Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,103)

Search Parameters:
Keywords = ferroptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5179 KiB  
Article
Coenzyme Q and Selenium Co-Supplementation Alleviate Methionine Choline-Deficient Diet-Induced Metabolic Dysfunction-Associated Steatohepatitis in Mice
by Hyewon Choi, Jiwon Choi, Yula Go and Jayong Chung
Nutrients 2025, 17(2), 229; https://doi.org/10.3390/nu17020229 - 9 Jan 2025
Viewed by 372
Abstract
Background/Objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and [...] Read more.
Background/Objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice. Methods: C57BL/6J male mice were fed either a methionine choline-sufficient (MCS) or MCD diet and treated with vehicle, CoQ (100 mg/kg), Se (158 μg/kg), or their combination (CoQ + Se) for 4 weeks. Results: The MCD diet significantly increased hepatic steatosis, inflammation, and fibrosis compared to MCS controls. Treatment with CoQ and Se, particularly in combination, markedly reduced the MAFLD activity score, hepatic inflammation, and fibrosis. Combined supplementation of CoQ and Se significantly decreased serum alanine aminotransferase and aspartate aminotransferase levels and hepatic TG and cholesterol concentrations. CoQ and Se effectively mitigated hepatic oxidative stress by enhancing catalase and superoxide dismutase activities, increasing glutathione peroxidase (GPX) activity, and restoring the GSH/GSSG ratio. Lipid peroxidation markers, such as malondialdehyde and 4-hydroxynonenal, were significantly reduced. Furthermore, the expression of ferroptosis-related markers, including acyl-CoA synthetase long-chain family member 4, arachidonate 12-lipoxygenase, and hepatic non-heme iron content, was significantly downregulated, while GPX4 expression was upregulated by combined CoQ and Se treatment. Conclusions: CoQ and Se synergistically alleviate MASH progression by reducing oxidative stress and lipid peroxidation, which may contribute to the suppression of ferroptosis. Combined CoQ and Se supplementation demonstrates therapeutic potential for managing MASH and related liver injury. Full article
(This article belongs to the Special Issue Effects of Selenium and Other Micronutrient Intake on Human Health)
Show Figures

Figure 1

20 pages, 3440 KiB  
Article
Gboxin Induced Apoptosis and Ferroptosis of Cervical Cancer Cells by Promoting Autophagy-Mediated Inhibition of Nrf2 Signaling Under Low-Glucose Conditions
by Wei Liu, Junlin Lu, Jiarui Li, Lu Wang, Yao Chen, Yulun Wu, Ziying Zhang, Jingying Zhang, Feng Gao, Chaoran Jia, Yongli Bao, Xiaoguang Yang and Zhenbo Song
Int. J. Mol. Sci. 2025, 26(2), 502; https://doi.org/10.3390/ijms26020502 - 9 Jan 2025
Viewed by 225
Abstract
Cervical cancer poses a substantial threat to women’s health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to [...] Read more.
Cervical cancer poses a substantial threat to women’s health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME. Previous studies showed that Gboxin, a small molecule, inhibited glioblastoma (GBM) growth by targeting ATP synthase without harming normal cells. However, its effects and mechanisms in cervical cancer cells in low-glucose environments are not clear. This study indicates that Gboxin notably enhanced autophagy, apoptosis, and ferroptosis in cervical cells under low-glucose conditions without significantly affecting cell survival under normal conditions. Further analysis revealed that Gboxin inhibited the activity of complex V and the production of ATP, concurrently leading to a reduction in mitochondrial membrane potential and the mtDNA copy number under low-glucose culture conditions. Moreover, Gboxin inhibited tumor growth under nutrient deprivation conditions in vivo. A mechanistic analysis revealed that Gboxin activated the AMPK signaling pathway by targeting mitochondrial complex V. Furthermore, increased AMPK activation subsequently promoted autophagy and reduced p62 protein levels. The decreased levels of p62 protein facilitated the degradation of Nrf2 by regulating the p62-Keap1-Nrf2 axis, thereby diminishing the antioxidant capacity of cervical cancer cells, ultimately leading to the induction of apoptosis and ferroptosis. This study provides a better theoretical basis for exploring Gboxin as a potential drug for cervical cancer treatment. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 3105 KiB  
Article
Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing
by Mu-Jung Chou, Chih-Hung Cheng, Hui-Ching Wang, Ming-Ju Tsai, Chau-Chyun Sheu and Wei-An Chang
Biomedicines 2025, 13(1), 142; https://doi.org/10.3390/biomedicines13010142 - 9 Jan 2025
Viewed by 252
Abstract
Background: For investigating the host response in Acinetobacter baumannii associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). Methods: The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with A. baumannii [...] Read more.
Background: For investigating the host response in Acinetobacter baumannii associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). Methods: The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with A. baumannii and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with A. baumannii with New Delhi metallo-β-lactamase (NDM, before treatment), A. baumannii with NDM (post-treatment), A. baumannii without resistant genes, and those without bacterial infection. Partek was used for investigating enriched functions and pathways related to the pulmonary host response to pneumonia caused by A. baumannii with NDM infection and A. baumannii without antimicrobial-resistant genes. The STRING was employed for identifying protein interaction pathways related to the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. Results: In pulmonary host response to pneumonia caused by A. baumannii with NDM, five immune system-related pathways and five pathways related to signal transduction were identified. No significant differences were observed in the immune system and signal transduction pathways in the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. However, significant differences were noted in the phagosome, ferroptosis, and regulation of the actin cytoskeleton in cellular processes. Conclusions: mNGS provides information not only on pathogen gene expression but also on host gene expression. In this study, we found that pneumonia with A. baumannii carrying the NDM resistance gene triggers stronger immune responses in the lung, while pneumonia with A. baumannii lacking antimicrobial resistance genes is more linked to iron-related pathways. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

25 pages, 2984 KiB  
Review
TRIM25: A Global Player of Cell Death Pathways and Promising Target of Tumor-Sensitizing Therapies
by Wolfgang Eberhardt, Usman Nasrullah and Josef Pfeilschifter
Cells 2025, 14(2), 65; https://doi.org/10.3390/cells14020065 - 7 Jan 2025
Viewed by 390
Abstract
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to “intrinsic resistance”, e.g., acquired by random mutations, cancer cells typically [...] Read more.
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to “intrinsic resistance”, e.g., acquired by random mutations, cancer cells typically escape from certain treatments (“acquired resistance”) by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies. Full article
Show Figures

Figure 1

18 pages, 5139 KiB  
Article
Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms
by Tianying Ren, Jing Wang, Yingxin Ma, Yichen Huang, Somy Yoon, Lijun Mu, Ru Li, Xuekun Wang, Lina Zhang, Pan Li and Lusha Ji
Pharmaceutics 2025, 17(1), 66; https://doi.org/10.3390/pharmaceutics17010066 - 6 Jan 2025
Viewed by 398
Abstract
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: [...] Read more.
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility. We also prepared nanoparticles with pH-responsive properties to explore their potential for controlled drug delivery. The physicochemical properties of Tan IIA/CA nanoparticles were evaluated, including their size, stability, and release profile. We also utilized RNA sequencing to further investigate the underlying anticancer mechanisms of Tan IIA/CA nanoparticles. Results: The Tan IIA/CA nanoparticles demonstrated enhanced solubility and exhibited potent anticancer activity in vitro. Additionally, the nanoparticles showed promising pH-responsive behavior, which is beneficial for controlled release applications. Further investigation into the molecular mechanisms revealed that the anticancer effects of Tan IIA/CA were mediated through apoptosis, ferroptosis, and autophagy pathways. Conclusions: This study confirms the anticancer potential and mechanisms of Tan IIA, while also presenting an innovative approach to enhance the solubility of this poorly soluble compound. The use of CA-based nanoparticles could be a valuable strategy for improving the therapeutic efficacy of Tan IIA in cancer treatment. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

11 pages, 1426 KiB  
Article
Antioxidative Effects of Curcumin on Erastin-Induced Ferroptosis Through GPX4 Signalling
by Tugba Kose, Paul A. Sharp and Gladys O. Latunde-Dada
Gastrointest. Disord. 2025, 7(1), 4; https://doi.org/10.3390/gidisord7010004 - 6 Jan 2025
Viewed by 339
Abstract
Background/Objectives: Pancreatic cancer is a common gastrointestinal cancer with high risk of mortality. Currently, the therapeutic strategies for pancreatic cancers are surgery, chemotherapy, and radiotherapy, none of which are effective treatments. Ferroptosis is a new form of cell death that is iron [...] Read more.
Background/Objectives: Pancreatic cancer is a common gastrointestinal cancer with high risk of mortality. Currently, the therapeutic strategies for pancreatic cancers are surgery, chemotherapy, and radiotherapy, none of which are effective treatments. Ferroptosis is a new form of cell death that is iron (Fe)-dependent and characterized by lipid peroxidation, which is a new approach for treatment of pancreatic cancer. Therefore, this study was dedicated to investigating the effect of erastin and Ras-selective lethal small molecule 3 (RLS3) as ferroptosis inducers as well as focusing on the antioxidant effects of two natural products, curcumin and (−)-epigallocatechin-3-gallate (EGCG), against ferroptosis. Methods: PANC1 cells were treated with 20 μmol/L curcumin or EGCG and then exposed to 20 μmol/L erastin. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, Reactive Oxygen Species (ROS) were measured by dihydrodichlorofluorescein (H2DCF) cell-permeant probe, Fe levels were determined by inductively coupled plasma mass spectrometry (ICP-MS), and glutathione (GSH), lipid peroxidation, Western blot, and mRNA were assayed with commercially available kits. Results: Curcumin and EGCG enhanced cell viability in erastin-treated PANC1 cells in a dose-and time-dependent manner. Erastin-treated PANC1 cells exhibited the elevated levels of GSH depletion, ROS productions, and lipid peroxidation while curcumin reversed the erastin-induced ferroptotic effects. The treatment of erastin-induced PANC1 cells with curcumin increased the GPX4 mRNA gene and protein levels. Also, curcumin decreased the FTH1 mRNA gene levels as a strong Fe chelator. Conclusions: In conclusion, this study shows that erastin can be potentially a therapeutic strategy for treatment of cancer cells. Additionally, curcumin might play an antioxidant role at the specific concentrations, potentially mitigating ferroptosis in cells. Full article
Show Figures

Figure 1

38 pages, 2354 KiB  
Review
Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD
by Fabrizio Termite, Sebastiano Archilei, Francesca D’Ambrosio, Lucrezia Petrucci, Nicholas Viceconti, Roberta Iaccarino, Antonio Liguori, Antonio Gasbarrini and Luca Miele
Antioxidants 2025, 14(1), 56; https://doi.org/10.3390/antiox14010056 - 6 Jan 2025
Viewed by 324
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the “multiple parallel hit model”, contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes’ ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications. Full article
(This article belongs to the Special Issue The Interaction Between Gut Microbiota and Host Oxidative Stress)
Show Figures

Figure 1

15 pages, 6576 KiB  
Article
JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis
by Yan Ni, Liangping Liu, Fanying Jiang, Mingxing Wu and Yingyan Qin
Int. J. Mol. Sci. 2025, 26(1), 307; https://doi.org/10.3390/ijms26010307 - 1 Jan 2025
Viewed by 352
Abstract
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although [...] Read more.
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression. RNA sequencing of anterior lens capsule samples from ARC patients revealed a significant downregulation of Notch signaling, coupled with an upregulation of ferroptosis-related genes. Notch1 expression decreased, while ferroptosis markers increased in an age-dependent manner. In vitro, upregulation of Notch signaling alleviated ferroptosis by decreasing ferritin heavy chain 1 (FTH1) and p53 levels while enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11). Conversely, inhibition of Notch signaling exacerbated ferroptosis, as evidenced by reduced Nrf2, GPX4, and SLC7A11 expression. These findings suggest that downregulation of Notch signaling promotes ferroptosis in LECs by impairing the Nrf2/GPX4 antioxidant pathway, thereby contributing to ARC development. This study offers new insights into ARC pathogenesis and highlights the Notch signaling pathway as a potential therapeutic target for preventing or mitigating ARC progression. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 3859 KiB  
Article
Polydatin-Induced Shift of Redox Balance and Its Anti-Cancer Impact on Human Osteosarcoma Cells
by Alessio Cimmino, Magda Gioia, Maria Elisabetta Clementi, Isabella Faraoni, Stefano Marini and Chiara Ciaccio
Curr. Issues Mol. Biol. 2025, 47(1), 21; https://doi.org/10.3390/cimb47010021 - 31 Dec 2024
Viewed by 400
Abstract
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on [...] Read more.
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100–200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis. Notably, the ROS scavenger N-acetylcysteine (NAC) and the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially reverse PD’s cytotoxic effects. Interestingly, PD’s ability to hinder cell adhesion and migration appears independent of its pro-oxidant effect. Analysis of the oxidative stress regulators SIRT1 and Nrf2 at the gene and protein levels using real-time PCR and Western blot indicates an early oxidative response to PD treatment. PD remains effective under tumor-like conditions of hypoxia and serum starvation, and sensitizes OS cells to ROS-inducing chemotherapeutics like doxorubicin (DOX) and cisplatin (CIS). Importantly, PD exhibits minimal toxicity to non-tumorigenic cells (hFOB), suggesting a favorable therapeutic profile. Overall, our findings underscore that PD-induced redox imbalance plays a crucial role in its anti-OS effects, warranting further exploration into the molecular mechanisms behind its pro-oxidant activity. Full article
(This article belongs to the Special Issue Phytochemicals and Cancer, 2nd Edition)
Show Figures

Figure 1

15 pages, 5577 KiB  
Article
Shielding the Gut: Ghrelin and Ferrostatin-1’s Protective Role Against Sepsis-Induced Intestinal Ferroptosis
by Qiliang Hou, Zhimin Dou, Lei Zhu and Bin Li
Biomedicines 2025, 13(1), 77; https://doi.org/10.3390/biomedicines13010077 - 31 Dec 2024
Viewed by 352
Abstract
Objective: This study investigates the therapeutic efficacy of ghrelin in alleviating sepsis-induced intestinal damage, focusing on its potential to inhibit ferroptosis and protect intestinal barrier integrity. Methods: This study evaluates the therapeutic efficacy of intraperitoneal ghrelin (80 μg/kg) and Ferrostatin-1 (5 mg/kg) using [...] Read more.
Objective: This study investigates the therapeutic efficacy of ghrelin in alleviating sepsis-induced intestinal damage, focusing on its potential to inhibit ferroptosis and protect intestinal barrier integrity. Methods: This study evaluates the therapeutic efficacy of intraperitoneal ghrelin (80 μg/kg) and Ferrostatin-1 (5 mg/kg) using a cecal ligation and puncture (CLP) model in C57BL/6 mice to determine their potential in alleviating sepsis-induced intestinal damage. The investigation focuses on the impacts of ghrelin and Ferrostatin-1 on bacterial load, intestinal morphology, systemic inflammation, oxidative stress, and ferroptosis markers. Our comprehensive methodology encompasses histopathological evaluations, cytokine profiling, oxidative stress assays, and detailed analyses of ferroptosis indicators to thoroughly assess the interventions’ efficacy. Results: Treatment with ghrelin significantly reduced bacterial proliferation, mitigated intestinal damage, and decreased systemic inflammation. Comparable outcomes were observed with Fer-1 treatment. Both interventions restored intestinal barrier functions, modulated inflammatory responses, and attenuated oxidative stress, indicating a suppression of the ferroptosis pathway. Conclusion: Ghrelin exhibits a protective role in sepsis-induced intestinal injury, likely through the inhibition of ferroptosis. This mechanism underscores ghrelin’s therapeutic potential in sepsis management, suggesting avenues for further clinical exploration. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

33 pages, 2595 KiB  
Review
New Insights into Aspirin’s Anticancer Activity: The Predominant Role of Its Iron-Chelating Antioxidant Metabolites
by George J. Kontoghiorghes
Antioxidants 2025, 14(1), 29; https://doi.org/10.3390/antiox14010029 - 29 Dec 2024
Viewed by 407
Abstract
Epidemiological studies have suggested that following long-term, low-dose daily aspirin (LTLDA) administration for more than 5 years at 75–100 mg/day, 20–30% of patients (50–80 years old) had a lower risk of developing colorectal cancer (CRC) and about the same proportion in developing iron [...] Read more.
Epidemiological studies have suggested that following long-term, low-dose daily aspirin (LTLDA) administration for more than 5 years at 75–100 mg/day, 20–30% of patients (50–80 years old) had a lower risk of developing colorectal cancer (CRC) and about the same proportion in developing iron deficiency anemia (IDA). In cases of IDA, an increase in iron excretion is suspected, which is caused by aspirin chelating metabolites (ACMs): salicylic acid, salicyluric acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. The ACMs constitute 70% of the administered aspirin dose and have much longer half-lives than aspirin in blood and tissues. The mechanisms of cancer risk reduction in LTLDA users is likely due to the ACM’s targeting of iron involved in free radical damage, iron-containing toxins, iron proteins, and associated metabolic pathways such as ferroptosis. The ACMs from non-absorbed aspirin (about 30%) may also mitigate the toxicity of heme and nitroso-heme and other iron toxins from food, which are responsible for the cause of colorectal cancer. The mode of action of aspirin as a chelating antioxidant pro-drug of the ACMs, with continuous presence in LTLDA users, increases the prospect for prophylaxis in cancer and other diseases. It is suggested that the anticancer effects of aspirin depend primarily on the iron-chelating antioxidant activity of the ACMs. The role of aspirin in cancer and other diseases is incomplete without considering its rapid biotransformation and the longer half-life of the ACMs. Full article
Show Figures

Figure 1

24 pages, 19502 KiB  
Article
Ferroptosis-Related Transcriptional Level Changes and the Role of CIRBP in Glioblastoma Cells Ferroptosis
by Zijiang Yang, Ting Zhang, Xuanlin Zhu and Xiaobiao Zhang
Biomedicines 2025, 13(1), 41; https://doi.org/10.3390/biomedicines13010041 - 27 Dec 2024
Viewed by 407
Abstract
Background/Objective: We aimed to elucidate the roles of ferroptosis-associated differentially expressed genes (DEGs) in glioblastoma and provide a comprehensive resource for researchers in the field of glioblastoma cell ferroptosis. Methods: We used RNA sequencing to identify the DEGs associated with erastin-induced ferroptosis in [...] Read more.
Background/Objective: We aimed to elucidate the roles of ferroptosis-associated differentially expressed genes (DEGs) in glioblastoma and provide a comprehensive resource for researchers in the field of glioblastoma cell ferroptosis. Methods: We used RNA sequencing to identify the DEGs associated with erastin-induced ferroptosis in glioblastoma cells. We further unraveled the biological functions and clinical implications of cold-inducible RNA-binding protein (CIRBP) in the context of glioblastoma by using a multifaceted approach, encompassing gene expression profiling, survival analysis, and functional assays to elucidate its role in glioblastoma cell mortality and its potential influence on patient prognosis. Results: We identified and validated the gene encoding CIRBP, the expression of which is altered during glioblastoma ferroptosis. Our findings highlight the relationship between CIRBP expression and ferroptosis in glioblastoma cells. We demonstrated that CIRBP modulates key aspects of cell death, thereby altering the sensitivity of glioblastoma cells to erastin-induced ferroptosis. A prognostic model, constructed based on CIRBP expression levels, revealed an association between lower CIRBP levels and poorer prognosis in glioma patients; this finding was corroborated by our comprehensive in vitro and in vivo assays that highlighted the impact of modulating CIRBP expression on glioblastoma cell viability and ferroptotic response. Conclusion: Our research unravels the complex molecular dynamics of ferroptosis in glioblastoma and underscores CIRBP as a potential biomarker and therapeutic target. This improved understanding of the role of CIRBP in ferroptosis paves the way for more precise and efficacious treatments for glioblastoma, potentially improving patient outcomes. Full article
(This article belongs to the Special Issue Gliomas: Signaling Pathways, Molecular Mechanisms and Novel Therapies)
Show Figures

Figure 1

30 pages, 2766 KiB  
Review
Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression
by Rui Jin, Yue Dai, Zheng Wang, Qinyang Hu, Cuntai Zhang, Hongyu Gao and Qi Yan
Biology 2025, 14(1), 12; https://doi.org/10.3390/biology14010012 - 27 Dec 2024
Viewed by 452
Abstract
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting [...] Read more.
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis. Understanding the molecular mechanisms of renal fibrosis is crucial for delaying CKD progression. Ferroptosis is a type of discovered an iron-dependent lipid peroxidation-regulated cell death. Notably, Ferroptosis contributes to tissue and organ fibrosis, which is correlated with the degree of renal fibrosis. This study aims to clarify the complex mechanisms of ferroptosis in renal parenchymal cells and explore how ferroptosis intervention may help alleviate renal fibrosis, particularly by addressing the gap in CKD mechanisms related to abnormal lipid metabolism under the ferroptosis context. The goal is to provide a new theoretical basis for clinically delaying CKD progression. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

19 pages, 14588 KiB  
Article
Integrated Proteomic and Metabolomic Analysis of Muscle Atrophy Induced by Hindlimb Unloading
by Yuan Wang, Xi Li, Na Li, Jiawei Du, Xiaodong Qin, Xiqing Sun, Yongchun Wang and Chengfei Li
Biomolecules 2025, 15(1), 14; https://doi.org/10.3390/biom15010014 - 26 Dec 2024
Viewed by 277
Abstract
Skeletal muscle atrophy, which is induced by factors such as disuse, spaceflight, certain medications, neurological disorders, and malnutrition, is a global health issue that lacks effective treatment. Hindlimb unloading is a commonly used model of muscle atrophy. However, the underlying mechanism of muscle [...] Read more.
Skeletal muscle atrophy, which is induced by factors such as disuse, spaceflight, certain medications, neurological disorders, and malnutrition, is a global health issue that lacks effective treatment. Hindlimb unloading is a commonly used model of muscle atrophy. However, the underlying mechanism of muscle atrophy induced by hindlimb unloading remains unclear, particularly from the perspective of the myocyte proteome and metabolism. We first used mass spectrometry for proteomic sequencing and untargeted metabolomics to analyze soleus muscle changes in rats with hindlimb unloading. The study found 1052 proteins and 377 metabolites (with the MS2 name) that were differentially expressed between the hindlimb unloading group and the control group. Proteins like ACTN3, MYH4, MYBPC2, and MYOZ1, typically found in fast-twitch muscles, were upregulated, along with metabolism-related proteins GLUL, GSTM4, and NDUFS4. Metabolites arachidylcarnitine and 7,8-dihydrobiopterin, as well as pathways like histidine, taurine, and hypotaurine metabolism, were linked to muscle atrophy. Protein and metabolism joint analyses revealed that some pathways, such as glutathione metabolism, ferroptosis, and lysosome pathways, were likely to be involved in soleus atrophy. In this study, we have applied integrated deep proteomic and metabolomic analyses. The upregulation of proteins that are expressed in fast-twitch fibers indicates the conversion of slow-twitch fibers to fast-twitch fibers under hindlimb unloading. In addition, some differentially abundant metabolites and pathways revealed the important role of metabolism in muscle atrophy of the soleus. As shown in the graphical abstract, our study provides insights into the pathogenesis and treatment of muscle atrophy that results from unloading by integrating proteomics and metabolomics of the soleus muscles. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

27 pages, 1597 KiB  
Review
Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives
by Nikolaos Nektarios Karamanolis, Dimitris Kounatidis, Natalia G. Vallianou, Krystalia Dimitriou, Eleni Tsaroucha, Georgios Tsioulos, Ioanna A. Anastasiou, Evangelos Mavrothalassitis, Irene Karampela and Maria Dalamaga
Antibiotics 2025, 14(1), 9; https://doi.org/10.3390/antibiotics14010009 - 25 Dec 2024
Viewed by 753
Abstract
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as [...] Read more.
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation. Diverse classes of antibiotics have exhibited promising anti-cancer properties in both in vitro and in vivo studies. These mechanisms include the induction of apoptosis and cell cycle arrest, generation of reactive oxygen species, and inhibition of key regulators of cell proliferation and migration. Additional effects involve the disruption of angiogenesis and modulation of pivotal processes such as inflammation, immune response, mitochondrial dynamics, ferroptosis, and autophagy. Furthermore, antibiotics have demonstrated the potential to enhance the efficacy of conventional modalities like chemotherapy and radiotherapy, while alleviating treatment-induced toxicities. Nevertheless, the integration of antibiotics into oncological applications remains contentious, with concerns centered on their disruption of gut microbiota, interference with immunotherapeutic strategies, contribution to microbial resistance, and potential association with tumorigenesis. This narrative review explores the mechanisms of antibiotics’ anti-cancer activity, addresses controversies about their dual role in cancer biology, and envisions future perspectives that include the development of novel derivatives and innovative frameworks for their incorporation into cancer treatment paradigms. Full article
Show Figures

Figure 1

Back to TopTop