2950  False
2951  """
2952  return is_app_of(a, Z3_OP_GE)
2953 
2954 
def is_ge(a)
Definition: z3py.py:2943

◆ is_gt()

def z3py.is_gt (   a)
Return `True` if `a` is an expression of the form b > c.

>>> x, y = Ints('x y')
>>> is_gt(x > y)
True
>>> is_gt(x == y)
False

Definition at line 2955 of file z3py.py.

2955 def is_gt(a):
2956  """Return `True` if `a` is an expression of the form b > c.
2957 
2958  >>> x, y = Ints('x y')
2959  >>> is_gt(x > y)
2960  True
2961  >>> is_gt(x == y)
2962  False
2963  """
2964  return is_app_of(a, Z3_OP_GT)
2965 
2966 
def is_gt(a)
Definition: z3py.py:2955

◆ is_idiv()

def z3py.is_idiv (   a)
Return `True` if `a` is an expression of the form b div c.

>>> x, y = Ints('x y')
>>> is_idiv(x / y)
True
>>> is_idiv(x + y)
False

Definition at line 2895 of file z3py.py.

2895 def is_idiv(a):
2896  """Return `True` if `a` is an expression of the form b div c.
2897 
2898  >>> x, y = Ints('x y')
2899  >>> is_idiv(x / y)
2900  True
2901  >>> is_idiv(x + y)
2902  False
2903  """
2904  return is_app_of(a, Z3_OP_IDIV)
2905 
2906 
def is_idiv(a)
Definition: z3py.py:2895

◆ is_implies()

def z3py.is_implies (   a)
Return `True` if `a` is a Z3 implication expression.

>>> p, q = Bools('p q')
>>> is_implies(Implies(p, q))
True
>>> is_implies(And(p, q))
False

Definition at line 1685 of file z3py.py.

1685 def is_implies(a):
1686  """Return `True` if `a` is a Z3 implication expression.
1687 
1688  >>> p, q = Bools('p q')
1689  >>> is_implies(Implies(p, q))
1690  True
1691  >>> is_implies(And(p, q))
1692  False
1693  """
1694  return is_app_of(a, Z3_OP_IMPLIES)
1695 
1696 
def is_implies(a)
Definition: z3py.py:1685

◆ is_int()

def z3py.is_int (   a)
Return `True` if `a` is an integer expression.

>>> x = Int('x')
>>> is_int(x + 1)
True
>>> is_int(1)
False
>>> is_int(IntVal(1))
True
>>> y = Real('y')
>>> is_int(y)
False
>>> is_int(y + 1)
False

Definition at line 2736 of file z3py.py.

2736 def is_int(a):
2737  """Return `True` if `a` is an integer expression.
2738 
2739  >>> x = Int('x')
2740  >>> is_int(x + 1)
2741  True
2742  >>> is_int(1)
2743  False
2744  >>> is_int(IntVal(1))
2745  True
2746  >>> y = Real('y')
2747  >>> is_int(y)
2748  False
2749  >>> is_int(y + 1)
2750  False
2751  """
2752  return is_arith(a) and a.is_int()
2753 
2754 
def is_int(a)
Definition: z3py.py:2736

◆ is_int_value()

def z3py.is_int_value (   a)
Return `True` if `a` is an integer value of sort Int.

>>> is_int_value(IntVal(1))
True
>>> is_int_value(1)
False
>>> is_int_value(Int('x'))
False
>>> n = Int('x') + 1
>>> n
x + 1
>>> n.arg(1)
1
>>> is_int_value(n.arg(1))
True
>>> is_int_value(RealVal("1/3"))
False
>>> is_int_value(RealVal(1))
False

Definition at line 2782 of file z3py.py.

2782 def is_int_value(a):
2783  """Return `True` if `a` is an integer value of sort Int.
2784 
2785  >>> is_int_value(IntVal(1))
2786  True
2787  >>> is_int_value(1)
2788  False
2789  >>> is_int_value(Int('x'))
2790  False
2791  >>> n = Int('x') + 1
2792  >>> n
2793  x + 1
2794  >>> n.arg(1)
2795  1
2796  >>> is_int_value(n.arg(1))
2797  True
2798  >>> is_int_value(RealVal("1/3"))
2799  False
2800  >>> is_int_value(RealVal(1))
2801  False
2802  """
2803  return is_arith(a) and a.is_int() and _is_numeral(a.ctx, a.as_ast())
2804 
2805 
def is_int_value(a)
Definition: z3py.py:2782

◆ is_is_int()

def z3py.is_is_int (   a)
Return `True` if `a` is an expression of the form IsInt(b).

>>> x = Real('x')
>>> is_is_int(IsInt(x))
True
>>> is_is_int(x)
False

Definition at line 2967 of file z3py.py.

2967 def is_is_int(a):
2968  """Return `True` if `a` is an expression of the form IsInt(b).
2969 
2970  >>> x = Real('x')
2971  >>> is_is_int(IsInt(x))
2972  True
2973  >>> is_is_int(x)
2974  False
2975  """
2976  return is_app_of(a, Z3_OP_IS_INT)
2977 
2978 
def is_is_int(a)
Definition: z3py.py:2967

◆ is_K()

def z3py.is_K (   a)
Return `True` if `a` is a Z3 constant array.

>>> a = K(IntSort(), 10)
>>> is_K(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_K(a)
False

Definition at line 4684 of file z3py.py.

4684 def is_K(a):
4685  """Return `True` if `a` is a Z3 constant array.
4686 
4687  >>> a = K(IntSort(), 10)
4688  >>> is_K(a)
4689  True
4690  >>> a = Array('a', IntSort(), IntSort())
4691  >>> is_K(a)
4692  False
4693  """
4694  return is_app_of(a, Z3_OP_CONST_ARRAY)
4695 
4696 
def is_K(a)
Definition: z3py.py:4684

◆ is_le()

def z3py.is_le (   a)
Return `True` if `a` is an expression of the form b <= c.

>>> x, y = Ints('x y')
>>> is_le(x <= y)
True
>>> is_le(x < y)
False

Definition at line 2919 of file z3py.py.

2919 def is_le(a):
2920  """Return `True` if `a` is an expression of the form b <= c.
2921 
2922  >>> x, y = Ints('x y')
2923  >>> is_le(x <= y)
2924  True
2925  >>> is_le(x < y)
2926  False
2927  """
2928  return is_app_of(a, Z3_OP_LE)
2929 
2930 
def is_le(a)
Definition: z3py.py:2919

◆ is_lt()

def z3py.is_lt (   a)
Return `True` if `a` is an expression of the form b < c.

>>> x, y = Ints('x y')
>>> is_lt(x < y)
True
>>> is_lt(x == y)
False

Definition at line 2931 of file z3py.py.

2931 def is_lt(a):
2932  """Return `True` if `a` is an expression of the form b < c.
2933 
2934  >>> x, y = Ints('x y')
2935  >>> is_lt(x < y)
2936  True
2937  >>> is_lt(x == y)
2938  False
2939  """
2940  return is_app_of(a, Z3_OP_LT)
2941 
2942 
def is_lt(a)
Definition: z3py.py:2931

◆ is_map()

def z3py.is_map (   a)
Return `True` if `a` is a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a  = Map(f, b)
>>> a
Map(f, b)
>>> is_map(a)
True
>>> is_map(b)
False

Definition at line 4697 of file z3py.py.

4697 def is_map(a):
4698  """Return `True` if `a` is a Z3 map array expression.
4699 
4700  >>> f = Function('f', IntSort(), IntSort())
4701  >>> b = Array('b', IntSort(), IntSort())
4702  >>> a = Map(f, b)
4703  >>> a
4704  Map(f, b)
4705  >>> is_map(a)
4706  True
4707  >>> is_map(b)
4708  False
4709  """
4710  return is_app_of(a, Z3_OP_ARRAY_MAP)
4711 
4712 

Referenced by get_map_func().

◆ is_mod()

def z3py.is_mod (   a)
Return `True` if `a` is an expression of the form b % c.

>>> x, y = Ints('x y')
>>> is_mod(x % y)
True
>>> is_mod(x + y)
False

Definition at line 2907 of file z3py.py.

2907 def is_mod(a):
2908  """Return `True` if `a` is an expression of the form b % c.
2909 
2910  >>> x, y = Ints('x y')
2911  >>> is_mod(x % y)
2912  True
2913  >>> is_mod(x + y)
2914  False
2915  """
2916  return is_app_of(a, Z3_OP_MOD)
2917 
2918 
def is_mod(a)
Definition: z3py.py:2907

◆ is_mul()

def z3py.is_mul (   a)
Return `True` if `a` is an expression of the form b * c.

>>> x, y = Ints('x y')
>>> is_mul(x * y)
True
>>> is_mul(x - y)
False

Definition at line 2854 of file z3py.py.

2854 def is_mul(a):
2855  """Return `True` if `a` is an expression of the form b * c.
2856 
2857  >>> x, y = Ints('x y')
2858  >>> is_mul(x * y)
2859  True
2860  >>> is_mul(x - y)
2861  False
2862  """
2863  return is_app_of(a, Z3_OP_MUL)
2864 
2865 
def is_mul(a)
Definition: z3py.py:2854

◆ is_not()

def z3py.is_not (   a)
Return `True` if `a` is a Z3 not expression.

>>> p = Bool('p')
>>> is_not(p)
False
>>> is_not(Not(p))
True

Definition at line 1697 of file z3py.py.

1697 def is_not(a):
1698  """Return `True` if `a` is a Z3 not expression.
1699 
1700  >>> p = Bool('p')
1701  >>> is_not(p)
1702  False
1703  >>> is_not(Not(p))
1704  True
1705  """
1706  return is_app_of(a, Z3_OP_NOT)
1707 
1708 
def is_not(a)
Definition: z3py.py:1697

Referenced by mk_not().

◆ is_or()

def z3py.is_or (   a)
Return `True` if `a` is a Z3 or expression.

>>> p, q = Bools('p q')
>>> is_or(Or(p, q))
True
>>> is_or(And(p, q))
False

Definition at line 1673 of file z3py.py.

1673 def is_or(a):
1674  """Return `True` if `a` is a Z3 or expression.
1675 
1676  >>> p, q = Bools('p q')
1677  >>> is_or(Or(p, q))
1678  True
1679  >>> is_or(And(p, q))
1680  False
1681  """
1682  return is_app_of(a, Z3_OP_OR)
1683 
1684 
def is_or(a)
Definition: z3py.py:1673

◆ is_pattern()

def z3py.is_pattern (   a)
Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
>>> q
ForAll(x, f(x) == 0)
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
f(Var(0))

Definition at line 1973 of file z3py.py.

1973 def is_pattern(a):
1974  """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
1975 
1976  >>> f = Function('f', IntSort(), IntSort())
1977  >>> x = Int('x')
1978  >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
1979  >>> q
1980  ForAll(x, f(x) == 0)
1981  >>> q.num_patterns()
1982  1
1983  >>> is_pattern(q.pattern(0))
1984  True
1985  >>> q.pattern(0)
1986  f(Var(0))
1987  """
1988  return isinstance(a, PatternRef)
1989 
1990 
def is_pattern(a)
Definition: z3py.py:1973

Referenced by is_quantifier(), and MultiPattern().

◆ is_probe()

def z3py.is_probe (   p)
Return `True` if `p` is a Z3 probe.

>>> is_probe(Int('x'))
False
>>> is_probe(Probe('memory'))
True

Definition at line 8770 of file z3py.py.

8770 def is_probe(p):
8771  """Return `True` if `p` is a Z3 probe.
8772 
8773  >>> is_probe(Int('x'))
8774  False
8775  >>> is_probe(Probe('memory'))
8776  True
8777  """
8778  return isinstance(p, Probe)
8779 
8780 
def is_probe(p)
Definition: z3py.py:8770

Referenced by eq(), mk_not(), and Not().

◆ is_quantifier()

def z3py.is_quantifier (   a)
Return `True` if `a` is a Z3 quantifier.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0)
>>> is_quantifier(q)
True
>>> is_quantifier(f(x))
False

Definition at line 2223 of file z3py.py.

2223 def is_quantifier(a):
2224  """Return `True` if `a` is a Z3 quantifier.
2225 
2226  >>> f = Function('f', IntSort(), IntSort())
2227  >>> x = Int('x')
2228  >>> q = ForAll(x, f(x) == 0)
2229  >>> is_quantifier(q)
2230  True
2231  >>> is_quantifier(f(x))
2232  False
2233  """
2234  return isinstance(a, QuantifierRef)
2235 
2236 
def is_quantifier(a)
Definition: z3py.py:2223

◆ is_rational_value()

def z3py.is_rational_value (   a)
Return `True` if `a` is rational value of sort Real.

>>> is_rational_value(RealVal(1))
True
>>> is_rational_value(RealVal("3/5"))
True
>>> is_rational_value(IntVal(1))
False
>>> is_rational_value(1)
False
>>> n = Real('x') + 1
>>> n.arg(1)
1
>>> is_rational_value(n.arg(1))
True
>>> is_rational_value(Real('x'))
False

Definition at line 2806 of file z3py.py.

2806 def is_rational_value(a):
2807  """Return `True` if `a` is rational value of sort Real.
2808 
2809  >>> is_rational_value(RealVal(1))
2810  True
2811  >>> is_rational_value(RealVal("3/5"))
2812  True
2813  >>> is_rational_value(IntVal(1))
2814  False
2815  >>> is_rational_value(1)
2816  False
2817  >>> n = Real('x') + 1
2818  >>> n.arg(1)
2819  1
2820  >>> is_rational_value(n.arg(1))
2821  True
2822  >>> is_rational_value(Real('x'))
2823  False
2824  """
2825  return is_arith(a) and a.is_real() and _is_numeral(a.ctx, a.as_ast())
2826 
2827 
def is_rational_value(a)
Definition: z3py.py:2806

◆ is_re()

def z3py.is_re (   s)

Definition at line 11327 of file z3py.py.

11327 def is_re(s):
11328  return isinstance(s, ReRef)
11329 
11330 

Referenced by Concat(), Intersect(), and Union().

◆ is_real()

def z3py.is_real (   a)
Return `True` if `a` is a real expression.

>>> x = Int('x')
>>> is_real(x + 1)
False
>>> y = Real('y')
>>> is_real(y)
True
>>> is_real(y + 1)
True
>>> is_real(1)
False
>>> is_real(RealVal(1))
True

Definition at line 2755 of file z3py.py.

2755 def is_real(a):
2756  """Return `True` if `a` is a real expression.
2757 
2758  >>> x = Int('x')
2759  >>> is_real(x + 1)
2760  False
2761  >>> y = Real('y')
2762  >>> is_real(y)
2763  True
2764  >>> is_real(y + 1)
2765  True
2766  >>> is_real(1)
2767  False
2768  >>> is_real(RealVal(1))
2769  True
2770  """
2771  return is_arith(a) and a.is_real()
2772 
2773 

Referenced by fpRealToFP(), and fpToFP().

◆ is_select()

def z3py.is_select (   a)
Return `True` if `a` is a Z3 array select application.

>>> a = Array('a', IntSort(), IntSort())
>>> is_select(a)
False
>>> i = Int('i')
>>> is_select(a[i])
True

Definition at line 4932 of file z3py.py.

4932 def is_select(a):
4933  """Return `True` if `a` is a Z3 array select application.
4934 
4935  >>> a = Array('a', IntSort(), IntSort())
4936  >>> is_select(a)
4937  False
4938  >>> i = Int('i')
4939  >>> is_select(a[i])
4940  True
4941  """
4942  return is_app_of(a, Z3_OP_SELECT)
4943 
4944 
def is_select(a)
Definition: z3py.py:4932

◆ is_seq()

def z3py.is_seq (   a)
Return `True` if `a` is a Z3 sequence expression.
>>> print (is_seq(Unit(IntVal(0))))
True
>>> print (is_seq(StringVal("abc")))
True

Definition at line 11027 of file z3py.py.

11027 def is_seq(a):
11028  """Return `True` if `a` is a Z3 sequence expression.
11029  >>> print (is_seq(Unit(IntVal(0))))
11030  True
11031  >>> print (is_seq(StringVal("abc")))
11032  True
11033  """
11034  return isinstance(a, SeqRef)
11035 
11036 

Referenced by CharIsDigit(), Concat(), and Extract().

◆ is_sort()

def z3py.is_sort (   s)
Return `True` if `s` is a Z3 sort.

>>> is_sort(IntSort())
True
>>> is_sort(Int('x'))
False
>>> is_expr(Int('x'))
True

Definition at line 647 of file z3py.py.

647 def is_sort(s):
648  """Return `True` if `s` is a Z3 sort.
649 
650  >>> is_sort(IntSort())
651  True
652  >>> is_sort(Int('x'))
653  False
654  >>> is_expr(Int('x'))
655  True
656  """
657  return isinstance(s, SortRef)
658 
659 

Referenced by ArraySort(), CreateDatatypes(), FreshFunction(), Function(), IsSubset(), K(), PropagateFunction(), prove(), RecFunction(), and Var().

◆ is_store()

def z3py.is_store (   a)
Return `True` if `a` is a Z3 array store application.

>>> a = Array('a', IntSort(), IntSort())
>>> is_store(a)
False
>>> is_store(Store(a, 0, 1))
True

Definition at line 4945 of file z3py.py.

4945 def is_store(a):
4946  """Return `True` if `a` is a Z3 array store application.
4947 
4948  >>> a = Array('a', IntSort(), IntSort())
4949  >>> is_store(a)
4950  False
4951  >>> is_store(Store(a, 0, 1))
4952  True
4953  """
4954  return is_app_of(a, Z3_OP_STORE)
4955 
def is_store(a)
Definition: z3py.py:4945

◆ is_string()

def z3py.is_string (   a)
Return `True` if `a` is a Z3 string expression.
>>> print (is_string(StringVal("ab")))
True

Definition at line 11037 of file z3py.py.

11037 def is_string(a):
11038  """Return `True` if `a` is a Z3 string expression.
11039  >>> print (is_string(StringVal("ab")))
11040  True
11041  """
11042  return isinstance(a, SeqRef) and a.is_string()
11043 
11044 
def is_string(a)
Definition: z3py.py:11037

◆ is_string_value()

def z3py.is_string_value (   a)
return 'True' if 'a' is a Z3 string constant expression.
>>> print (is_string_value(StringVal("a")))
True
>>> print (is_string_value(StringVal("a") + StringVal("b")))
False

Definition at line 11045 of file z3py.py.

11045 def is_string_value(a):
11046  """return 'True' if 'a' is a Z3 string constant expression.
11047  >>> print (is_string_value(StringVal("a")))
11048  True
11049  >>> print (is_string_value(StringVal("a") + StringVal("b")))
11050  False
11051  """
11052  return isinstance(a, SeqRef) and a.is_string_value()
11053 
def is_string_value(a)
Definition: z3py.py:11045

◆ is_sub()

def z3py.is_sub (   a)
Return `True` if `a` is an expression of the form b - c.

>>> x, y = Ints('x y')
>>> is_sub(x - y)
True
>>> is_sub(x + y)
False

Definition at line 2866 of file z3py.py.

2866 def is_sub(a):
2867  """Return `True` if `a` is an expression of the form b - c.
2868 
2869  >>> x, y = Ints('x y')
2870  >>> is_sub(x - y)
2871  True
2872  >>> is_sub(x + y)
2873  False
2874  """
2875  return is_app_of(a, Z3_OP_SUB)
2876 
2877 
def is_sub(a)
Definition: z3py.py:2866

◆ is_to_int()

def z3py.is_to_int (   a)
Return `True` if `a` is an expression of the form ToInt(b).

>>> x = Real('x')
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> is_to_int(n)
True
>>> is_to_int(x)
False

Definition at line 2994 of file z3py.py.

2994 def is_to_int(a):
2995  """Return `True` if `a` is an expression of the form ToInt(b).
2996 
2997  >>> x = Real('x')
2998  >>> n = ToInt(x)
2999  >>> n
3000  ToInt(x)
3001  >>> is_to_int(n)
3002  True
3003  >>> is_to_int(x)
3004  False
3005  """
3006  return is_app_of(a, Z3_OP_TO_INT)
3007 
3008 
def is_to_int(a)
Definition: z3py.py:2994

◆ is_to_real()

def z3py.is_to_real (   a)
Return `True` if `a` is an expression of the form ToReal(b).

>>> x = Int('x')
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> is_to_real(n)
True
>>> is_to_real(x)
False

Definition at line 2979 of file z3py.py.

2979 def is_to_real(a):
2980  """Return `True` if `a` is an expression of the form ToReal(b).
2981 
2982  >>> x = Int('x')
2983  >>> n = ToReal(x)
2984  >>> n
2985  ToReal(x)
2986  >>> is_to_real(n)
2987  True
2988  >>> is_to_real(x)
2989  False
2990  """
2991  return is_app_of(a, Z3_OP_TO_REAL)
2992 
2993 
def is_to_real(a)
Definition: z3py.py:2979

◆ is_true()

def z3py.is_true (   a)
Return `True` if `a` is the Z3 true expression.

>>> p = Bool('p')
>>> is_true(p)
False
>>> is_true(simplify(p == p))
True
>>> x = Real('x')
>>> is_true(x == 0)
False
>>> # True is a Python Boolean expression
>>> is_true(True)
False

Definition at line 1629 of file z3py.py.

1629 def is_true(a):
1630  """Return `True` if `a` is the Z3 true expression.
1631 
1632  >>> p = Bool('p')
1633  >>> is_true(p)
1634  False
1635  >>> is_true(simplify(p == p))
1636  True
1637  >>> x = Real('x')
1638  >>> is_true(x == 0)
1639  False
1640  >>> # True is a Python Boolean expression
1641  >>> is_true(True)
1642  False
1643  """
1644  return is_app_of(a, Z3_OP_TRUE)
1645 
1646 
def is_true(a)
Definition: z3py.py:1629

Referenced by AstRef.__bool__().

◆ is_var()

def z3py.is_var (   a)
Return `True` if `a` is variable.

Z3 uses de-Bruijn indices for representing bound variables in
quantifiers.

>>> x = Int('x')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort())
>>> # Z3 replaces x with bound variables when ForAll is executed.
>>> q = ForAll(x, f(x) == x)
>>> b = q.body()
>>> b
f(Var(0)) == Var(0)
>>> b.arg(1)
Var(0)
>>> is_var(b.arg(1))
True

Definition at line 1328 of file z3py.py.

1328 def is_var(a):
1329  """Return `True` if `a` is variable.
1330 
1331  Z3 uses de-Bruijn indices for representing bound variables in
1332  quantifiers.
1333 
1334  >>> x = Int('x')
1335  >>> is_var(x)
1336  False
1337  >>> is_const(x)
1338  True
1339  >>> f = Function('f', IntSort(), IntSort())
1340  >>> # Z3 replaces x with bound variables when ForAll is executed.
1341  >>> q = ForAll(x, f(x) == x)
1342  >>> b = q.body()
1343  >>> b
1344  f(Var(0)) == Var(0)
1345  >>> b.arg(1)
1346  Var(0)
1347  >>> is_var(b.arg(1))
1348  True
1349  """
1350  return is_expr(a) and _ast_kind(a.ctx, a) == Z3_VAR_AST
1351 
1352 

Referenced by get_var_index().

◆ IsInt()

def z3py.IsInt (   a)
 Return the Z3 predicate IsInt(a).

>>> x = Real('x')
>>> IsInt(x + "1/2")
IsInt(x + 1/2)
>>> solve(IsInt(x + "1/2"), x > 0, x < 1)
[x = 1/2]
>>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
no solution

Definition at line 3440 of file z3py.py.

3440 def IsInt(a):
3441  """ Return the Z3 predicate IsInt(a).
3442 
3443  >>> x = Real('x')
3444  >>> IsInt(x + "1/2")
3445  IsInt(x + 1/2)
3446  >>> solve(IsInt(x + "1/2"), x > 0, x < 1)
3447  [x = 1/2]
3448  >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
3449  no solution
3450  """
3451  if z3_debug():
3452  _z3_assert(a.is_real(), "Z3 real expression expected.")
3453  ctx = a.ctx
3454  return BoolRef(Z3_mk_is_int(ctx.ref(), a.as_ast()), ctx)
3455 
3456 
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
def IsInt(a)
Definition: z3py.py:3440

◆ IsMember()

def z3py.IsMember (   e,
  s 
)
 Check if e is a member of set s
>>> a = Const('a', SetSort(IntSort()))
>>> IsMember(1, a)
a[1]

Definition at line 5055 of file z3py.py.

5055 def IsMember(e, s):
5056  """ Check if e is a member of set s
5057  >>> a = Const('a', SetSort(IntSort()))
5058  >>> IsMember(1, a)
5059  a[1]
5060  """
5061  ctx = _ctx_from_ast_arg_list([s, e])
5062  e = _py2expr(e, ctx)
5063  return BoolRef(Z3_mk_set_member(ctx.ref(), e.as_ast(), s.as_ast()), ctx)
5064 
5065 
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.
def IsMember(e, s)
Definition: z3py.py:5055

◆ IsSubset()

def z3py.IsSubset (   a,
  b 
)
 Check if a is a subset of b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> IsSubset(a, b)
subset(a, b)

Definition at line 5066 of file z3py.py.

5066 def IsSubset(a, b):
5067  """ Check if a is a subset of b
5068  >>> a = Const('a', SetSort(IntSort()))
5069  >>> b = Const('b', SetSort(IntSort()))
5070  >>> IsSubset(a, b)
5071  subset(a, b)
5072  """
5073  ctx = _ctx_from_ast_arg_list([a, b])
5074  return BoolRef(Z3_mk_set_subset(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
5075 
5076 
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.
def IsSubset(a, b)
Definition: z3py.py:5066

◆ K()

def z3py.K (   dom,
  v 
)
Return a Z3 constant array expression.

>>> a = K(IntSort(), 10)
>>> a
K(Int, 10)
>>> a.sort()
Array(Int, Int)
>>> i = Int('i')
>>> a[i]
K(Int, 10)[i]
>>> simplify(a[i])
10

Definition at line 4892 of file z3py.py.

4892 def K(dom, v):
4893  """Return a Z3 constant array expression.
4894 
4895  >>> a = K(IntSort(), 10)
4896  >>> a
4897  K(Int, 10)
4898  >>> a.sort()
4899  Array(Int, Int)
4900  >>> i = Int('i')
4901  >>> a[i]
4902  K(Int, 10)[i]
4903  >>> simplify(a[i])
4904  10
4905  """
4906  if z3_debug():
4907  _z3_assert(is_sort(dom), "Z3 sort expected")
4908  ctx = dom.ctx
4909  if not is_expr(v):
4910  v = _py2expr(v, ctx)
4911  return ArrayRef(Z3_mk_const_array(ctx.ref(), dom.ast, v.as_ast()), ctx)
4912 
4913 
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.
def K(dom, v)
Definition: z3py.py:4892

Referenced by ModelRef.get_interp().

◆ Lambda()

def z3py.Lambda (   vs,
  body 
)
Create a Z3 lambda expression.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> mem0 = Array('mem0', IntSort(), IntSort())
>>> lo, hi, e, i = Ints('lo hi e i')
>>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
>>> mem1
Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))

Definition at line 2311 of file z3py.py.

2311 def Lambda(vs, body):
2312  """Create a Z3 lambda expression.
2313 
2314  >>> f = Function('f', IntSort(), IntSort(), IntSort())
2315  >>> mem0 = Array('mem0', IntSort(), IntSort())
2316  >>> lo, hi, e, i = Ints('lo hi e i')
2317  >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
2318  >>> mem1
2319  Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
2320  """
2321  ctx = body.ctx
2322  if is_app(vs):
2323  vs = [vs]
2324  num_vars = len(vs)
2325  _vs = (Ast * num_vars)()
2326  for i in range(num_vars):
2327  # TODO: Check if is constant
2328  _vs[i] = vs[i].as_ast()
2329  return QuantifierRef(Z3_mk_lambda_const(ctx.ref(), num_vars, _vs, body.as_ast()), ctx)
2330 
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.
def Lambda(vs, body)
Definition: z3py.py:2311

Referenced by Context.MkLambda().

◆ LastIndexOf()

def z3py.LastIndexOf (   s,
  substr 
)
Retrieve the last index of substring within a string

Definition at line 11212 of file z3py.py.

11212 def LastIndexOf(s, substr):
11213  """Retrieve the last index of substring within a string"""
11214  ctx = None
11215  ctx = _get_ctx2(s, substr, ctx)
11216  s = _coerce_seq(s, ctx)
11217  substr = _coerce_seq(substr, ctx)
11218  return ArithRef(Z3_mk_seq_last_index(s.ctx_ref(), s.as_ast(), substr.as_ast()), s.ctx)
11219 
11220 
Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast s, Z3_ast substr)
Return index of the last occurrence of substr in s. If s does not contain substr, then the value is -...
def LastIndexOf(s, substr)
Definition: z3py.py:11212

◆ Length()

def z3py.Length (   s)
Obtain the length of a sequence 's'
>>> l = Length(StringVal("abc"))
>>> simplify(l)
3

Definition at line 11221 of file z3py.py.

11221 def Length(s):
11222  """Obtain the length of a sequence 's'
11223  >>> l = Length(StringVal("abc"))
11224  >>> simplify(l)
11225  3
11226  """
11227  s = _coerce_seq(s)
11228  return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
11229 
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)
Return the length of the sequence s.
def Length(s)
Definition: z3py.py:11221

Referenced by NativeContext.MkAdd(), NativeContext.MkAnd(), NativeContext.MkApp(), NativeContext.MkFreshFuncDecl(), NativeContext.MkFuncDecl(), NativeContext.MkMul(), NativeContext.MkOr(), NativeContext.MkSub(), and NativeContext.MkTupleSort().

◆ LinearOrder()

def z3py.LinearOrder (   a,
  index 
)

Definition at line 11483 of file z3py.py.

11483 def LinearOrder(a, index):
11484  return FuncDeclRef(Z3_mk_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11485 
11486 
Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a linear ordering relation over signature a. The relation is identified by the index id.
def LinearOrder(a, index)
Definition: z3py.py:11483

◆ Loop()

def z3py.Loop (   re,
  lo,
  hi = 0 
)
Create the regular expression accepting between a lower and upper bound repetitions
>>> re = Loop(Re("a"), 1, 3)
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("aaaa", re)))
False
>>> print(simplify(InRe("", re)))
False

Definition at line 11433 of file z3py.py.

11433 def Loop(re, lo, hi=0):
11434  """Create the regular expression accepting between a lower and upper bound repetitions
11435  >>> re = Loop(Re("a"), 1, 3)
11436  >>> print(simplify(InRe("aa", re)))
11437  True
11438  >>> print(simplify(InRe("aaaa", re)))
11439  False
11440  >>> print(simplify(InRe("", re)))
11441  False
11442  """
11443  if z3_debug():
11444  _z3_assert(is_expr(re), "expression expected")
11445  return ReRef(Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
11446 
11447 
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...
def Loop(re, lo, hi=0)
Definition: z3py.py:11433

◆ LShR()

def z3py.LShR (   a,
  b 
)
Create the Z3 expression logical right shift.

Use the operator >> for the arithmetical right shift.

>>> x, y = BitVecs('x y', 32)
>>> LShR(x, y)
LShR(x, y)
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1

Definition at line 4345 of file z3py.py.

4345 def LShR(a, b):
4346  """Create the Z3 expression logical right shift.
4347 
4348  Use the operator >> for the arithmetical right shift.
4349 
4350  >>> x, y = BitVecs('x y', 32)
4351  >>> LShR(x, y)
4352  LShR(x, y)
4353  >>> (x >> y).sexpr()
4354  '(bvashr x y)'
4355  >>> LShR(x, y).sexpr()
4356  '(bvlshr x y)'
4357  >>> BitVecVal(4, 3)
4358  4
4359  >>> BitVecVal(4, 3).as_signed_long()
4360  -4
4361  >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
4362  -2
4363  >>> simplify(BitVecVal(4, 3) >> 1)
4364  6
4365  >>> simplify(LShR(BitVecVal(4, 3), 1))
4366  2
4367  >>> simplify(BitVecVal(2, 3) >> 1)
4368  1
4369  >>> simplify(LShR(BitVecVal(2, 3), 1))
4370  1
4371  """
4372  _check_bv_args(a, b)
4373  a, b = _coerce_exprs(a, b)
4374  return BitVecRef(Z3_mk_bvlshr(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4375 
4376 
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.
def LShR(a, b)
Definition: z3py.py:4345

◆ main_ctx()

def z3py.main_ctx ( )
Return a reference to the global Z3 context.

>>> x = Real('x')
>>> x.ctx == main_ctx()
True
>>> c = Context()
>>> c == main_ctx()
False
>>> x2 = Real('x', c)
>>> x2.ctx == c
True
>>> eq(x, x2)
False

Definition at line 239 of file z3py.py.

239 def main_ctx():
240  """Return a reference to the global Z3 context.
241 
242  >>> x = Real('x')
243  >>> x.ctx == main_ctx()
244  True
245  >>> c = Context()
246  >>> c == main_ctx()
247  False
248  >>> x2 = Real('x', c)
249  >>> x2.ctx == c
250  True
251  >>> eq(x, x2)
252  False
253  """
254  global _main_ctx
255  if _main_ctx is None:
256  _main_ctx = Context()
257  return _main_ctx
258 
259 

Referenced by CharIsDigit(), help_simplify(), and simplify_param_descrs().

◆ Map()

def z3py.Map (   f,
args 
)
Return a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> a1 = Array('a1', IntSort(), IntSort())
>>> a2 = Array('a2', IntSort(), IntSort())
>>> b  = Map(f, a1, a2)
>>> b
Map(f, a1, a2)
>>> prove(b[0] == f(a1[0], a2[0]))
proved

Definition at line 4869 of file z3py.py.

4869 def Map(f, *args):
4870  """Return a Z3 map array expression.
4871 
4872  >>> f = Function('f', IntSort(), IntSort(), IntSort())
4873  >>> a1 = Array('a1', IntSort(), IntSort())
4874  >>> a2 = Array('a2', IntSort(), IntSort())
4875  >>> b = Map(f, a1, a2)
4876  >>> b
4877  Map(f, a1, a2)
4878  >>> prove(b[0] == f(a1[0], a2[0]))
4879  proved
4880  """
4881  args = _get_args(args)
4882  if z3_debug():
4883  _z3_assert(len(args) > 0, "At least one Z3 array expression expected")
4884  _z3_assert(is_func_decl(f), "First argument must be a Z3 function declaration")
4885  _z3_assert(all([is_array(a) for a in args]), "Z3 array expected expected")
4886  _z3_assert(len(args) == f.arity(), "Number of arguments mismatch")
4887  _args, sz = _to_ast_array(args)
4888  ctx = f.ctx
4889  return ArrayRef(Z3_mk_map(ctx.ref(), f.ast, sz, _args), ctx)
4890 
4891 
Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
Map f on the argument arrays.
def Map(f, *args)
Definition: z3py.py:4869

Referenced by Context.Context().

◆ mk_not()

def z3py.mk_not (   a)

Definition at line 1874 of file z3py.py.

1874 def mk_not(a):
1875  if is_not(a):
1876  return a.arg(0)
1877  else:
1878  return Not(a)
1879 
1880 
def mk_not(a)
Definition: z3py.py:1874

◆ Model()

def z3py.Model (   ctx = None)

Definition at line 6735 of file z3py.py.

6735 def Model(ctx=None):
6736  ctx = _get_ctx(ctx)
6737  return ModelRef(Z3_mk_model(ctx.ref()), ctx)
6738 
6739 
Z3_model Z3_API Z3_mk_model(Z3_context c)
Create a fresh model object. It has reference count 0.
def Model(ctx=None)
Definition: z3py.py:6735

Referenced by Goal.ConvertModel(), Goal.convertModel(), Optimize.getModel(), Solver.getModel(), and Optimize.set_on_model().

◆ MultiPattern()

def z3py.MultiPattern ( args)
Create a Z3 multi-pattern using the given expressions `*args`

>>> f = Function('f', IntSort(), IntSort())
>>> g = Function('g', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
>>> q
ForAll(x, f(x) != g(x))
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
MultiPattern(f(Var(0)), g(Var(0)))

Definition at line 1991 of file z3py.py.

1991 def MultiPattern(*args):
1992  """Create a Z3 multi-pattern using the given expressions `*args`
1993 
1994  >>> f = Function('f', IntSort(), IntSort())
1995  >>> g = Function('g', IntSort(), IntSort())
1996  >>> x = Int('x')
1997  >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
1998  >>> q
1999  ForAll(x, f(x) != g(x))
2000  >>> q.num_patterns()
2001  1
2002  >>> is_pattern(q.pattern(0))
2003  True
2004  >>> q.pattern(0)
2005  MultiPattern(f(Var(0)), g(Var(0)))
2006  """
2007  if z3_debug():
2008  _z3_assert(len(args) > 0, "At least one argument expected")
2009  _z3_assert(all([is_expr(a) for a in args]), "Z3 expressions expected")
2010  ctx = args[0].ctx
2011  args, sz = _to_ast_array(args)
2012  return PatternRef(Z3_mk_pattern(ctx.ref(), sz, args), ctx)
2013 
2014 
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])
Create a pattern for quantifier instantiation.
def MultiPattern(*args)
Definition: z3py.py:1991

◆ Not()

def z3py.Not (   a,
  ctx = None 
)
Create a Z3 not expression or probe.

>>> p = Bool('p')
>>> Not(Not(p))
Not(Not(p))
>>> simplify(Not(Not(p)))
p

Definition at line 1855 of file z3py.py.

1855 def Not(a, ctx=None):
1856  """Create a Z3 not expression or probe.
1857 
1858  >>> p = Bool('p')
1859  >>> Not(Not(p))
1860  Not(Not(p))
1861  >>> simplify(Not(Not(p)))
1862  p
1863  """
1864  ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
1865  if is_probe(a):
1866  # Not is also used to build probes
1867  return Probe(Z3_probe_not(ctx.ref(), a.probe), ctx)
1868  else:
1869  s = BoolSort(ctx)
1870  a = s.cast(a)
1871  return BoolRef(Z3_mk_not(ctx.ref(), a.as_ast()), ctx)
1872 
1873 
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

Referenced by BoolRef.__invert__(), fpNEQ(), mk_not(), and prove().

◆ on_clause_eh()

def z3py.on_clause_eh (   ctx,
  p,
  n,
  dep,
  clause 
)

Definition at line 11523 of file z3py.py.

11523 def on_clause_eh(ctx, p, n, dep, clause):
11524  onc = _my_hacky_class
11525  p = _to_expr_ref(to_Ast(p), onc.ctx)
11526  clause = AstVector(to_AstVectorObj(clause), onc.ctx)
11527  deps = [dep[i] for i in range(n)]
11528  onc.on_clause(p, deps, clause)
11529 
def on_clause_eh(ctx, p, n, dep, clause)
Definition: z3py.py:11523
def to_AstVectorObj(ptr)
Definition: z3py.py:11512
def to_Ast(ptr)
Definition: z3py.py:11502

Referenced by on_clause.on_clause().

◆ open_log()

def z3py.open_log (   fname)
Log interaction to a file. This function must be invoked immediately after init(). 

Definition at line 114 of file z3py.py.

114 def open_log(fname):
115  """Log interaction to a file. This function must be invoked immediately after init(). """
116  Z3_open_log(fname)
117 
118 
bool Z3_API Z3_open_log(Z3_string filename)
Log interaction to a file.
def open_log(fname)
Definition: z3py.py:114

◆ Option()

def z3py.Option (   re)
Create the regular expression that optionally accepts the argument.
>>> re = Option(Re("a"))
>>> print(simplify(InRe("a", re)))
True
>>> print(simplify(InRe("", re)))
True
>>> print(simplify(InRe("aa", re)))
False

Definition at line 11398 of file z3py.py.

11398 def Option(re):
11399  """Create the regular expression that optionally accepts the argument.
11400  >>> re = Option(Re("a"))
11401  >>> print(simplify(InRe("a", re)))
11402  True
11403  >>> print(simplify(InRe("", re)))
11404  True
11405  >>> print(simplify(InRe("aa", re)))
11406  False
11407  """
11408  if z3_debug():
11409  _z3_assert(is_expr(re), "expression expected")
11410  return ReRef(Z3_mk_re_option(re.ctx_ref(), re.as_ast()), re.ctx)
11411 
11412 
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)
Create the regular language [re].
def Option(re)
Definition: z3py.py:11398

◆ Or()

def z3py.Or ( args)
Create a Z3 or-expression or or-probe.

>>> p, q, r = Bools('p q r')
>>> Or(p, q, r)
Or(p, q, r)
>>> P = BoolVector('p', 5)
>>> Or(P)
Or(p__0, p__1, p__2, p__3, p__4)

Definition at line 1922 of file z3py.py.

1922 def Or(*args):
1923  """Create a Z3 or-expression or or-probe.
1924 
1925  >>> p, q, r = Bools('p q r')
1926  >>> Or(p, q, r)
1927  Or(p, q, r)
1928  >>> P = BoolVector('p', 5)
1929  >>> Or(P)
1930  Or(p__0, p__1, p__2, p__3, p__4)
1931  """
1932  last_arg = None
1933  if len(args) > 0:
1934  last_arg = args[len(args) - 1]
1935  if isinstance(last_arg, Context):
1936  ctx = args[len(args) - 1]
1937  args = args[:len(args) - 1]
1938  elif len(args) == 1 and isinstance(args[0], AstVector):
1939  ctx = args[0].ctx
1940  args = [a for a in args[0]]
1941  else:
1942  ctx = None
1943  args = _get_args(args)
1944  ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1945  if z3_debug():
1946  _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
1947  if _has_probe(args):
1948  return _probe_or(args, ctx)
1949  else:
1950  args = _coerce_expr_list(args, ctx)
1951  _args, sz = _to_ast_array(args)
1952  return BoolRef(Z3_mk_or(ctx.ref(), sz, _args), ctx)
1953 
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].
def Or(*args)
Definition: z3py.py:1922

Referenced by BoolRef.__or__(), and ApplyResult.as_expr().

◆ OrElse()

def z3py.OrElse ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).

>>> x = Int('x')
>>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
>>> # Tactic split-clause fails if there is no clause in the given goal.
>>> t(x == 0)
[[x == 0]]
>>> t(Or(x == 0, x == 1))
[[x == 0], [x == 1]]

Definition at line 8463 of file z3py.py.

8463 def OrElse(*ts, **ks):
8464  """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
8465 
8466  >>> x = Int('x')
8467  >>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
8468  >>> # Tactic split-clause fails if there is no clause in the given goal.
8469  >>> t(x == 0)
8470  [[x == 0]]
8471  >>> t(Or(x == 0, x == 1))
8472  [[x == 0], [x == 1]]
8473  """
8474  if z3_debug():
8475  _z3_assert(len(ts) >= 2, "At least two arguments expected")
8476  ctx = ks.get("ctx", None)
8477  num = len(ts)
8478  r = ts[0]
8479  for i in range(num - 1):
8480  r = _or_else(r, ts[i + 1], ctx)
8481  return r
8482 
8483 
def OrElse(*ts, **ks)
Definition: z3py.py:8463

◆ ParAndThen()

def z3py.ParAndThen (   t1,
  t2,
  ctx = None 
)
Alias for ParThen(t1, t2, ctx).

Definition at line 8519 of file z3py.py.

8519 def ParAndThen(t1, t2, ctx=None):
8520  """Alias for ParThen(t1, t2, ctx)."""
8521  return ParThen(t1, t2, ctx)
8522 
8523 
def ParThen(t1, t2, ctx=None)
Definition: z3py.py:8503
def ParAndThen(t1, t2, ctx=None)
Definition: z3py.py:8519

◆ ParOr()

def z3py.ParOr ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).

>>> x = Int('x')
>>> t = ParOr(Tactic('simplify'), Tactic('fail'))
>>> t(x + 1 == 2)
[[x == 1]]

Definition at line 8484 of file z3py.py.

8484 def ParOr(*ts, **ks):
8485  """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
8486 
8487  >>> x = Int('x')
8488  >>> t = ParOr(Tactic('simplify'), Tactic('fail'))
8489  >>> t(x + 1 == 2)
8490  [[x == 1]]
8491  """
8492  if z3_debug():
8493  _z3_assert(len(ts) >= 2, "At least two arguments expected")
8494  ctx = _get_ctx(ks.get("ctx", None))
8495  ts = [_to_tactic(t, ctx) for t in ts]
8496  sz = len(ts)
8497  _args = (TacticObj * sz)()
8498  for i in range(sz):
8499  _args[i] = ts[i].tactic
8500  return Tactic(Z3_tactic_par_or(ctx.ref(), sz, _args), ctx)
8501 
8502 
Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])
Return a tactic that applies the given tactics in parallel.
def ParOr(*ts, **ks)
Definition: z3py.py:8484

◆ parse_smt2_file()

def z3py.parse_smt2_file (   f,
  sorts = {},
  decls = {},
  ctx = None 
)
Parse a file in SMT 2.0 format using the given sorts and decls.

This function is similar to parse_smt2_string().

Definition at line 9399 of file z3py.py.

9399 def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
9400  """Parse a file in SMT 2.0 format using the given sorts and decls.
9401 
9402  This function is similar to parse_smt2_string().
9403  """
9404  ctx = _get_ctx(ctx)
9405  ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9406  dsz, dnames, ddecls = _dict2darray(decls, ctx)
9407  return AstVector(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9408 
9409 
Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file.
def parse_smt2_file(f, sorts={}, decls={}, ctx=None)
Definition: z3py.py:9399

◆ parse_smt2_string()

def z3py.parse_smt2_string (   s,
  sorts = {},
  decls = {},
  ctx = None 
)
Parse a string in SMT 2.0 format using the given sorts and decls.

The arguments sorts and decls are Python dictionaries used to initialize
the symbol table used for the SMT 2.0 parser.

>>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
[x > 0, x < 10]
>>> x, y = Ints('x y')
>>> f = Function('f', IntSort(), IntSort())
>>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
[x + f(y) > 0]
>>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
[a > 0]

Definition at line 9378 of file z3py.py.

9378 def parse_smt2_string(s, sorts={}, decls={}, ctx=None):
9379  """Parse a string in SMT 2.0 format using the given sorts and decls.
9380 
9381  The arguments sorts and decls are Python dictionaries used to initialize
9382  the symbol table used for the SMT 2.0 parser.
9383 
9384  >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
9385  [x > 0, x < 10]
9386  >>> x, y = Ints('x y')
9387  >>> f = Function('f', IntSort(), IntSort())
9388  >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
9389  [x + f(y) > 0]
9390  >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
9391  [a > 0]
9392  """
9393  ctx = _get_ctx(ctx)
9394  ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9395  dsz, dnames, ddecls = _dict2darray(decls, ctx)
9396  return AstVector(Z3_parse_smtlib2_string(ctx.ref(), s, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9397 
9398 
Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Parse the given string using the SMT-LIB2 parser.
def parse_smt2_string(s, sorts={}, decls={}, ctx=None)
Definition: z3py.py:9378

◆ ParThen()

def z3py.ParThen (   t1,
  t2,
  ctx = None 
)
Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
The subgoals are processed in parallel.

>>> x, y = Ints('x y')
>>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
>>> t(And(Or(x == 1, x == 2), y == x + 1))
[[x == 1, y == 2], [x == 2, y == 3]]

Definition at line 8503 of file z3py.py.

8503 def ParThen(t1, t2, ctx=None):
8504  """Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
8505  The subgoals are processed in parallel.
8506 
8507  >>> x, y = Ints('x y')
8508  >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
8509  >>> t(And(Or(x == 1, x == 2), y == x + 1))
8510  [[x == 1, y == 2], [x == 2, y == 3]]
8511  """
8512  t1 = _to_tactic(t1, ctx)
8513  t2 = _to_tactic(t2, ctx)
8514  if z3_debug():
8515  _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8516  return Tactic(Z3_tactic_par_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8517 
8518 
Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....

Referenced by ParAndThen().

◆ PartialOrder()

def z3py.PartialOrder (   a,
  index 
)

Definition at line 11479 of file z3py.py.

11479 def PartialOrder(a, index):
11480  return FuncDeclRef(Z3_mk_partial_order(a.ctx_ref(), a.ast, index), a.ctx)
11481 
11482 
Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)
create a partial ordering relation over signature a and index id.
def PartialOrder(a, index)
Definition: z3py.py:11479

◆ PbEq()

def z3py.PbEq (   args,
  k,
  ctx = None 
)
Create a Pseudo-Boolean equality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbEq(((a,1),(b,3),(c,2)), 3)

Definition at line 9155 of file z3py.py.

9155 def PbEq(args, k, ctx=None):
9156  """Create a Pseudo-Boolean equality k constraint.
9157 
9158  >>> a, b, c = Bools('a b c')
9159  >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
9160  """
9161  _z3_check_cint_overflow(k, "k")
9162  ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9163  return BoolRef(Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
9164 
9165 
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
def PbEq(args, k, ctx=None)
Definition: z3py.py:9155

◆ PbGe()

def z3py.PbGe (   args,
  k 
)
Create a Pseudo-Boolean inequality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbGe(((a,1),(b,3),(c,2)), 3)

Definition at line 9144 of file z3py.py.

9144 def PbGe(args, k):
9145  """Create a Pseudo-Boolean inequality k constraint.
9146 
9147  >>> a, b, c = Bools('a b c')
9148  >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
9149  """
9150  _z3_check_cint_overflow(k, "k")
9151  ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9152  return BoolRef(Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
9153 
9154 
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
def PbGe(args, k)
Definition: z3py.py:9144

◆ PbLe()

def z3py.PbLe (   args,
  k 
)
Create a Pseudo-Boolean inequality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbLe(((a,1),(b,3),(c,2)), 3)

Definition at line 9133 of file z3py.py.

9133 def PbLe(args, k):
9134  """Create a Pseudo-Boolean inequality k constraint.
9135 
9136  >>> a, b, c = Bools('a b c')
9137  >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
9138  """
9139  _z3_check_cint_overflow(k, "k")
9140  ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9141  return BoolRef(Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
9142 
9143 
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
def PbLe(args, k)
Definition: z3py.py:9133

◆ PiecewiseLinearOrder()

def z3py.PiecewiseLinearOrder (   a,
  index 
)

Definition at line 11491 of file z3py.py.

11491 def PiecewiseLinearOrder(a, index):
11492  return FuncDeclRef(Z3_mk_piecewise_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11493 
11494 
Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a piecewise linear ordering relation over signature a and index id.
def PiecewiseLinearOrder(a, index)
Definition: z3py.py:11491

◆ Plus()

def z3py.Plus (   re)
Create the regular expression accepting one or more repetitions of argument.
>>> re = Plus(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
False

Definition at line 11383 of file z3py.py.

11383 def Plus(re):
11384  """Create the regular expression accepting one or more repetitions of argument.
11385  >>> re = Plus(Re("a"))
11386  >>> print(simplify(InRe("aa", re)))
11387  True
11388  >>> print(simplify(InRe("ab", re)))
11389  False
11390  >>> print(simplify(InRe("", re)))
11391  False
11392  """
11393  if z3_debug():
11394  _z3_assert(is_expr(re), "expression expected")
11395  return ReRef(Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
11396 
11397 
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)
Create the regular language re+.
def Plus(re)
Definition: z3py.py:11383

◆ PrefixOf()

def z3py.PrefixOf (   a,
  b 
)
Check if 'a' is a prefix of 'b'
>>> s1 = PrefixOf("ab", "abc")
>>> simplify(s1)
True
>>> s2 = PrefixOf("bc", "abc")
>>> simplify(s2)
False

Definition at line 11128 of file z3py.py.

11128 def PrefixOf(a, b):
11129  """Check if 'a' is a prefix of 'b'
11130  >>> s1 = PrefixOf("ab", "abc")
11131  >>> simplify(s1)
11132  True
11133  >>> s2 = PrefixOf("bc", "abc")
11134  >>> simplify(s2)
11135  False
11136  """
11137  ctx = _get_ctx2(a, b)
11138  a = _coerce_seq(a, ctx)
11139  b = _coerce_seq(b, ctx)
11140  return BoolRef(Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11141 
11142 
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)
Check if prefix is a prefix of s.
def PrefixOf(a, b)
Definition: z3py.py:11128

◆ probe_description()

def z3py.probe_description (   name,
  ctx = None 
)
Return a short description for the probe named `name`.

>>> d = probe_description('memory')

Definition at line 8799 of file z3py.py.

8799 def probe_description(name, ctx=None):
8800  """Return a short description for the probe named `name`.
8801 
8802  >>> d = probe_description('memory')
8803  """
8804  ctx = _get_ctx(ctx)
8805  return Z3_probe_get_descr(ctx.ref(), name)
8806 
8807 
Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the probe with the given name.

Referenced by describe_probes().

◆ probes()

def z3py.probes (   ctx = None)
Return a list of all available probes in Z3.

>>> l = probes()
>>> l.count('memory') == 1
True

Definition at line 8788 of file z3py.py.

8788 def probes(ctx=None):
8789  """Return a list of all available probes in Z3.
8790 
8791  >>> l = probes()
8792  >>> l.count('memory') == 1
8793  True
8794  """
8795  ctx = _get_ctx(ctx)
8796  return [Z3_get_probe_name(ctx.ref(), i) for i in range(Z3_get_num_probes(ctx.ref()))]
8797 
8798 
unsigned Z3_API Z3_get_num_probes(Z3_context c)
Return the number of builtin probes available in Z3.
Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i)
Return the name of the i probe.

Referenced by describe_probes().

◆ Product()

def z3py.Product ( args)
Create the product of the Z3 expressions.

>>> a, b, c = Ints('a b c')
>>> Product(a, b, c)
a*b*c
>>> Product([a, b, c])
a*b*c
>>> A = IntVector('a', 5)
>>> Product(A)
a__0*a__1*a__2*a__3*a__4

Definition at line 9040 of file z3py.py.

9040 def Product(*args):
9041  """Create the product of the Z3 expressions.
9042 
9043  >>> a, b, c = Ints('a b c')
9044  >>> Product(a, b, c)
9045  a*b*c
9046  >>> Product([a, b, c])
9047  a*b*c
9048  >>> A = IntVector('a', 5)
9049  >>> Product(A)
9050  a__0*a__1*a__2*a__3*a__4
9051  """
9052  args = _get_args(args)
9053  if len(args) == 0:
9054  return 1
9055  ctx = _ctx_from_ast_arg_list(args)
9056  if ctx is None:
9057  return _reduce(lambda a, b: a * b, args, 1)
9058  args = _coerce_expr_list(args, ctx)
9059  if is_bv(args[0]):
9060  return _reduce(lambda a, b: a * b, args, 1)
9061  else:
9062  _args, sz = _to_ast_array(args)
9063  return ArithRef(Z3_mk_mul(ctx.ref(), sz, _args), ctx)
9064 
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
def Product(*args)
Definition: z3py.py:9040

◆ PropagateFunction()

def z3py.PropagateFunction (   name,
sig 
)
Create a function that gets tracked by user propagator.
   Every term headed by this function symbol is tracked.
   If a term is fixed and the fixed callback is registered a
   callback is invoked that the term headed by this function is fixed.

Definition at line 11677 of file z3py.py.

11677 def PropagateFunction(name, *sig):
11678  """Create a function that gets tracked by user propagator.
11679  Every term headed by this function symbol is tracked.
11680  If a term is fixed and the fixed callback is registered a
11681  callback is invoked that the term headed by this function is fixed.
11682  """
11683  sig = _get_args(sig)
11684  if z3_debug():
11685  _z3_assert(len(sig) > 0, "At least two arguments expected")
11686  arity = len(sig) - 1
11687  rng = sig[arity]
11688  if z3_debug():
11689  _z3_assert(is_sort(rng), "Z3 sort expected")
11690  dom = (Sort * arity)()
11691  for i in range(arity):
11692  if z3_debug():
11693  _z3_assert(is_sort(sig[i]), "Z3 sort expected")
11694  dom[i] = sig[i].ast
11695  ctx = rng.ctx
11696  return FuncDeclRef(Z3_solver_propagate_declare(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
11697 
11698 
11699 
Z3_func_decl Z3_API Z3_solver_propagate_declare(Z3_context c, Z3_symbol name, unsigned n, Z3_sort *domain, Z3_sort range)
def PropagateFunction(name, *sig)
Definition: z3py.py:11677

◆ prove()

def z3py.prove (   claim,
  show = False,
**  keywords 
)
Try to prove the given claim.

This is a simple function for creating demonstrations.  It tries to prove
`claim` by showing the negation is unsatisfiable.

>>> p, q = Bools('p q')
>>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
proved

Definition at line 9227 of file z3py.py.

9227 def prove(claim, show=False, **keywords):
9228  """Try to prove the given claim.
9229 
9230  This is a simple function for creating demonstrations. It tries to prove
9231  `claim` by showing the negation is unsatisfiable.
9232 
9233  >>> p, q = Bools('p q')
9234  >>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
9235  proved
9236  """
9237  if z3_debug():
9238  _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
9239  s = Solver()
9240  s.set(**keywords)
9241  s.add(Not(claim))
9242  if show:
9243  print(s)
9244  r = s.check()
9245  if r == unsat:
9246  print("proved")
9247  elif r == unknown:
9248  print("failed to prove")
9249  print(s.model())
9250  else:
9251  print("counterexample")
9252  print(s.model())
9253 
9254 
def prove(claim, show=False, **keywords)
Definition: z3py.py:9227

◆ Q()

def z3py.Q (   a,
  b,
  ctx = None 
)
Return a Z3 rational a/b.

If `ctx=None`, then the global context is used.

>>> Q(3,5)
3/5
>>> Q(3,5).sort()
Real

Definition at line 3281 of file z3py.py.

3281 def Q(a, b, ctx=None):
3282  """Return a Z3 rational a/b.
3283 
3284  If `ctx=None`, then the global context is used.
3285 
3286  >>> Q(3,5)
3287  3/5
3288  >>> Q(3,5).sort()
3289  Real
3290  """
3291  return simplify(RatVal(a, b, ctx=ctx))
3292 
3293 
def simplify(a, *arguments, **keywords)
Utils.
Definition: z3py.py:8904
def Q(a, b, ctx=None)
Definition: z3py.py:3281
def RatVal(a, b, ctx=None)
Definition: z3py.py:3265

◆ Range()

def z3py.Range (   lo,
  hi,
  ctx = None 
)
Create the range regular expression over two sequences of length 1
>>> range = Range("a","z")
>>> print(simplify(InRe("b", range)))
True
>>> print(simplify(InRe("bb", range)))
False

Definition at line 11448 of file z3py.py.

11448 def Range(lo, hi, ctx=None):
11449  """Create the range regular expression over two sequences of length 1
11450  >>> range = Range("a","z")
11451  >>> print(simplify(InRe("b", range)))
11452  True
11453  >>> print(simplify(InRe("bb", range)))
11454  False
11455  """
11456  lo = _coerce_seq(lo, ctx)
11457  hi = _coerce_seq(hi, ctx)
11458  if z3_debug():
11459  _z3_assert(is_expr(lo), "expression expected")
11460  _z3_assert(is_expr(hi), "expression expected")
11461  return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
11462 
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.
def Range(lo, hi, ctx=None)
Definition: z3py.py:11448

◆ RatVal()

def z3py.RatVal (   a,
  b,
  ctx = None 
)
Return a Z3 rational a/b.

If `ctx=None`, then the global context is used.

>>> RatVal(3,5)
3/5
>>> RatVal(3,5).sort()
Real

Definition at line 3265 of file z3py.py.

3265 def RatVal(a, b, ctx=None):
3266  """Return a Z3 rational a/b.
3267 
3268  If `ctx=None`, then the global context is used.
3269 
3270  >>> RatVal(3,5)
3271  3/5
3272  >>> RatVal(3,5).sort()
3273  Real
3274  """
3275  if z3_debug():
3276  _z3_assert(_is_int(a) or isinstance(a, str), "First argument cannot be converted into an integer")
3277  _z3_assert(_is_int(b) or isinstance(b, str), "Second argument cannot be converted into an integer")
3278  return simplify(RealVal(a, ctx) / RealVal(b, ctx))
3279 
3280 

Referenced by Q().

◆ Re()

def z3py.Re (   s,
  ctx = None 
)
The regular expression that accepts sequence 's'
>>> s1 = Re("ab")
>>> s2 = Re(StringVal("ab"))
>>> s3 = Re(Unit(BoolVal(True)))

Definition at line 11292 of file z3py.py.

11292 def Re(s, ctx=None):
11293  """The regular expression that accepts sequence 's'
11294  >>> s1 = Re("ab")
11295  >>> s2 = Re(StringVal("ab"))
11296  >>> s3 = Re(Unit(BoolVal(True)))
11297  """
11298  s = _coerce_seq(s, ctx)
11299  return ReRef(Z3_mk_seq_to_re(s.ctx_ref(), s.as_ast()), s.ctx)
11300 
11301 
11302 # Regular expressions
11303 
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)
Create a regular expression that accepts the sequence seq.
def Re(s, ctx=None)
Definition: z3py.py:11292

◆ Real()

def z3py.Real (   name,
  ctx = None 
)
Return a real constant named `name`. If `ctx=None`, then the global context is used.

>>> x = Real('x')
>>> is_real(x)
True
>>> is_real(x + 1)
True

Definition at line 3347 of file z3py.py.

3347 def Real(name, ctx=None):
3348  """Return a real constant named `name`. If `ctx=None`, then the global context is used.
3349 
3350  >>> x = Real('x')
3351  >>> is_real(x)
3352  True
3353  >>> is_real(x + 1)
3354  True
3355  """
3356  ctx = _get_ctx(ctx)
3357  return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), RealSort(ctx).ast), ctx)
3358 
3359 
def Real(name, ctx=None)
Definition: z3py.py:3347

Referenced by Reals(), and RealVector().

◆ Reals()

def z3py.Reals (   names,
  ctx = None 
)
Return a tuple of real constants.

>>> x, y, z = Reals('x y z')
>>> Sum(x, y, z)
x + y + z
>>> Sum(x, y, z).sort()
Real

Definition at line 3360 of file z3py.py.

3360 def Reals(names, ctx=None):
3361  """Return a tuple of real constants.
3362 
3363  >>> x, y, z = Reals('x y z')
3364  >>> Sum(x, y, z)
3365  x + y + z
3366  >>> Sum(x, y, z).sort()
3367  Real
3368  """
3369  ctx = _get_ctx(ctx)
3370  if isinstance(names, str):
3371  names = names.split(" ")
3372  return [Real(name, ctx) for name in names]
3373 
3374 
def Reals(names, ctx=None)
Definition: z3py.py:3360

◆ RealSort()

def z3py.RealSort (   ctx = None)
Return the real sort in the given context. If `ctx=None`, then the global context is used.

>>> RealSort()
Real
>>> x = Const('x', RealSort())
>>> is_real(x)
True
>>> is_int(x)
False
>>> x.sort() == RealSort()
True

Definition at line 3205 of file z3py.py.

3205 def RealSort(ctx=None):
3206  """Return the real sort in the given context. If `ctx=None`, then the global context is used.
3207 
3208  >>> RealSort()
3209  Real
3210  >>> x = Const('x', RealSort())
3211  >>> is_real(x)
3212  True
3213  >>> is_int(x)
3214  False
3215  >>> x.sort() == RealSort()
3216  True
3217  """
3218  ctx = _get_ctx(ctx)
3219  return ArithSortRef(Z3_mk_real_sort(ctx.ref()), ctx)
3220 
3221 
Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)
Create the real type.

Referenced by FreshReal(), Context.getRealSort(), Context.mkRealSort(), Real(), RealVal(), and RealVar().

◆ RealVal()

def z3py.RealVal (   val,
  ctx = None 
)
Return a Z3 real value.

`val` may be a Python int, long, float or string representing a number in decimal or rational notation.
If `ctx=None`, then the global context is used.

>>> RealVal(1)
1
>>> RealVal(1).sort()
Real
>>> RealVal("3/5")
3/5
>>> RealVal("1.5")
3/2

Definition at line 3246 of file z3py.py.

3246 def RealVal(val, ctx=None):
3247  """Return a Z3 real value.
3248 
3249  `val` may be a Python int, long, float or string representing a number in decimal or rational notation.
3250  If `ctx=None`, then the global context is used.
3251 
3252  >>> RealVal(1)
3253  1
3254  >>> RealVal(1).sort()
3255  Real
3256  >>> RealVal("3/5")
3257  3/5
3258  >>> RealVal("1.5")
3259  3/2
3260  """
3261  ctx = _get_ctx(ctx)
3262  return RatNumRef(Z3_mk_numeral(ctx.ref(), str(val), RealSort(ctx).ast), ctx)
3263 
3264 

Referenced by Cbrt(), deserialize(), AlgebraicNumRef.index(), RatVal(), and Sqrt().

◆ RealVar()

def z3py.RealVar (   idx,
  ctx = None 
)
Create a real free variable. Free variables are used to create quantified formulas.
They are also used to create polynomials.

>>> RealVar(0)
Var(0)

Definition at line 1503 of file z3py.py.

1503 def RealVar(idx, ctx=None):
1504  """
1505  Create a real free variable. Free variables are used to create quantified formulas.
1506  They are also used to create polynomials.
1507 
1508  >>> RealVar(0)
1509  Var(0)
1510  """
1511  return Var(idx, RealSort(ctx))
1512 
1513 
def Var(idx, s)
Definition: z3py.py:1488
def RealVar(idx, ctx=None)
Definition: z3py.py:1503

Referenced by RealVarVector().

◆ RealVarVector()

def z3py.RealVarVector (   n,
  ctx = None 
)
Create a list of Real free variables.
The variables have ids: 0, 1, ..., n-1

>>> x0, x1, x2, x3 = RealVarVector(4)
>>> x2
Var(2)

Definition at line 1514 of file z3py.py.

1514 def RealVarVector(n, ctx=None):
1515  """
1516  Create a list of Real free variables.
1517  The variables have ids: 0, 1, ..., n-1
1518 
1519  >>> x0, x1, x2, x3 = RealVarVector(4)
1520  >>> x2
1521  Var(2)
1522  """
1523  return [RealVar(i, ctx) for i in range(n)]
1524 
def RealVarVector(n, ctx=None)
Definition: z3py.py:1514

◆ RealVector()

def z3py.RealVector (   prefix,
  sz,
  ctx = None 
)
Return a list of real constants of size `sz`.

>>> X = RealVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2
>>> Sum(X).sort()
Real

Definition at line 3375 of file z3py.py.

3375 def RealVector(prefix, sz, ctx=None):
3376  """Return a list of real constants of size `sz`.
3377 
3378  >>> X = RealVector('x', 3)
3379  >>> X
3380  [x__0, x__1, x__2]
3381  >>> Sum(X)
3382  x__0 + x__1 + x__2
3383  >>> Sum(X).sort()
3384  Real
3385  """
3386  ctx = _get_ctx(ctx)
3387  return [Real("%s__%s" % (prefix, i), ctx) for i in range(sz)]
3388 
3389 
def RealVector(prefix, sz, ctx=None)
Definition: z3py.py:3375

◆ RecAddDefinition()

def z3py.RecAddDefinition (   f,
  args,
  body 
)
Set the body of a recursive function.
   Recursive definitions can be simplified if they are applied to ground
   arguments.
>>> ctx = Context()
>>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
>>> n = Int('n', ctx)
>>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
>>> simplify(fac(5))
120
>>> s = Solver(ctx=ctx)
>>> s.add(fac(n) < 3)
>>> s.check()
sat
>>> s.model().eval(fac(5))
120

Definition at line 945 of file z3py.py.

945 def RecAddDefinition(f, args, body):
946  """Set the body of a recursive function.
947  Recursive definitions can be simplified if they are applied to ground
948  arguments.
949  >>> ctx = Context()
950  >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
951  >>> n = Int('n', ctx)
952  >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
953  >>> simplify(fac(5))
954  120
955  >>> s = Solver(ctx=ctx)
956  >>> s.add(fac(n) < 3)
957  >>> s.check()
958  sat
959  >>> s.model().eval(fac(5))
960  120
961  """
962  if is_app(args):
963  args = [args]
964  ctx = body.ctx
965  args = _get_args(args)
966  n = len(args)
967  _args = (Ast * n)()
968  for i in range(n):
969  _args[i] = args[i].ast
970  Z3_add_rec_def(ctx.ref(), f.ast, n, _args, body.ast)
971 
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)
Define the body of a recursive function.
def RecAddDefinition(f, args, body)
Definition: z3py.py:945

◆ RecFunction()

def z3py.RecFunction (   name,
sig 
)
Create a new Z3 recursive with the given sorts.

Definition at line 927 of file z3py.py.

927 def RecFunction(name, *sig):
928  """Create a new Z3 recursive with the given sorts."""
929  sig = _get_args(sig)
930  if z3_debug():
931  _z3_assert(len(sig) > 0, "At least two arguments expected")
932  arity = len(sig) - 1
933  rng = sig[arity]
934  if z3_debug():
935  _z3_assert(is_sort(rng), "Z3 sort expected")
936  dom = (Sort * arity)()
937  for i in range(arity):
938  if z3_debug():
939  _z3_assert(is_sort(sig[i]), "Z3 sort expected")
940  dom[i] = sig[i].ast
941  ctx = rng.ctx
942  return FuncDeclRef(Z3_mk_rec_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
943 
944 
Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a recursive function.
def RecFunction(name, *sig)
Definition: z3py.py:927

◆ Repeat()

def z3py.Repeat (   t,
  max = 4294967295,
  ctx = None 
)
Return a tactic that keeps applying `t` until the goal is not modified anymore
or the maximum number of iterations `max` is reached.

>>> x, y = Ints('x y')
>>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
>>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
>>> r = t(c)
>>> for subgoal in r: print(subgoal)
[x == 0, y == 0, x > y]
[x == 0, y == 1, x > y]
[x == 1, y == 0, x > y]
[x == 1, y == 1, x > y]
>>> t = Then(t, Tactic('propagate-values'))
>>> t(c)
[[x == 1, y == 0]]

Definition at line 8552 of file z3py.py.

8552 def Repeat(t, max=4294967295, ctx=None):
8553  """Return a tactic that keeps applying `t` until the goal is not modified anymore
8554  or the maximum number of iterations `max` is reached.
8555 
8556  >>> x, y = Ints('x y')
8557  >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
8558  >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
8559  >>> r = t(c)
8560  >>> for subgoal in r: print(subgoal)
8561  [x == 0, y == 0, x > y]
8562  [x == 0, y == 1, x > y]
8563  [x == 1, y == 0, x > y]
8564  [x == 1, y == 1, x > y]
8565  >>> t = Then(t, Tactic('propagate-values'))
8566  >>> t(c)
8567  [[x == 1, y == 0]]
8568  """
8569  t = _to_tactic(t, ctx)
8570  return Tactic(Z3_tactic_repeat(t.ctx.ref(), t.tactic, max), t.ctx)
8571 
8572 
Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)
Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...
def Repeat(t, max=4294967295, ctx=None)
Definition: z3py.py:8552

◆ RepeatBitVec()

def z3py.RepeatBitVec (   n,
  a 
)
Return an expression representing `n` copies of `a`.

>>> x = BitVec('x', 8)
>>> n = RepeatBitVec(4, x)
>>> n
RepeatBitVec(4, x)
>>> n.size()
32
>>> v0 = BitVecVal(10, 4)
>>> print("%.x" % v0.as_long())
a
>>> v = simplify(RepeatBitVec(4, v0))
>>> v.size()
16
>>> print("%.x" % v.as_long())
aaaa

Definition at line 4467 of file z3py.py.

4467 def RepeatBitVec(n, a):
4468  """Return an expression representing `n` copies of `a`.
4469 
4470  >>> x = BitVec('x', 8)
4471  >>> n = RepeatBitVec(4, x)
4472  >>> n
4473  RepeatBitVec(4, x)
4474  >>> n.size()
4475  32
4476  >>> v0 = BitVecVal(10, 4)
4477  >>> print("%.x" % v0.as_long())
4478  a
4479  >>> v = simplify(RepeatBitVec(4, v0))
4480  >>> v.size()
4481  16
4482  >>> print("%.x" % v.as_long())
4483  aaaa
4484  """
4485  if z3_debug():
4486  _z3_assert(_is_int(n), "First argument must be an integer")
4487  _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4488  return BitVecRef(Z3_mk_repeat(a.ctx_ref(), n, a.as_ast()), a.ctx)
4489 
4490 
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.
def RepeatBitVec(n, a)
Definition: z3py.py:4467

◆ Replace()

def z3py.Replace (   s,
  src,
  dst 
)
Replace the first occurrence of 'src' by 'dst' in 's'
>>> r = Replace("aaa", "a", "b")
>>> simplify(r)
"baa"

Definition at line 11177 of file z3py.py.

11177 def Replace(s, src, dst):
11178  """Replace the first occurrence of 'src' by 'dst' in 's'
11179  >>> r = Replace("aaa", "a", "b")
11180  >>> simplify(r)
11181  "baa"
11182  """
11183  ctx = _get_ctx2(dst, s)
11184  if ctx is None and is_expr(src):
11185  ctx = src.ctx
11186  src = _coerce_seq(src, ctx)
11187  dst = _coerce_seq(dst, ctx)
11188  s = _coerce_seq(s, ctx)
11189  return SeqRef(Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
11190 
11191 
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.
def Replace(s, src, dst)
Definition: z3py.py:11177

◆ reset_params()

def z3py.reset_params ( )
Reset all global (or module) parameters.

Definition at line 295 of file z3py.py.

295 def reset_params():
296  """Reset all global (or module) parameters.
297  """
299 
300 
void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...
def reset_params()
Definition: z3py.py:295

◆ ReSort()

def z3py.ReSort (   s)

Definition at line 11311 of file z3py.py.

11311 def ReSort(s):
11312  if is_ast(s):
11313  return ReSortRef(Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
11314  if s is None or isinstance(s, Context):
11315  ctx = _get_ctx(s)
11316  return ReSortRef(Z3_mk_re_sort(ctx.ref(), Z3_mk_string_sort(ctx.ref())), s.ctx)
11317  raise Z3Exception("Regular expression sort constructor expects either a string or a context or no argument")
11318 
11319 
Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq)
Create a regular expression sort out of a sequence sort.
Z3_sort Z3_API Z3_mk_string_sort(Z3_context c)
Create a sort for unicode strings.
def ReSort(s)
Definition: z3py.py:11311

Referenced by Context.MkReSort().

◆ RNA()

def z3py.RNA (   ctx = None)

Definition at line 9814 of file z3py.py.

9814 def RNA(ctx=None):
9815  ctx = _get_ctx(ctx)
9816  return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9817 
9818 
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.

Referenced by get_default_rounding_mode().

◆ RNE()

def z3py.RNE (   ctx = None)

Definition at line 9804 of file z3py.py.

9804 def RNE(ctx=None):
9805  ctx = _get_ctx(ctx)
9806  return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9807 
9808 
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.

Referenced by get_default_rounding_mode().

◆ RotateLeft()

def z3py.RotateLeft (   a,
  b 
)
Return an expression representing `a` rotated to the left `b` times.

>>> a, b = BitVecs('a b', 16)
>>> RotateLeft(a, b)
RotateLeft(a, b)
>>> simplify(RotateLeft(a, 0))
a
>>> simplify(RotateLeft(a, 16))
a

Definition at line 4377 of file z3py.py.

4377 def RotateLeft(a, b):
4378  """Return an expression representing `a` rotated to the left `b` times.
4379 
4380  >>> a, b = BitVecs('a b', 16)
4381  >>> RotateLeft(a, b)
4382  RotateLeft(a, b)
4383  >>> simplify(RotateLeft(a, 0))
4384  a
4385  >>> simplify(RotateLeft(a, 16))
4386  a
4387  """
4388  _check_bv_args(a, b)
4389  a, b = _coerce_exprs(a, b)
4390  return BitVecRef(Z3_mk_ext_rotate_left(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4391 
4392 
Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the left t2 times.
def RotateLeft(a, b)
Definition: z3py.py:4377

◆ RotateRight()

def z3py.RotateRight (   a,
  b 
)
Return an expression representing `a` rotated to the right `b` times.

>>> a, b = BitVecs('a b', 16)
>>> RotateRight(a, b)
RotateRight(a, b)
>>> simplify(RotateRight(a, 0))
a
>>> simplify(RotateRight(a, 16))
a

Definition at line 4393 of file z3py.py.

4393 def RotateRight(a, b):
4394  """Return an expression representing `a` rotated to the right `b` times.
4395 
4396  >>> a, b = BitVecs('a b', 16)
4397  >>> RotateRight(a, b)
4398  RotateRight(a, b)
4399  >>> simplify(RotateRight(a, 0))
4400  a
4401  >>> simplify(RotateRight(a, 16))
4402  a
4403  """
4404  _check_bv_args(a, b)
4405  a, b = _coerce_exprs(a, b)
4406  return BitVecRef(Z3_mk_ext_rotate_right(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4407 
4408 
Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the right t2 times.
def RotateRight(a, b)
Definition: z3py.py:4393

◆ RoundNearestTiesToAway()

def z3py.RoundNearestTiesToAway (   ctx = None)

Definition at line 9809 of file z3py.py.

9809 def RoundNearestTiesToAway(ctx=None):
9810  ctx = _get_ctx(ctx)
9811  return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9812 
9813 
def RoundNearestTiesToAway(ctx=None)
Definition: z3py.py:9809

◆ RoundNearestTiesToEven()

def z3py.RoundNearestTiesToEven (   ctx = None)

Definition at line 9799 of file z3py.py.

9799 def RoundNearestTiesToEven(ctx=None):
9800  ctx = _get_ctx(ctx)
9801  return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9802 
9803 
def RoundNearestTiesToEven(ctx=None)
Definition: z3py.py:9799

◆ RoundTowardNegative()

def z3py.RoundTowardNegative (   ctx = None)

Definition at line 9829 of file z3py.py.

9829 def RoundTowardNegative(ctx=None):
9830  ctx = _get_ctx(ctx)
9831  return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9832 
9833 
Z3_ast Z3_API Z3_mk_fpa_round_toward_negative(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.
def RoundTowardNegative(ctx=None)
Definition: z3py.py:9829

◆ RoundTowardPositive()

def z3py.RoundTowardPositive (   ctx = None)

Definition at line 9819 of file z3py.py.

9819 def RoundTowardPositive(ctx=None):
9820  ctx = _get_ctx(ctx)
9821  return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9822 
9823 
Z3_ast Z3_API Z3_mk_fpa_round_toward_positive(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.
def RoundTowardPositive(ctx=None)
Definition: z3py.py:9819

◆ RoundTowardZero()

def z3py.RoundTowardZero (   ctx = None)

Definition at line 9839 of file z3py.py.

9839 def RoundTowardZero(ctx=None):
9840  ctx = _get_ctx(ctx)
9841  return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
9842 
9843 
Z3_ast Z3_API Z3_mk_fpa_round_toward_zero(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.
def RoundTowardZero(ctx=None)
Definition: z3py.py:9839

◆ RTN()

def z3py.RTN (   ctx = None)

Definition at line 9834 of file z3py.py.

9834 def RTN(ctx=None):
9835  ctx = _get_ctx(ctx)
9836  return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9837 
9838 

Referenced by get_default_rounding_mode().

◆ RTP()

def z3py.RTP (   ctx = None)

Definition at line 9824 of file z3py.py.

9824 def RTP(ctx=None):
9825  ctx = _get_ctx(ctx)
9826  return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9827 
9828 

Referenced by get_default_rounding_mode().

◆ RTZ()

def z3py.RTZ (   ctx = None)

Definition at line 9844 of file z3py.py.

9844 def RTZ(ctx=None):
9845  ctx = _get_ctx(ctx)
9846  return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
9847 
9848 

Referenced by get_default_rounding_mode().

◆ Select()

def z3py.Select (   a,
args 
)
Return a Z3 select array expression.

>>> a = Array('a', IntSort(), IntSort())
>>> i = Int('i')
>>> Select(a, i)
a[i]
>>> eq(Select(a, i), a[i])
True

Definition at line 4853 of file z3py.py.

4853 def Select(a, *args):
4854  """Return a Z3 select array expression.
4855 
4856  >>> a = Array('a', IntSort(), IntSort())
4857  >>> i = Int('i')
4858  >>> Select(a, i)
4859  a[i]
4860  >>> eq(Select(a, i), a[i])
4861  True
4862  """
4863  args = _get_args(args)
4864  if z3_debug():
4865  _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4866  return a[args]
4867 
4868 
def Select(a, *args)
Definition: z3py.py:4853

◆ SeqFoldLeft()

def z3py.SeqFoldLeft (   f,
  a,
  s 
)

Definition at line 11244 of file z3py.py.

11244 def SeqFoldLeft(f, a, s):
11245  ctx = _get_ctx2(f, s)
11246  s = _coerce_seq(s, ctx)
11247  a = _py2expr(a)
11248  return _to_expr_ref(Z3_mk_seq_foldl(s.ctx_ref(), f.as_ast(), a.as_ast(), s.as_ast()), ctx)
11249 
Z3_ast Z3_API Z3_mk_seq_foldl(Z3_context c, Z3_ast f, Z3_ast a, Z3_ast s)
Create a fold of the function f over the sequence s with accumulator a.
def SeqFoldLeft(f, a, s)
Definition: z3py.py:11244

◆ SeqFoldLeftI()

def z3py.SeqFoldLeftI (   f,
  i,
  a,
  s 
)

Definition at line 11250 of file z3py.py.

11250 def SeqFoldLeftI(f, i, a, s):
11251  ctx = _get_ctx2(f, s)
11252  s = _coerce_seq(s, ctx)
11253  a = _py2expr(a)
11254  i = _py2epxr(i)
11255  return _to_expr_ref(Z3_mk_seq_foldli(s.ctx_ref(), f.as_ast(), i.as_ast(), a.as_ast(), s.as_ast()), ctx)
11256 
Z3_ast Z3_API Z3_mk_seq_foldli(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast a, Z3_ast s)
Create a fold with index tracking of the function f over the sequence s with accumulator a starting a...
def SeqFoldLeftI(f, i, a, s)
Definition: z3py.py:11250

◆ SeqMap()

def z3py.SeqMap (   f,
  s 
)
Map function 'f' over sequence 's'

Definition at line 11230 of file z3py.py.

11230 def SeqMap(f, s):
11231  """Map function 'f' over sequence 's'"""
11232  ctx = _get_ctx2(f, s)
11233  s = _coerce_seq(s, ctx)
11234  return _to_expr_ref(Z3_mk_seq_map(s.ctx_ref(), f.as_ast(), s.as_ast()), ctx)
11235 
Z3_ast Z3_API Z3_mk_seq_map(Z3_context c, Z3_ast f, Z3_ast s)
Create a map of the function f over the sequence s.
def SeqMap(f, s)
Definition: z3py.py:11230

◆ SeqMapI()

def z3py.SeqMapI (   f,
  i,
  s 
)
Map function 'f' over sequence 's' at index 'i'

Definition at line 11236 of file z3py.py.

11236 def SeqMapI(f, i, s):
11237  """Map function 'f' over sequence 's' at index 'i'"""
11238  ctx = _get_ctx(f, s)
11239  s = _coerce_seq(s, ctx)
11240  if not is_expr(i):
11241  i = _py2expr(i)
11242  return _to_expr_ref(Z3_mk_seq_mapi(s.ctx_ref(), f.as_ast(), i.as_ast(), s.as_ast()), ctx)
11243 
Z3_ast Z3_API Z3_mk_seq_mapi(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast s)
Create a map of the function f over the sequence s starting at index i.
def SeqMapI(f, i, s)
Definition: z3py.py:11236

◆ SeqSort()

def z3py.SeqSort (   s)
Create a sequence sort over elements provided in the argument
>>> s = SeqSort(IntSort())
>>> s == Unit(IntVal(1)).sort()
True

Definition at line 10898 of file z3py.py.

10898 def SeqSort(s):
10899  """Create a sequence sort over elements provided in the argument
10900  >>> s = SeqSort(IntSort())
10901  >>> s == Unit(IntVal(1)).sort()
10902  True
10903  """
10904  return SeqSortRef(Z3_mk_seq_sort(s.ctx_ref(), s.ast), s.ctx)
10905 
10906 
Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s)
Create a sequence sort out of the sort for the elements.
def SeqSort(s)
Definition: z3py.py:10898

Referenced by Context.MkSeqSort().

◆ set_default_fp_sort()

def z3py.set_default_fp_sort (   ebits,
  sbits,
  ctx = None 
)

Definition at line 9460 of file z3py.py.

9460 def set_default_fp_sort(ebits, sbits, ctx=None):
9461  global _dflt_fpsort_ebits
9462  global _dflt_fpsort_sbits
9463  _dflt_fpsort_ebits = ebits
9464  _dflt_fpsort_sbits = sbits
9465 
9466 
def set_default_fp_sort(ebits, sbits, ctx=None)
Definition: z3py.py:9460

◆ set_default_rounding_mode()

def z3py.set_default_rounding_mode (   rm,
  ctx = None 
)

Definition at line 9447 of file z3py.py.

9447 def set_default_rounding_mode(rm, ctx=None):
9448  global _dflt_rounding_mode
9449  if is_fprm_value(rm):
9450  _dflt_rounding_mode = rm.decl().kind()
9451  else:
9452  _z3_assert(_dflt_rounding_mode in _ROUNDING_MODES, "illegal rounding mode")
9453  _dflt_rounding_mode = rm
9454 
9455 
def set_default_rounding_mode(rm, ctx=None)
Definition: z3py.py:9447

◆ set_option()

def z3py.set_option ( args,
**  kws 
)
Alias for 'set_param' for backward compatibility.

Definition at line 301 of file z3py.py.

301 def set_option(*args, **kws):
302  """Alias for 'set_param' for backward compatibility.
303  """
304  return set_param(*args, **kws)
305 
306 
def set_option(*args, **kws)
Definition: z3py.py:301
def set_param(*args, **kws)
Definition: z3py.py:271

◆ set_param()

def z3py.set_param ( args,
**  kws 
)
Set Z3 global (or module) parameters.

>>> set_param(precision=10)

Definition at line 271 of file z3py.py.

271 def set_param(*args, **kws):
272  """Set Z3 global (or module) parameters.
273 
274  >>> set_param(precision=10)
275  """
276  if z3_debug():
277  _z3_assert(len(args) % 2 == 0, "Argument list must have an even number of elements.")
278  new_kws = {}
279  for k in kws:
280  v = kws[k]
281  if not set_pp_option(k, v):
282  new_kws[k] = v
283  for key in new_kws:
284  value = new_kws[key]
285  Z3_global_param_set(str(key).upper(), _to_param_value(value))
286  prev = None
287  for a in args:
288  if prev is None:
289  prev = a
290  else:
291  Z3_global_param_set(str(prev), _to_param_value(a))
292  prev = None
293 
294 
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.

Referenced by set_option().

◆ SetAdd()

def z3py.SetAdd (   s,
  e 
)
 Add element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetAdd(a, 1)
Store(a, 1, True)

Definition at line 5012 of file z3py.py.

5012 def SetAdd(s, e):
5013  """ Add element e to set s
5014  >>> a = Const('a', SetSort(IntSort()))
5015  >>> SetAdd(a, 1)
5016  Store(a, 1, True)
5017  """
5018  ctx = _ctx_from_ast_arg_list([s, e])
5019  e = _py2expr(e, ctx)
5020  return ArrayRef(Z3_mk_set_add(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
5021 
5022 
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.
def SetAdd(s, e)
Definition: z3py.py:5012

◆ SetComplement()

def z3py.SetComplement (   s)
 The complement of set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetComplement(a)
complement(a)

Definition at line 5034 of file z3py.py.

5034 def SetComplement(s):
5035  """ The complement of set s
5036  >>> a = Const('a', SetSort(IntSort()))
5037  >>> SetComplement(a)
5038  complement(a)
5039  """
5040  ctx = s.ctx
5041  return ArrayRef(Z3_mk_set_complement(ctx.ref(), s.as_ast()), ctx)
5042 
5043 
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.
def SetComplement(s)
Definition: z3py.py:5034

◆ SetDel()

def z3py.SetDel (   s,
  e 
)
 Remove element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetDel(a, 1)
Store(a, 1, False)

Definition at line 5023 of file z3py.py.

5023 def SetDel(s, e):
5024  """ Remove element e to set s
5025  >>> a = Const('a', SetSort(IntSort()))
5026  >>> SetDel(a, 1)
5027  Store(a, 1, False)
5028  """
5029  ctx = _ctx_from_ast_arg_list([s, e])
5030  e = _py2expr(e, ctx)
5031  return ArrayRef(Z3_mk_set_del(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
5032 
5033 
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.
def SetDel(s, e)
Definition: z3py.py:5023

◆ SetDifference()

def z3py.SetDifference (   a,
  b 
)
 The set difference of a and b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetDifference(a, b)
setminus(a, b)

Definition at line 5044 of file z3py.py.

5044 def SetDifference(a, b):
5045  """ The set difference of a and b
5046  >>> a = Const('a', SetSort(IntSort()))
5047  >>> b = Const('b', SetSort(IntSort()))
5048  >>> SetDifference(a, b)
5049  setminus(a, b)
5050  """
5051  ctx = _ctx_from_ast_arg_list([a, b])
5052  return ArrayRef(Z3_mk_set_difference(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
5053 
5054 
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.
def SetDifference(a, b)
Definition: z3py.py:5044

◆ SetHasSize()

def z3py.SetHasSize (   a,
  k 
)

Definition at line 4926 of file z3py.py.

4926 def SetHasSize(a, k):
4927  ctx = a.ctx
4928  k = _py2expr(k, ctx)
4929  return _to_expr_ref(Z3_mk_set_has_size(ctx.ref(), a.as_ast(), k.as_ast()), ctx)
4930 
4931 
Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k)
Create predicate that holds if Boolean array set has k elements set to true.
def SetHasSize(a, k)
Definition: z3py.py:4926

◆ SetIntersect()

def z3py.SetIntersect ( args)
 Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetIntersect(a, b)
intersection(a, b)

Definition at line 4999 of file z3py.py.

4999 def SetIntersect(*args):
5000  """ Take the union of sets
5001  >>> a = Const('a', SetSort(IntSort()))
5002  >>> b = Const('b', SetSort(IntSort()))
5003  >>> SetIntersect(a, b)
5004  intersection(a, b)
5005  """
5006  args = _get_args(args)
5007  ctx = _ctx_from_ast_arg_list(args)
5008  _args, sz = _to_ast_array(args)
5009  return ArrayRef(Z3_mk_set_intersect(ctx.ref(), sz, _args), ctx)
5010 
5011 
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.
def SetIntersect(*args)
Definition: z3py.py:4999

◆ SetSort()

def z3py.SetSort (   s)

Sets.

 Create a set sort over element sort s

Definition at line 4963 of file z3py.py.

4963 def SetSort(s):
4964  """ Create a set sort over element sort s"""
4965  return ArraySort(s, BoolSort())
4966 
4967 
def SetSort(s)
Sets.
Definition: z3py.py:4963

Referenced by Context.MkSetSort().

◆ SetUnion()

def z3py.SetUnion ( args)
 Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetUnion(a, b)
union(a, b)

Definition at line 4986 of file z3py.py.

4986 def SetUnion(*args):
4987  """ Take the union of sets
4988  >>> a = Const('a', SetSort(IntSort()))
4989  >>> b = Const('b', SetSort(IntSort()))
4990  >>> SetUnion(a, b)
4991  union(a, b)
4992  """
4993  args = _get_args(args)
4994  ctx = _ctx_from_ast_arg_list(args)
4995  _args, sz = _to_ast_array(args)
4996  return ArrayRef(Z3_mk_set_union(ctx.ref(), sz, _args), ctx)
4997 
4998 
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.
def SetUnion(*args)
Definition: z3py.py:4986

◆ SignExt()

def z3py.SignExt (   n,
  a 
)
Return a bit-vector expression with `n` extra sign-bits.

>>> x = BitVec('x', 16)
>>> n = SignExt(8, x)
>>> n.size()
24
>>> n
SignExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v  = simplify(SignExt(6, v0))
>>> v
254
>>> v.size()
8
>>> print("%.x" % v.as_long())
fe

Definition at line 4409 of file z3py.py.

4409 def SignExt(n, a):
4410  """Return a bit-vector expression with `n` extra sign-bits.
4411 
4412  >>> x = BitVec('x', 16)
4413  >>> n = SignExt(8, x)
4414  >>> n.size()
4415  24
4416  >>> n
4417  SignExt(8, x)
4418  >>> n.sort()
4419  BitVec(24)
4420  >>> v0 = BitVecVal(2, 2)
4421  >>> v0
4422  2
4423  >>> v0.size()
4424  2
4425  >>> v = simplify(SignExt(6, v0))
4426  >>> v
4427  254
4428  >>> v.size()
4429  8
4430  >>> print("%.x" % v.as_long())
4431  fe
4432  """
4433  if z3_debug():
4434  _z3_assert(_is_int(n), "First argument must be an integer")
4435  _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4436  return BitVecRef(Z3_mk_sign_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
4437 
4438 
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...
def SignExt(n, a)
Definition: z3py.py:4409

◆ SimpleSolver()

def z3py.SimpleSolver (   ctx = None,
  logFile = None 
)
Return a simple general purpose solver with limited amount of preprocessing.

>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat

Definition at line 7486 of file z3py.py.

7486 def SimpleSolver(ctx=None, logFile=None):
7487  """Return a simple general purpose solver with limited amount of preprocessing.
7488 
7489  >>> s = SimpleSolver()
7490  >>> x = Int('x')
7491  >>> s.add(x > 0)
7492  >>> s.check()
7493  sat
7494  """
7495  ctx = _get_ctx(ctx)
7496  return Solver(Z3_mk_simple_solver(ctx.ref()), ctx, logFile)
7497 
Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c)
Create a new incremental solver.
def SimpleSolver(ctx=None, logFile=None)
Definition: z3py.py:7486

◆ simplify()

def z3py.simplify (   a,
arguments,
**  keywords 
)

Utils.

Simplify the expression `a` using the given options.

This function has many options. Use `help_simplify` to obtain the complete list.

>>> x = Int('x')
>>> y = Int('y')
>>> simplify(x + 1 + y + x + 1)
2 + 2*x + y
>>> simplify((x + 1)*(y + 1), som=True)
1 + x + y + x*y
>>> simplify(Distinct(x, y, 1), blast_distinct=True)
And(Not(x == y), Not(x == 1), Not(y == 1))
>>> simplify(And(x == 0, y == 1), elim_and=True)
Not(Or(Not(x == 0), Not(y == 1)))

Definition at line 8904 of file z3py.py.

8904 def simplify(a, *arguments, **keywords):
8905  """Simplify the expression `a` using the given options.
8906 
8907  This function has many options. Use `help_simplify` to obtain the complete list.
8908 
8909  >>> x = Int('x')
8910  >>> y = Int('y')
8911  >>> simplify(x + 1 + y + x + 1)
8912  2 + 2*x + y
8913  >>> simplify((x + 1)*(y + 1), som=True)
8914  1 + x + y + x*y
8915  >>> simplify(Distinct(x, y, 1), blast_distinct=True)
8916  And(Not(x == y), Not(x == 1), Not(y == 1))
8917  >>> simplify(And(x == 0, y == 1), elim_and=True)
8918  Not(Or(Not(x == 0), Not(y == 1)))
8919  """
8920  if z3_debug():
8921  _z3_assert(is_expr(a), "Z3 expression expected")
8922  if len(arguments) > 0 or len(keywords) > 0:
8923  p = args2params(arguments, keywords, a.ctx)
8924  return _to_expr_ref(Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
8925  else:
8926  return _to_expr_ref(Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
8927 
8928 
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.

Referenced by Q(), RatVal(), and Expr< R extends Sort >.simplify().

◆ simplify_param_descrs()

def z3py.simplify_param_descrs ( )
Return the set of parameter descriptions for Z3 `simplify` procedure.

Definition at line 8934 of file z3py.py.

8934 def simplify_param_descrs():
8935  """Return the set of parameter descriptions for Z3 `simplify` procedure."""
8936  return ParamDescrsRef(Z3_simplify_get_param_descrs(main_ctx().ref()), main_ctx())
8937 
8938 
Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c)
Return the parameter description set for the simplify procedure.
def simplify_param_descrs()
Definition: z3py.py:8934

◆ solve()

def z3py.solve ( args,
**  keywords 
)
Solve the constraints `*args`.

This is a simple function for creating demonstrations. It creates a solver,
configure it using the options in `keywords`, adds the constraints
in `args`, and invokes check.

>>> a = Int('a')
>>> solve(a > 0, a < 2)
[a = 1]

Definition at line 9166 of file z3py.py.

9166 def solve(*args, **keywords):
9167  """Solve the constraints `*args`.
9168 
9169  This is a simple function for creating demonstrations. It creates a solver,
9170  configure it using the options in `keywords`, adds the constraints
9171  in `args`, and invokes check.
9172 
9173  >>> a = Int('a')
9174  >>> solve(a > 0, a < 2)
9175  [a = 1]
9176  """
9177  show = keywords.pop("show", False)
9178  s = Solver()
9179  s.set(**keywords)
9180  s.add(*args)
9181  if show:
9182  print(s)
9183  r = s.check()
9184  if r == unsat:
9185  print("no solution")
9186  elif r == unknown:
9187  print("failed to solve")
9188  try:
9189  print(s.model())
9190  except Z3Exception:
9191  return
9192  else:
9193  print(s.model())
9194 
9195 
def solve(*args, **keywords)
Definition: z3py.py:9166

◆ solve_using()

def z3py.solve_using (   s,
args,
**  keywords 
)
Solve the constraints `*args` using solver `s`.

This is a simple function for creating demonstrations. It is similar to `solve`,
but it uses the given solver `s`.
It configures solver `s` using the options in `keywords`, adds the constraints
in `args`, and invokes check.

Definition at line 9196 of file z3py.py.

9196 def solve_using(s, *args, **keywords):
9197  """Solve the constraints `*args` using solver `s`.
9198 
9199  This is a simple function for creating demonstrations. It is similar to `solve`,
9200  but it uses the given solver `s`.
9201  It configures solver `s` using the options in `keywords`, adds the constraints
9202  in `args`, and invokes check.
9203  """
9204  show = keywords.pop("show", False)
9205  if z3_debug():
9206  _z3_assert(isinstance(s, Solver), "Solver object expected")
9207  s.set(**keywords)
9208  s.add(*args)
9209  if show:
9210  print("Problem:")
9211  print(s)
9212  r = s.check()
9213  if r == unsat:
9214  print("no solution")
9215  elif r == unknown:
9216  print("failed to solve")
9217  try:
9218  print(s.model())
9219  except Z3Exception:
9220  return
9221  else:
9222  if show:
9223  print("Solution:")
9224  print(s.model())
9225 
9226 
def solve_using(s, *args, **keywords)
Definition: z3py.py:9196

◆ SolverFor()

def z3py.SolverFor (   logic,
  ctx = None,
  logFile = None 
)
Create a solver customized for the given logic.

The parameter `logic` is a string. It should be contains
the name of a SMT-LIB logic.
See https://www.smtlib.org/ for the name of all available logics.

>>> s = SolverFor("QF_LIA")
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> s.check()
sat
>>> s.model()
[x = 1]

Definition at line 7465 of file z3py.py.

7465 def SolverFor(logic, ctx=None, logFile=None):
7466  """Create a solver customized for the given logic.
7467 
7468  The parameter `logic` is a string. It should be contains
7469  the name of a SMT-LIB logic.
7470  See https://www.smtlib.org/ for the name of all available logics.
7471 
7472  >>> s = SolverFor("QF_LIA")
7473  >>> x = Int('x')
7474  >>> s.add(x > 0)
7475  >>> s.add(x < 2)
7476  >>> s.check()
7477  sat
7478  >>> s.model()
7479  [x = 1]
7480  """
7481  ctx = _get_ctx(ctx)
7482  logic = to_symbol(logic)
7483  return Solver(Z3_mk_solver_for_logic(ctx.ref(), logic), ctx, logFile)
7484 
7485 
Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic)
Create a new solver customized for the given logic. It behaves like Z3_mk_solver if the logic is unkn...
def SolverFor(logic, ctx=None, logFile=None)
Definition: z3py.py:7465

◆ Sqrt()

def z3py.Sqrt (   a,
  ctx = None 
)
 Return a Z3 expression which represents the square root of a.

>>> x = Real('x')
>>> Sqrt(x)
x**(1/2)

Definition at line 3457 of file z3py.py.

3457 def Sqrt(a, ctx=None):
3458  """ Return a Z3 expression which represents the square root of a.
3459 
3460  >>> x = Real('x')
3461  >>> Sqrt(x)
3462  x**(1/2)
3463  """
3464  if not is_expr(a):
3465  ctx = _get_ctx(ctx)
3466  a = RealVal(a, ctx)
3467  return a ** "1/2"
3468 
3469 
def Sqrt(a, ctx=None)
Definition: z3py.py:3457

◆ SRem()

def z3py.SRem (   a,
  b 
)
Create the Z3 expression signed remainder.

Use the operator % for signed modulus, and URem() for unsigned remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> SRem(x, y)
SRem(x, y)
>>> SRem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'

Definition at line 4324 of file z3py.py.

4324 def SRem(a, b):
4325  """Create the Z3 expression signed remainder.
4326 
4327  Use the operator % for signed modulus, and URem() for unsigned remainder.
4328 
4329  >>> x = BitVec('x', 32)
4330  >>> y = BitVec('y', 32)
4331  >>> SRem(x, y)
4332  SRem(x, y)
4333  >>> SRem(x, y).sort()
4334  BitVec(32)
4335  >>> (x % y).sexpr()
4336  '(bvsmod x y)'
4337  >>> SRem(x, y).sexpr()
4338  '(bvsrem x y)'
4339  """
4340  _check_bv_args(a, b)
4341  a, b = _coerce_exprs(a, b)
4342  return BitVecRef(Z3_mk_bvsrem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4343 
4344 
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).
def SRem(a, b)
Definition: z3py.py:4324

◆ Star()

def z3py.Star (   re)
Create the regular expression accepting zero or more repetitions of argument.
>>> re = Star(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
True

Definition at line 11418 of file z3py.py.

11418 def Star(re):
11419  """Create the regular expression accepting zero or more repetitions of argument.
11420  >>> re = Star(Re("a"))
11421  >>> print(simplify(InRe("aa", re)))
11422  True
11423  >>> print(simplify(InRe("ab", re)))
11424  False
11425  >>> print(simplify(InRe("", re)))
11426  True
11427  """
11428  if z3_debug():
11429  _z3_assert(is_expr(re), "expression expected")
11430  return ReRef(Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
11431 
11432 
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)
Create the regular language re*.
def Star(re)
Definition: z3py.py:11418

◆ Store()

def z3py.Store (   a,
args 
)
Return a Z3 store array expression.

>>> a    = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s    = Store(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j    = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved

Definition at line 4836 of file z3py.py.

4836 def Store(a, *args):
4837  """Return a Z3 store array expression.
4838 
4839  >>> a = Array('a', IntSort(), IntSort())
4840  >>> i, v = Ints('i v')
4841  >>> s = Store(a, i, v)
4842  >>> s.sort()
4843  Array(Int, Int)
4844  >>> prove(s[i] == v)
4845  proved
4846  >>> j = Int('j')
4847  >>> prove(Implies(i != j, s[j] == a[j]))
4848  proved
4849  """
4850  return Update(a, args)
4851 
4852 
def Update(a, *args)
Definition: z3py.py:4793
def Store(a, *args)
Definition: z3py.py:4836

Referenced by ModelRef.get_interp().

◆ StrFromCode()

def z3py.StrFromCode (   c)
Convert code to a string

Definition at line 11286 of file z3py.py.

11286 def StrFromCode(c):
11287  """Convert code to a string"""
11288  if not is_expr(c):
11289  c = _py2expr(c)
11290  return SeqRef(Z3_mk_string_from_code(c.ctx_ref(), c.as_ast()), c.ctx)
11291 
Z3_ast Z3_API Z3_mk_string_from_code(Z3_context c, Z3_ast a)
Code to string conversion.
def StrFromCode(c)
Definition: z3py.py:11286

◆ String()

def z3py.String (   name,
  ctx = None 
)
Return a string constant named `name`. If `ctx=None`, then the global context is used.

>>> x = String('x')

Definition at line 11061 of file z3py.py.

11061 def String(name, ctx=None):
11062  """Return a string constant named `name`. If `ctx=None`, then the global context is used.
11063 
11064  >>> x = String('x')
11065  """
11066  ctx = _get_ctx(ctx)
11067  return SeqRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), StringSort(ctx).ast), ctx)
11068 
11069 
def StringSort(ctx=None)
Definition: z3py.py:10879
def String(name, ctx=None)
Definition: z3py.py:11061

Referenced by Context.Context(), Statistics.getEntries(), Statistics.getKeys(), Context.getProbeNames(), Context.getSimplifierNames(), Context.getTacticNames(), Context.mkString(), Strings(), and FuncInterp< R extends Sort >.toString().

◆ Strings()

def z3py.Strings (   names,
  ctx = None 
)
Return a tuple of String constants. 

Definition at line 11070 of file z3py.py.

11070 def Strings(names, ctx=None):
11071  """Return a tuple of String constants. """
11072  ctx = _get_ctx(ctx)
11073  if isinstance(names, str):
11074  names = names.split(" ")
11075  return [String(name, ctx) for name in names]
11076 
11077 
def Strings(names, ctx=None)
Definition: z3py.py:11070

◆ StringSort()

def z3py.StringSort (   ctx = None)
Create a string sort
>>> s = StringSort()
>>> print(s)
String

Definition at line 10879 of file z3py.py.

10879 def StringSort(ctx=None):
10880  """Create a string sort
10881  >>> s = StringSort()
10882  >>> print(s)
10883  String
10884  """
10885  ctx = _get_ctx(ctx)
10886  return SeqSortRef(Z3_mk_string_sort(ctx.ref()), ctx)
10887 

Referenced by String().

◆ StringVal()

def z3py.StringVal (   s,
  ctx = None 
)
create a string expression

Definition at line 11054 of file z3py.py.

11054 def StringVal(s, ctx=None):
11055  """create a string expression"""
11056  s = "".join(str(ch) if 32 <= ord(ch) and ord(ch) < 127 else "\\u{%x}" % (ord(ch)) for ch in s)
11057  ctx = _get_ctx(ctx)
11058  return SeqRef(Z3_mk_string(ctx.ref(), s), ctx)
11059 
11060 
Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s)
Create a string constant out of the string that is passed in The string may contain escape encoding f...

Referenced by CharIsDigit(), deserialize(), Extract(), and AlgebraicNumRef.index().

◆ StrToCode()

def z3py.StrToCode (   s)
Convert a unit length string to integer code

Definition at line 11280 of file z3py.py.

11280 def StrToCode(s):
11281  """Convert a unit length string to integer code"""
11282  if not is_expr(s):
11283  s = _py2expr(s)
11284  return ArithRef(Z3_mk_string_to_code(s.ctx_ref(), s.as_ast()), s.ctx)
11285 
Z3_ast Z3_API Z3_mk_string_to_code(Z3_context c, Z3_ast a)
String to code conversion.
def StrToCode(s)
Definition: z3py.py:11280

◆ StrToInt()

def z3py.StrToInt (   s)
Convert string expression to integer
>>> a = StrToInt("1")
>>> simplify(1 == a)
True
>>> b = StrToInt("2")
>>> simplify(1 == b)
False
>>> c = StrToInt(IntToStr(2))
>>> simplify(1 == c)
False

Definition at line 11257 of file z3py.py.

11257 def StrToInt(s):
11258  """Convert string expression to integer
11259  >>> a = StrToInt("1")
11260  >>> simplify(1 == a)
11261  True
11262  >>> b = StrToInt("2")
11263  >>> simplify(1 == b)
11264  False
11265  >>> c = StrToInt(IntToStr(2))
11266  >>> simplify(1 == c)
11267  False
11268  """
11269  s = _coerce_seq(s)
11270  return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
11271 
11272 
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.
def StrToInt(s)
Definition: z3py.py:11257

◆ SubSeq()

def z3py.SubSeq (   s,
  offset,
  length 
)
Extract substring or subsequence starting at offset

Definition at line 11083 of file z3py.py.

11083 def SubSeq(s, offset, length):
11084  """Extract substring or subsequence starting at offset"""
11085  return Extract(s, offset, length)
11086 
11087 
def SubSeq(s, offset, length)
Definition: z3py.py:11083

◆ substitute()

def z3py.substitute (   t,
m 
)
Apply substitution m on t, m is a list of pairs of the form (from, to).
Every occurrence in t of from is replaced with to.

>>> x = Int('x')
>>> y = Int('y')
>>> substitute(x + 1, (x, y + 1))
y + 1 + 1
>>> f = Function('f', IntSort(), IntSort())
>>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
1 + 1

Definition at line 8939 of file z3py.py.

8939 def substitute(t, *m):
8940  """Apply substitution m on t, m is a list of pairs of the form (from, to).
8941  Every occurrence in t of from is replaced with to.
8942 
8943  >>> x = Int('x')
8944  >>> y = Int('y')
8945  >>> substitute(x + 1, (x, y + 1))
8946  y + 1 + 1
8947  >>> f = Function('f', IntSort(), IntSort())
8948  >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
8949  1 + 1
8950  """
8951  if isinstance(m, tuple):
8952  m1 = _get_args(m)
8953  if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
8954  m = m1
8955  if z3_debug():
8956  _z3_assert(is_expr(t), "Z3 expression expected")
8957  _z3_assert(
8958  all([isinstance(p, tuple) and is_expr(p[0]) and is_expr(p[1]) for p in m]),
8959  "Z3 invalid substitution, expression pairs expected.")
8960  _z3_assert(
8961  all([p[0].sort().eq(p[1].sort()) for p in m]),
8962  'Z3 invalid substitution, mismatching "from" and "to" sorts.')
8963  num = len(m)
8964  _from = (Ast * num)()
8965  _to = (Ast * num)()
8966  for i in range(num):
8967  _from[i] = m[i][0].as_ast()
8968  _to[i] = m[i][1].as_ast()
8969  return _to_expr_ref(Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
8970 
8971 
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....
def substitute(t, *m)
Definition: z3py.py:8939

Referenced by Expr< R extends Sort >.substitute().

◆ substitute_funs()

def z3py.substitute_funs (   t,
m 
)
Apply substitution m on t, m is a list of pairs of a function and expression (from, to)
Every occurrence in to of the function from is replaced with the expression to.
The expression to can have free variables, that refer to the arguments of from.
For examples, see 

Definition at line 8992 of file z3py.py.

8992 def substitute_funs(t, *m):
8993  """Apply substitution m on t, m is a list of pairs of a function and expression (from, to)
8994  Every occurrence in to of the function from is replaced with the expression to.
8995  The expression to can have free variables, that refer to the arguments of from.
8996  For examples, see
8997  """
8998  if isinstance(m, tuple):
8999  m1 = _get_args(m)
9000  if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
9001  m = m1
9002  if z3_debug():
9003  _z3_assert(is_expr(t), "Z3 expression expected")
9004  _z3_assert(all([isinstance(p, tuple) and is_func_decl(p[0]) and is_expr(p[1]) for p in m]), "Z3 invalid substitution, function pairs expected.")
9005  num = len(m)
9006  _from = (FuncDecl * num)()
9007  _to = (Ast * num)()
9008  for i in range(num):
9009  _from[i] = m[i][0].as_func_decl()
9010  _to[i] = m[i][1].as_ast()
9011  return _to_expr_ref(Z3_substitute_funs(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
9012 
9013 
Z3_ast Z3_API Z3_substitute_funs(Z3_context c, Z3_ast a, unsigned num_funs, Z3_func_decl const from[], Z3_ast const to[])
Substitute functions in from with new expressions in to.
def substitute_funs(t, *m)
Definition: z3py.py:8992

◆ substitute_vars()

def z3py.substitute_vars (   t,
m 
)
Substitute the free variables in t with the expression in m.

>>> v0 = Var(0, IntSort())
>>> v1 = Var(1, IntSort())
>>> x  = Int('x')
>>> f  = Function('f', IntSort(), IntSort(), IntSort())
>>> # replace v0 with x+1 and v1 with x
>>> substitute_vars(f(v0, v1), x + 1, x)
f(x + 1, x)

Definition at line 8972 of file z3py.py.

8972 def substitute_vars(t, *m):
8973  """Substitute the free variables in t with the expression in m.
8974 
8975  >>> v0 = Var(0, IntSort())
8976  >>> v1 = Var(1, IntSort())
8977  >>> x = Int('x')
8978  >>> f = Function('f', IntSort(), IntSort(), IntSort())
8979  >>> # replace v0 with x+1 and v1 with x
8980  >>> substitute_vars(f(v0, v1), x + 1, x)
8981  f(x + 1, x)
8982  """
8983  if z3_debug():
8984  _z3_assert(is_expr(t), "Z3 expression expected")
8985  _z3_assert(all([is_expr(n) for n in m]), "Z3 invalid substitution, list of expressions expected.")
8986  num = len(m)
8987  _to = (Ast * num)()
8988  for i in range(num):
8989  _to[i] = m[i].as_ast()
8990  return _to_expr_ref(Z3_substitute_vars(t.ctx.ref(), t.as_ast(), num, _to), t.ctx)
8991 
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the variables in a with the expressions in to. For every i smaller than num_exprs,...
def substitute_vars(t, *m)
Definition: z3py.py:8972

◆ SubString()

def z3py.SubString (   s,
  offset,
  length 
)
Extract substring or subsequence starting at offset

Definition at line 11078 of file z3py.py.

11078 def SubString(s, offset, length):
11079  """Extract substring or subsequence starting at offset"""
11080  return Extract(s, offset, length)
11081 
11082 
def SubString(s, offset, length)
Definition: z3py.py:11078

◆ SuffixOf()

def z3py.SuffixOf (   a,
  b 
)
Check if 'a' is a suffix of 'b'
>>> s1 = SuffixOf("ab", "abc")
>>> simplify(s1)
False
>>> s2 = SuffixOf("bc", "abc")
>>> simplify(s2)
True

Definition at line 11143 of file z3py.py.

11143 def SuffixOf(a, b):
11144  """Check if 'a' is a suffix of 'b'
11145  >>> s1 = SuffixOf("ab", "abc")
11146  >>> simplify(s1)
11147  False
11148  >>> s2 = SuffixOf("bc", "abc")
11149  >>> simplify(s2)
11150  True
11151  """
11152  ctx = _get_ctx2(a, b)
11153  a = _coerce_seq(a, ctx)
11154  b = _coerce_seq(b, ctx)
11155  return BoolRef(Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11156 
11157 
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)
Check if suffix is a suffix of s.
def SuffixOf(a, b)
Definition: z3py.py:11143

◆ Sum()

def z3py.Sum ( args)
Create the sum of the Z3 expressions.

>>> a, b, c = Ints('a b c')
>>> Sum(a, b, c)
a + b + c
>>> Sum([a, b, c])
a + b + c
>>> A = IntVector('a', 5)
>>> Sum(A)
a__0 + a__1 + a__2 + a__3 + a__4

Definition at line 9014 of file z3py.py.

9014 def Sum(*args):
9015  """Create the sum of the Z3 expressions.
9016 
9017  >>> a, b, c = Ints('a b c')
9018  >>> Sum(a, b, c)
9019  a + b + c
9020  >>> Sum([a, b, c])
9021  a + b + c
9022  >>> A = IntVector('a', 5)
9023  >>> Sum(A)
9024  a__0 + a__1 + a__2 + a__3 + a__4
9025  """
9026  args = _get_args(args)
9027  if len(args) == 0:
9028  return 0
9029  ctx = _ctx_from_ast_arg_list(args)
9030  if ctx is None:
9031  return _reduce(lambda a, b: a + b, args, 0)
9032  args = _coerce_expr_list(args, ctx)
9033  if is_bv(args[0]):
9034  return _reduce(lambda a, b: a + b, args, 0)
9035  else:
9036  _args, sz = _to_ast_array(args)
9037  return ArithRef(Z3_mk_add(ctx.ref(), sz, _args), ctx)
9038 
9039 
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].
def Sum(*args)
Definition: z3py.py:9014

◆ tactic_description()

def z3py.tactic_description (   name,
  ctx = None 
)
Return a short description for the tactic named `name`.

>>> d = tactic_description('simplify')

Definition at line 8593 of file z3py.py.

8593 def tactic_description(name, ctx=None):
8594  """Return a short description for the tactic named `name`.
8595 
8596  >>> d = tactic_description('simplify')
8597  """
8598  ctx = _get_ctx(ctx)
8599  return Z3_tactic_get_descr(ctx.ref(), name)
8600 
8601 
Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the tactic with the given name.

Referenced by describe_tactics().

◆ tactics()

def z3py.tactics (   ctx = None)
Return a list of all available tactics in Z3.

>>> l = tactics()
>>> l.count('simplify') == 1
True

Definition at line 8582 of file z3py.py.

8582 def tactics(ctx=None):
8583  """Return a list of all available tactics in Z3.
8584 
8585  >>> l = tactics()
8586  >>> l.count('simplify') == 1
8587  True
8588  """
8589  ctx = _get_ctx(ctx)
8590  return [Z3_get_tactic_name(ctx.ref(), i) for i in range(Z3_get_num_tactics(ctx.ref()))]
8591 
8592 
unsigned Z3_API Z3_get_num_tactics(Z3_context c)
Return the number of builtin tactics available in Z3.
Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i)
Return the name of the idx tactic.

Referenced by describe_tactics().

◆ Then()

def z3py.Then ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).

>>> x, y = Ints('x y')
>>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)

Definition at line 8450 of file z3py.py.

8450 def Then(*ts, **ks):
8451  """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
8452 
8453  >>> x, y = Ints('x y')
8454  >>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
8455  >>> t(And(x == 0, y > x + 1))
8456  [[Not(y <= 1)]]
8457  >>> t(And(x == 0, y > x + 1)).as_expr()
8458  Not(y <= 1)
8459  """
8460  return AndThen(*ts, **ks)
8461 
8462 
def Then(*ts, **ks)
Definition: z3py.py:8450

◆ to_Ast()

def z3py.to_Ast (   ptr)

Definition at line 11502 of file z3py.py.

11502 def to_Ast(ptr,):
11503  ast = Ast(ptr)
11504  super(ctypes.c_void_p, ast).__init__(ptr)
11505  return ast
11506 

Referenced by on_clause_eh(), user_prop_created(), user_prop_decide(), user_prop_diseq(), user_prop_eq(), and user_prop_fixed().

◆ to_AstVectorObj()

def z3py.to_AstVectorObj (   ptr)

Definition at line 11512 of file z3py.py.

11512 def to_AstVectorObj(ptr,):
11513  v = AstVectorObj(ptr)
11514  super(ctypes.c_void_p, v).__init__(ptr)
11515  return v
11516 
11517 # NB. my-hacky-class only works for a single instance of OnClause
11518 # it should be replaced with a proper correlation between OnClause
11519 # and object references that can be passed over the FFI.
11520 # for UserPropagator we use a global dictionary, which isn't great code.
11521 

Referenced by on_clause_eh().

◆ to_ContextObj()

def z3py.to_ContextObj (   ptr)

Definition at line 11507 of file z3py.py.

11507 def to_ContextObj(ptr,):
11508  ctx = ContextObj(ptr)
11509  super(ctypes.c_void_p, ctx).__init__(ptr)
11510  return ctx
11511 
def to_ContextObj(ptr)
Definition: z3py.py:11507

Referenced by user_prop_fresh().

◆ to_symbol()

def z3py.to_symbol (   s,
  ctx = None 
)
Convert an integer or string into a Z3 symbol.

Definition at line 124 of file z3py.py.

124 def to_symbol(s, ctx=None):
125  """Convert an integer or string into a Z3 symbol."""
126  if _is_int(s):
127  return Z3_mk_int_symbol(_get_ctx(ctx).ref(), s)
128  else:
129  return Z3_mk_string_symbol(_get_ctx(ctx).ref(), s)
130 
131 
Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)
Create a Z3 symbol using a C string.
Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)
Create a Z3 symbol using an integer.

Referenced by Fixedpoint.add_rule(), Optimize.add_soft(), Array(), BitVec(), Bool(), Const(), CreateDatatypes(), DatatypeSort(), DeclareSort(), DeclareTypeVar(), EnumSort(), FiniteDomainSort(), FP(), Function(), ParamDescrsRef.get_documentation(), ParamDescrsRef.get_kind(), Int(), is_quantifier(), PropagateFunction(), prove(), Real(), RecFunction(), ParamsRef.set(), Fixedpoint.set_predicate_representation(), SolverFor(), String(), and Fixedpoint.update_rule().

◆ ToInt()

def z3py.ToInt (   a)
 Return the Z3 expression ToInt(a).

>>> x = Real('x')
>>> x.sort()
Real
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> n.sort()
Int

Definition at line 3422 of file z3py.py.

3422 def ToInt(a):
3423  """ Return the Z3 expression ToInt(a).
3424 
3425  >>> x = Real('x')
3426  >>> x.sort()
3427  Real
3428  >>> n = ToInt(x)
3429  >>> n
3430  ToInt(x)
3431  >>> n.sort()
3432  Int
3433  """
3434  if z3_debug():
3435  _z3_assert(a.is_real(), "Z3 real expression expected.")
3436  ctx = a.ctx
3437  return ArithRef(Z3_mk_real2int(ctx.ref(), a.as_ast()), ctx)
3438 
3439 
Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)
Coerce a real to an integer.
def ToInt(a)
Definition: z3py.py:3422

◆ ToReal()

def z3py.ToReal (   a)
 Return the Z3 expression ToReal(a).

>>> x = Int('x')
>>> x.sort()
Int
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> n.sort()
Real

Definition at line 3404 of file z3py.py.

3404 def ToReal(a):
3405  """ Return the Z3 expression ToReal(a).
3406 
3407  >>> x = Int('x')
3408  >>> x.sort()
3409  Int
3410  >>> n = ToReal(x)
3411  >>> n
3412  ToReal(x)
3413  >>> n.sort()
3414  Real
3415  """
3416  if z3_debug():
3417  _z3_assert(a.is_int(), "Z3 integer expression expected.")
3418  ctx = a.ctx
3419  return ArithRef(Z3_mk_int2real(ctx.ref(), a.as_ast()), ctx)
3420 
3421 
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.
def ToReal(a)
Definition: z3py.py:3404

◆ TransitiveClosure()

def z3py.TransitiveClosure (   f)
Given a binary relation R, such that the two arguments have the same sort
create the transitive closure relation R+.
The transitive closure R+ is a new relation.

Definition at line 11495 of file z3py.py.

11495 def TransitiveClosure(f):
11496  """Given a binary relation R, such that the two arguments have the same sort
11497  create the transitive closure relation R+.
11498  The transitive closure R+ is a new relation.
11499  """
11500  return FuncDeclRef(Z3_mk_transitive_closure(f.ctx_ref(), f.ast), f.ctx)
11501 
Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f)
create transitive closure of binary relation.
def TransitiveClosure(f)
Definition: z3py.py:11495

◆ TreeOrder()

def z3py.TreeOrder (   a,
  index 
)

Definition at line 11487 of file z3py.py.

11487 def TreeOrder(a, index):
11488  return FuncDeclRef(Z3_mk_tree_order(a.ctx_ref(), a.ast, index), a.ctx)
11489 
11490 
Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)
create a tree ordering relation over signature a identified using index id.
def TreeOrder(a, index)
Definition: z3py.py:11487

◆ TryFor()

def z3py.TryFor (   t,
  ms,
  ctx = None 
)
Return a tactic that applies `t` to a given goal for `ms` milliseconds.

If `t` does not terminate in `ms` milliseconds, then it fails.

Definition at line 8573 of file z3py.py.

8573 def TryFor(t, ms, ctx=None):
8574  """Return a tactic that applies `t` to a given goal for `ms` milliseconds.
8575 
8576  If `t` does not terminate in `ms` milliseconds, then it fails.
8577  """
8578  t = _to_tactic(t, ctx)
8579  return Tactic(Z3_tactic_try_for(t.ctx.ref(), t.tactic, ms), t.ctx)
8580 
8581 
Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)
Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...
def TryFor(t, ms, ctx=None)
Definition: z3py.py:8573

◆ TupleSort()

def z3py.TupleSort (   name,
  sorts,
  ctx = None 
)
Create a named tuple sort base on a set of underlying sorts
Example:
    >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])

Definition at line 5409 of file z3py.py.

5409 def TupleSort(name, sorts, ctx=None):
5410  """Create a named tuple sort base on a set of underlying sorts
5411  Example:
5412  >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
5413  """
5414  tuple = Datatype(name, ctx)
5415  projects = [("project%d" % i, sorts[i]) for i in range(len(sorts))]
5416  tuple.declare(name, *projects)
5417  tuple = tuple.create()
5418  return tuple, tuple.constructor(0), [tuple.accessor(0, i) for i in range(len(sorts))]
5419 
5420 
def TupleSort(name, sorts, ctx=None)
Definition: z3py.py:5409

Referenced by Context.MkTupleSort(), and Context.mkTupleSort().

◆ UDiv()

def z3py.UDiv (   a,
  b 
)
Create the Z3 expression (unsigned) division `self / other`.

Use the operator / for signed division.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> UDiv(x, y)
UDiv(x, y)
>>> UDiv(x, y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'

Definition at line 4282 of file z3py.py.

4282 def UDiv(a, b):
4283  """Create the Z3 expression (unsigned) division `self / other`.
4284 
4285  Use the operator / for signed division.
4286 
4287  >>> x = BitVec('x', 32)
4288  >>> y = BitVec('y', 32)
4289  >>> UDiv(x, y)
4290  UDiv(x, y)
4291  >>> UDiv(x, y).sort()
4292  BitVec(32)
4293  >>> (x / y).sexpr()
4294  '(bvsdiv x y)'
4295  >>> UDiv(x, y).sexpr()
4296  '(bvudiv x y)'
4297  """
4298  _check_bv_args(a, b)
4299  a, b = _coerce_exprs(a, b)
4300  return BitVecRef(Z3_mk_bvudiv(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4301 
4302 
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.
def UDiv(a, b)
Definition: z3py.py:4282

◆ UGE()

def z3py.UGE (   a,
  b 
)
Create the Z3 expression (unsigned) `other >= self`.

Use the operator >= for signed greater than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> UGE(x, y)
UGE(x, y)
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'

Definition at line 4246 of file z3py.py.

4246 def UGE(a, b):
4247  """Create the Z3 expression (unsigned) `other >= self`.
4248 
4249  Use the operator >= for signed greater than or equal to.
4250 
4251  >>> x, y = BitVecs('x y', 32)
4252  >>> UGE(x, y)
4253  UGE(x, y)
4254  >>> (x >= y).sexpr()
4255  '(bvsge x y)'
4256  >>> UGE(x, y).sexpr()
4257  '(bvuge x y)'
4258  """
4259  _check_bv_args(a, b)
4260  a, b = _coerce_exprs(a, b)
4261  return BoolRef(Z3_mk_bvuge(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4262 
4263 
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
def UGE(a, b)
Definition: z3py.py:4246

◆ UGT()

def z3py.UGT (   a,
  b 
)
Create the Z3 expression (unsigned) `other > self`.

Use the operator > for signed greater than.

>>> x, y = BitVecs('x y', 32)
>>> UGT(x, y)
UGT(x, y)
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'

Definition at line 4264 of file z3py.py.

4264 def UGT(a, b):
4265  """Create the Z3 expression (unsigned) `other > self`.
4266 
4267  Use the operator > for signed greater than.
4268 
4269  >>> x, y = BitVecs('x y', 32)
4270  >>> UGT(x, y)
4271  UGT(x, y)
4272  >>> (x > y).sexpr()
4273  '(bvsgt x y)'
4274  >>> UGT(x, y).sexpr()
4275  '(bvugt x y)'
4276  """
4277  _check_bv_args(a, b)
4278  a, b = _coerce_exprs(a, b)
4279  return BoolRef(Z3_mk_bvugt(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4280 
4281 
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.
def UGT(a, b)
Definition: z3py.py:4264

◆ ULE()

def z3py.ULE (   a,
  b 
)
Create the Z3 expression (unsigned) `other <= self`.

Use the operator <= for signed less than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> ULE(x, y)
ULE(x, y)
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'

Definition at line 4210 of file z3py.py.

4210 def ULE(a, b):
4211  """Create the Z3 expression (unsigned) `other <= self`.
4212 
4213  Use the operator <= for signed less than or equal to.
4214 
4215  >>> x, y = BitVecs('x y', 32)
4216  >>> ULE(x, y)
4217  ULE(x, y)
4218  >>> (x <= y).sexpr()
4219  '(bvsle x y)'
4220  >>> ULE(x, y).sexpr()
4221  '(bvule x y)'
4222  """
4223  _check_bv_args(a, b)
4224  a, b = _coerce_exprs(a, b)
4225  return BoolRef(Z3_mk_bvule(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4226 
4227 
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.
def ULE(a, b)
Definition: z3py.py:4210

◆ ULT()

def z3py.ULT (   a,
  b 
)
Create the Z3 expression (unsigned) `other < self`.

Use the operator < for signed less than.

>>> x, y = BitVecs('x y', 32)
>>> ULT(x, y)
ULT(x, y)
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'

Definition at line 4228 of file z3py.py.

4228 def ULT(a, b):
4229  """Create the Z3 expression (unsigned) `other < self`.
4230 
4231  Use the operator < for signed less than.
4232 
4233  >>> x, y = BitVecs('x y', 32)
4234  >>> ULT(x, y)
4235  ULT(x, y)
4236  >>> (x < y).sexpr()
4237  '(bvslt x y)'
4238  >>> ULT(x, y).sexpr()
4239  '(bvult x y)'
4240  """
4241  _check_bv_args(a, b)
4242  a, b = _coerce_exprs(a, b)
4243  return BoolRef(Z3_mk_bvult(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4244 
4245 
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.
def ULT(a, b)
Definition: z3py.py:4228

◆ Union()

def z3py.Union ( args)
Create union of regular expressions.
>>> re = Union(Re("a"), Re("b"), Re("c"))
>>> print (simplify(InRe("d", re)))
False

Definition at line 11345 of file z3py.py.

11345 def Union(*args):
11346  """Create union of regular expressions.
11347  >>> re = Union(Re("a"), Re("b"), Re("c"))
11348  >>> print (simplify(InRe("d", re)))
11349  False
11350  """
11351  args = _get_args(args)
11352  sz = len(args)
11353  if z3_debug():
11354  _z3_assert(sz > 0, "At least one argument expected.")
11355  _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11356  if sz == 1:
11357  return args[0]
11358  ctx = args[0].ctx
11359  v = (Ast * sz)()
11360  for i in range(sz):
11361  v[i] = args[i].as_ast()
11362  return ReRef(Z3_mk_re_union(ctx.ref(), sz, v), ctx)
11363 
11364 
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
def Union(*args)
Definition: z3py.py:11345

Referenced by ReRef.__add__().

◆ Unit()

def z3py.Unit (   a)
Create a singleton sequence

Definition at line 11123 of file z3py.py.

11123 def Unit(a):
11124  """Create a singleton sequence"""
11125  return SeqRef(Z3_mk_seq_unit(a.ctx_ref(), a.as_ast()), a.ctx)
11126 
11127 
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.
def Unit(a)
Definition: z3py.py:11123

◆ Update()

def z3py.Update (   a,
args 
)
Return a Z3 store array expression.

>>> a    = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s    = Update(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j    = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved

Definition at line 4793 of file z3py.py.

4793 def Update(a, *args):
4794  """Return a Z3 store array expression.
4795 
4796  >>> a = Array('a', IntSort(), IntSort())
4797  >>> i, v = Ints('i v')
4798  >>> s = Update(a, i, v)
4799  >>> s.sort()
4800  Array(Int, Int)
4801  >>> prove(s[i] == v)
4802  proved
4803  >>> j = Int('j')
4804  >>> prove(Implies(i != j, s[j] == a[j]))
4805  proved
4806  """
4807  if z3_debug():
4808  _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4809  args = _get_args(args)
4810  ctx = a.ctx
4811  if len(args) <= 1:
4812  raise Z3Exception("array update requires index and value arguments")
4813  if len(args) == 2:
4814  i = args[0]
4815  v = args[1]
4816  i = a.sort().domain().cast(i)
4817  v = a.sort().range().cast(v)
4818  return _to_expr_ref(Z3_mk_store(ctx.ref(), a.as_ast(), i.as_ast(), v.as_ast()), ctx)
4819  v = a.sort().range().cast(args[-1])
4820  idxs = [a.sort().domain_n(i).cast(args[i]) for i in range(len(args)-1)]
4821  _args, sz = _to_ast_array(idxs)
4822  return _to_expr_ref(Z3_mk_store_n(ctx.ref(), a.as_ast(), sz, _args, v.as_ast()), ctx)
4823 
4824 
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.

Referenced by Store().

◆ URem()

def z3py.URem (   a,
  b 
)
Create the Z3 expression (unsigned) remainder `self % other`.

Use the operator % for signed modulus, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> URem(x, y)
URem(x, y)
>>> URem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'

Definition at line 4303 of file z3py.py.

4303 def URem(a, b):
4304  """Create the Z3 expression (unsigned) remainder `self % other`.
4305 
4306  Use the operator % for signed modulus, and SRem() for signed remainder.
4307 
4308  >>> x = BitVec('x', 32)
4309  >>> y = BitVec('y', 32)
4310  >>> URem(x, y)
4311  URem(x, y)
4312  >>> URem(x, y).sort()
4313  BitVec(32)
4314  >>> (x % y).sexpr()
4315  '(bvsmod x y)'
4316  >>> URem(x, y).sexpr()
4317  '(bvurem x y)'
4318  """
4319  _check_bv_args(a, b)
4320  a, b = _coerce_exprs(a, b)
4321  return BitVecRef(Z3_mk_bvurem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4322 
4323 
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.
def URem(a, b)
Definition: z3py.py:4303

◆ user_prop_created()

def z3py.user_prop_created (   ctx,
  cb,
  id 
)

Definition at line 11623 of file z3py.py.

11623 def user_prop_created(ctx, cb, id):
11624  prop = _prop_closures.get(ctx)
11625  old_cb = prop.cb
11626  prop.cb = cb
11627  id = _to_expr_ref(to_Ast(id), prop.ctx())
11628  prop.created(id)
11629  prop.cb = old_cb
11630 
11631 
def user_prop_created(ctx, cb, id)
Definition: z3py.py:11623

◆ user_prop_decide()

def z3py.user_prop_decide (   ctx,
  cb,
  t,
  idx,
  phase 
)

Definition at line 11657 of file z3py.py.

11657 def user_prop_decide(ctx, cb, t, idx, phase):
11658  prop = _prop_closures.get(ctx)
11659  old_cb = prop.cb
11660  prop.cb = cb
11661  t = _to_expr_ref(to_Ast(t_ref), prop.ctx())
11662  prop.decide(t, idx, phase)
11663  prop.cb = old_cb
11664 
11665 
def user_prop_decide(ctx, cb, t, idx, phase)
Definition: z3py.py:11657

◆ user_prop_diseq()

def z3py.user_prop_diseq (   ctx,
  cb,
  x,
  y 
)

Definition at line 11648 of file z3py.py.

11648 def user_prop_diseq(ctx, cb, x, y):
11649  prop = _prop_closures.get(ctx)
11650  old_cb = prop.cb
11651  prop.cb = cb
11652  x = _to_expr_ref(to_Ast(x), prop.ctx())
11653  y = _to_expr_ref(to_Ast(y), prop.ctx())
11654  prop.diseq(x, y)
11655  prop.cb = old_cb
11656 
def user_prop_diseq(ctx, cb, x, y)
Definition: z3py.py:11648

◆ user_prop_eq()

def z3py.user_prop_eq (   ctx,
  cb,
  x,
  y 
)

Definition at line 11639 of file z3py.py.

11639 def user_prop_eq(ctx, cb, x, y):
11640  prop = _prop_closures.get(ctx)
11641  old_cb = prop.cb
11642  prop.cb = cb
11643  x = _to_expr_ref(to_Ast(x), prop.ctx())
11644  y = _to_expr_ref(to_Ast(y), prop.ctx())
11645  prop.eq(x, y)
11646  prop.cb = old_cb
11647 
def user_prop_eq(ctx, cb, x, y)
Definition: z3py.py:11639

◆ user_prop_final()

def z3py.user_prop_final (   ctx,
  cb 
)

Definition at line 11632 of file z3py.py.

11632 def user_prop_final(ctx, cb):
11633  prop = _prop_closures.get(ctx)
11634  old_cb = prop.cb
11635  prop.cb = cb
11636  prop.final()
11637  prop.cb = old_cb
11638 
def user_prop_final(ctx, cb)
Definition: z3py.py:11632

◆ user_prop_fixed()

def z3py.user_prop_fixed (   ctx,
  cb,
  id,
  value 
)

Definition at line 11614 of file z3py.py.

11614 def user_prop_fixed(ctx, cb, id, value):
11615  prop = _prop_closures.get(ctx)
11616  old_cb = prop.cb
11617  prop.cb = cb
11618  id = _to_expr_ref(to_Ast(id), prop.ctx())
11619  value = _to_expr_ref(to_Ast(value), prop.ctx())
11620  prop.fixed(id, value)
11621  prop.cb = old_cb
11622 
def user_prop_fixed(ctx, cb, id, value)
Definition: z3py.py:11614

◆ user_prop_fresh()

def z3py.user_prop_fresh (   ctx,
  _new_ctx 
)

Definition at line 11600 of file z3py.py.

11600 def user_prop_fresh(ctx, _new_ctx):
11601  _prop_closures.set_threaded()
11602  prop = _prop_closures.get(ctx)
11603  nctx = Context()
11604  Z3_del_context(nctx.ctx)
11605  new_ctx = to_ContextObj(_new_ctx)
11606  nctx.ctx = new_ctx
11607  nctx.eh = Z3_set_error_handler(new_ctx, z3_error_handler)
11608  nctx.owner = False
11609  new_prop = prop.fresh(nctx)
11610  _prop_closures.set(new_prop.id, new_prop)
11611  return new_prop.id
11612 
11613 
void Z3_API Z3_del_context(Z3_context c)
Delete the given logical context.
void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h)
Register a Z3 error handler.
def user_prop_fresh(ctx, _new_ctx)
Definition: z3py.py:11600

◆ user_prop_pop()

def z3py.user_prop_pop (   ctx,
  cb,
  num_scopes 
)

Definition at line 11594 of file z3py.py.

11594 def user_prop_pop(ctx, cb, num_scopes):
11595  prop = _prop_closures.get(ctx)
11596  prop.cb = cb
11597  prop.pop(num_scopes)
11598 
11599 
def user_prop_pop(ctx, cb, num_scopes)
Definition: z3py.py:11594

◆ user_prop_push()

def z3py.user_prop_push (   ctx,
  cb 
)

Definition at line 11588 of file z3py.py.

11588 def user_prop_push(ctx, cb):
11589  prop = _prop_closures.get(ctx)
11590  prop.cb = cb
11591  prop.push()
11592 
11593 
def user_prop_push(ctx, cb)
Definition: z3py.py:11588

◆ Var()

def z3py.Var (   idx,
  s 
)
Create a Z3 free variable. Free variables are used to create quantified formulas.
A free variable with index n is bound when it occurs within the scope of n+1 quantified
declarations.

>>> Var(0, IntSort())
Var(0)
>>> eq(Var(0, IntSort()), Var(0, BoolSort()))
False

Definition at line 1488 of file z3py.py.

1488 def Var(idx, s):
1489  """Create a Z3 free variable. Free variables are used to create quantified formulas.
1490  A free variable with index n is bound when it occurs within the scope of n+1 quantified
1491  declarations.
1492 
1493  >>> Var(0, IntSort())
1494  Var(0)
1495  >>> eq(Var(0, IntSort()), Var(0, BoolSort()))
1496  False
1497  """
1498  if z3_debug():
1499  _z3_assert(is_sort(s), "Z3 sort expected")
1500  return _to_expr_ref(Z3_mk_bound(s.ctx_ref(), idx, s.ast), s.ctx)
1501 
1502 
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)
Create a variable.

Referenced by RealVar().

◆ When()

def z3py.When (   p,
  t,
  ctx = None 
)
Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.

>>> t = When(Probe('size') > 2, Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]

Definition at line 8867 of file z3py.py.

8867 def When(p, t, ctx=None):
8868  """Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
8869  Otherwise, it returns the input goal unmodified.
8870 
8871  >>> t = When(Probe('size') > 2, Tactic('simplify'))
8872  >>> x, y = Ints('x y')
8873  >>> g = Goal()
8874  >>> g.add(x > 0)
8875  >>> g.add(y > 0)
8876  >>> t(g)
8877  [[x > 0, y > 0]]
8878  >>> g.add(x == y + 1)
8879  >>> t(g)
8880  [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
8881  """
8882  p = _to_probe(p, ctx)
8883  t = _to_tactic(t, ctx)
8884  return Tactic(Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
8885 
8886 
Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)
Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...
def When(p, t, ctx=None)
Definition: z3py.py:8867

◆ With()

def z3py.With (   t,
args,
**  keys 
)
Return a tactic that applies tactic `t` using the given configuration options.

>>> x, y = Ints('x y')
>>> t = With(Tactic('simplify'), som=True)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]

Definition at line 8524 of file z3py.py.

8524 def With(t, *args, **keys):
8525  """Return a tactic that applies tactic `t` using the given configuration options.
8526 
8527  >>> x, y = Ints('x y')
8528  >>> t = With(Tactic('simplify'), som=True)
8529  >>> t((x + 1)*(y + 2) == 0)
8530  [[2*x + y + x*y == -2]]
8531  """
8532  ctx = keys.pop("ctx", None)
8533  t = _to_tactic(t, ctx)
8534  p = args2params(args, keys, t.ctx)
8535  return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8536 
8537 
Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)
Return a tactic that applies t using the given set of parameters.
def With(t, *args, **keys)
Definition: z3py.py:8524

◆ WithParams()

def z3py.WithParams (   t,
  p 
)
Return a tactic that applies tactic `t` using the given configuration options.

>>> x, y = Ints('x y')
>>> p = ParamsRef()
>>> p.set("som", True)
>>> t = WithParams(Tactic('simplify'), p)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]

Definition at line 8538 of file z3py.py.

8538 def WithParams(t, p):
8539  """Return a tactic that applies tactic `t` using the given configuration options.
8540 
8541  >>> x, y = Ints('x y')
8542  >>> p = ParamsRef()
8543  >>> p.set("som", True)
8544  >>> t = WithParams(Tactic('simplify'), p)
8545  >>> t((x + 1)*(y + 2) == 0)
8546  [[2*x + y + x*y == -2]]
8547  """
8548  t = _to_tactic(t, None)
8549  return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8550 
8551 
def WithParams(t, p)
Definition: z3py.py:8538

◆ Xor()

def z3py.Xor (   a,
  b,
  ctx = None 
)
Create a Z3 Xor expression.

>>> p, q = Bools('p q')
>>> Xor(p, q)
Xor(p, q)
>>> simplify(Xor(p, q))
Not(p == q)

Definition at line 1839 of file z3py.py.

1839 def Xor(a, b, ctx=None):
1840  """Create a Z3 Xor expression.
1841 
1842  >>> p, q = Bools('p q')
1843  >>> Xor(p, q)
1844  Xor(p, q)
1845  >>> simplify(Xor(p, q))
1846  Not(p == q)
1847  """
1848  ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1849  s = BoolSort(ctx)
1850  a = s.cast(a)
1851  b = s.cast(b)
1852  return BoolRef(Z3_mk_xor(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
1853 
1854 
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.
def Xor(a, b, ctx=None)
Definition: z3py.py:1839

Referenced by BoolRef.__xor__().

◆ z3_debug()

def z3py.z3_debug ( )

Definition at line 62 of file z3py.py.

62 def z3_debug():
63  global Z3_DEBUG
64  return Z3_DEBUG
65 
66 

Referenced by Probe.__call__(), QuantifierRef.__getitem__(), ModelRef.__getitem__(), Context.__init__(), Goal.__init__(), ArithRef.__mod__(), ArithRef.__rmod__(), DatatypeSortRef.accessor(), And(), AndThen(), Tactic.apply(), ExprRef.arg(), args2params(), ArraySort(), IntNumRef.as_long(), AtLeast(), AtMost(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Concat(), Const(), DatatypeSortRef.constructor(), Goal.convert_model(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), Datatype.declare_core(), Default(), describe_probes(), deserialize(), Diff(), Distinct(), EnumSort(), eq(), AstRef.eq(), Ext(), Extract(), FiniteDomainVal(), fpIsPositive(), fpNeg(), FPSort(), fpToFPUnsigned(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), FreshFunction(), Function(), get_as_array_func(), ModelRef.get_interp(), get_map_func(), ModelRef.get_universe(), get_var_index(), If(), AlgebraicNumRef.index(), Intersect(), is_quantifier(), is_sort(), IsInt(), K(), Loop(), Map(), MultiPattern(), QuantifierRef.no_pattern(), ExprRef.num_args(), Option(), Or(), OrElse(), Tactic.param_descrs(), ParOr(), ParThen(), QuantifierRef.pattern(), Plus(), PropagateFunction(), prove(), Range(), RatVal(), RecFunction(), DatatypeSortRef.recognizer(), RepeatBitVec(), Select(), ParamsRef.set(), set_param(), SignExt(), simplify(), solve_using(), Star(), substitute(), substitute_funs(), substitute_vars(), ToInt(), ToReal(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Solver.translate(), Union(), Update(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and ZeroExt().

◆ z3_error_handler()

def z3py.z3_error_handler (   c,
  e 
)

Definition at line 174 of file z3py.py.

174 def z3_error_handler(c, e):
175  # Do nothing error handler, just avoid exit(0)
176  # The wrappers in z3core.py will raise a Z3Exception if an error is detected
177  return
178 
179 
def z3_error_handler(c, e)
Definition: z3py.py:174

◆ ZeroExt()

def z3py.ZeroExt (   n,
  a 
)
Return a bit-vector expression with `n` extra zero-bits.

>>> x = BitVec('x', 16)
>>> n = ZeroExt(8, x)
>>> n.size()
24
>>> n
ZeroExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v  = simplify(ZeroExt(6, v0))
>>> v
2
>>> v.size()
8

Definition at line 4439 of file z3py.py.

4439 def ZeroExt(n, a):
4440  """Return a bit-vector expression with `n` extra zero-bits.
4441 
4442  >>> x = BitVec('x', 16)
4443  >>> n = ZeroExt(8, x)
4444  >>> n.size()
4445  24
4446  >>> n
4447  ZeroExt(8, x)
4448  >>> n.sort()
4449  BitVec(24)
4450  >>> v0 = BitVecVal(2, 2)
4451  >>> v0
4452  2
4453  >>> v0.size()
4454  2
4455  >>> v = simplify(ZeroExt(6, v0))
4456  >>> v
4457  2
4458  >>> v.size()
4459  8
4460  """
4461  if z3_debug():
4462  _z3_assert(_is_int(n), "First argument must be an integer")
4463  _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4464  return BitVecRef(Z3_mk_zero_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
4465 
4466 
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...
def ZeroExt(n, a)
Definition: z3py.py:4439

Variable Documentation

◆ sat

Definition at line 6938 of file z3py.py.

◆ unknown

Definition at line 6940 of file z3py.py.

◆ unsat

Definition at line 6939 of file z3py.py.

◆ Z3_DEBUG

Z3_DEBUG = __debug__

Definition at line 59 of file z3py.py.