Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flowchart of the Study
2.2. Patients’ Clinical Data and Results of the Pathogens
2.3. mNGS Process
2.3.1. Nucleic Acid Extraction
2.3.2. DNA Library Preparation
2.3.3. RNA Library Preparation
2.3.4. Library Pooling and DNA Nanoball (DNB) Sequencing
2.4. Partek
2.5. STRING Database Analysis
3. Results
3.1. Information on the Pathogens and Clinical Data of Patients
3.2. Differential Gene Expressions in A. baumannii with NDM and A. baumannii Without Resistant Gene Infection-Associated Pulmonary Host Response
3.3. KEGG Pathways Associated with the Immune System and Cellular Processes
3.4. Iron-Related Pathways in A. baumannii Without Resistant Gene Infection Pulmonary Host Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bart, S.M.; Rubin, D.; Kim, P.; Farley, J.J.; Nambiar, S. Trends in Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia Trials. Clin. Infect. Dis. 2020, 73, e602–e608. [Google Scholar] [CrossRef]
- Kidd, J.M.; Kuti, J.L.; Nicolau, D.P. Nicolau, Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria. Expert Opin. Pharmacother. 2018, 19, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Aschenbrenner, A.C.; Bauer, M.; Bock, C.; Calandra, T.; Gat-Viks, I.; Kyriazopoulou, E.; Lupse, M.; Monneret, G.; Pickkers, P.; et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 2024, 25, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, S.; Yang, Z.; Yang, F.; Wang, Z.; Li, H.; Li, Y.; Sun, T. Clinical Application and Influencing Factor Analysis of Metagenomic Next-Generation Sequencing (mNGS) in ICU Patients With Sepsis. Front. Cell. Infect. Microbiol. 2022, 12, 905132. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ma, L.; Zhang, H.; Feng, L.; Yu, Y.; Zhao, Y.; Li, L.; Zhou, Y.; Song, L.; Li, W.; et al. The Comparison of Metagenomic Next-Generation Sequencing with Conventional Microbiological Tests for Identification of Pathogens and Antibiotic Resistance Genes in Infectious Diseases. Infect. Drug Resist. 2022, 15, 6115–6128. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, B.; Tang, X.; Liu, Y.-L.; He, H.-Y.; Li, X.-Y.; Wang, R.; Guo, F.; Tong, Z.-H. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 369–374. [Google Scholar] [CrossRef]
- Song, J.; Liu, S.; Xie, Y.; Zhang, C.; Xu, C. Diagnostic value of DNA or RNA-based metagenomic next-generation sequencing in lower respiratory tract infections. Heliyon 2024, 10, e30712. [Google Scholar] [CrossRef] [PubMed]
- Xiang, P.; Xu, X.; Lu, X.; Gao, L.; Wang, H.; Li, Z.; Xiong, H.; Li, R.; Xiong, Y.; Pu, L.; et al. Case Report: Identification of SARS-CoV-2 in Cerebrospinal Fluid by Ultrahigh-Depth Sequencing in a Patient With Coronavirus Disease 2019 and Neurological Dysfunction. Front. Med. 2021, 8, 629828. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Liu, J.; Chen, W.; Chen, Y.; Cheng, Y.; Tao, J.; Cai, X.; Zhou, Y.; Wang, Y.; Wang, M.; et al. Metagenomic Next-Generation Sequencing of Bloodstream Microbial Cell-Free Nucleic Acid in Children With Suspected Sepsis in Pediatric Intensive Care Unit. Front. Cell. Infect. Microbiol. 2021, 11, 665226. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.; Han, D.; Zhang, R.; Li, J. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections. J. Adv. Res. 2021, 38, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Partek, An Illumina Company. Partek™ Flow™ (Version 12.0.1) [Computer Software]. 2024. Available online: https://www.partek.com/partek-flow/ (accessed on 19 November 2024).
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; Attili, A.-R.; De Martino, L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine. Pathogens 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Cook-Libin, S.; Sykes, E.M.E.; Kornelsen, V.; Kumar, A. Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect. Immun. 2022, 90, e0022322. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Pantapalangkoor, P.; Tan, B.; Bruhn, K.W.; Ho, T.; Nielsen, T.; Skaar, E.P.; Zhang, Y.; Bai, R.; Wang, A.; et al. Transferrin iron starvation therapy for lethal bacterial and fungal infections. J. Infect. Dis. 2014, 210, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lu, J.; Hao, X.; Li, H.; Zhang, G.; Liu, X.; Li, X.; Zhao, C.; Kuang, W.; Chen, D.; et al. FTH1 Inhibits Ferroptosis Through Ferritinophagy in the 6-OHDA Model of Parkinson’s Disease. Neurotherapeutics 2020, 17, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2020, 31, 107–125. [Google Scholar] [CrossRef]
- Kim, M.J.; Yun, G.J.; Kim, S.E. Metabolic Regulation of Ferroptosis in Cancer. Biology 2021, 10, 83. [Google Scholar] [CrossRef]
- Hu, X.; Li, D.; Zhu, H.; Yu, T.; Xiong, X.; Xu, X. ATP6V1F is a novel prognostic biomarker and potential immunotherapy target for hepatocellular carcinoma. BMC Med Genom. 2023, 16, 188. [Google Scholar] [CrossRef]
- Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2019, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Hu, Y.; Wu, Z.; Li, Y.; Kong, M.; Kang, Z.; Zuoyuan, B.; Yang, Z. TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1. Cell Death Dis. 2022, 13, 592. [Google Scholar] [CrossRef] [PubMed]
- Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 2017, 17, 318–332. [Google Scholar] [CrossRef]
- Iseda, N.; Itoh, S.; Toshida, K.; Tomiyama, T.; Morinaga, A.; Shimokawa, M.; Shimagaki, T.; Wang, H.; Kurihara, T.; Toshima, T.; et al. Ferroptosis is induced by lenvatinib through fibroblast growth factor receptor-4 inhibition in hepatocellular carcinoma. Cancer Sci. 2022, 113, 2272–2287. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hao, Y.; Liu, Y.; Wang, G.; He, Z.; Zhao, Y.; Xu, Z.; Liu, X.; Wang, Y.; Gong, C.; et al. atp6v0b gene regulates the immune response against Vibrio vulnificus in half-smooth tongue sole (Cynoglossus semilaevis). Aquac. Rep. 2021, 20, 100758. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | |
---|---|---|---|
Sex | F | M | M |
Age (years) | 79 | 78 | 72 |
ICU length of stay (days) | 29 | 32 | 22 |
Cause of ICU admission | Pneumonia, acute respiratory failure | Pneumonia, acute respiratory failure | Pneumonia, acute respiratory failure |
SOFA on BALF (days) | 11 | 9 | 6 |
Mortality | Y | Y | Y |
Cancer | N | N | N |
COVID-19 | N | Y | N |
DM | N | N | N |
Hypertension | N | Y | N |
Other underlying diseases | Sicca syndrome, dermatomyositis, dementia | None | Dementia, traumatic brain injury, atrial fibrillation |
BALF culture report | None | Acinetobacter baumannii Candida albicans | None |
Film array report | None | Acineto calc baumannii complex (107 copy/mL) Klebsiella pneumoniae group (105 copy/mL) | Acineto calc baumannii complex (106 copy/mL) No resistant genes |
Resistant genes | None | NDM | none |
mNGS report | Candida albicans (15,740) Human γ-gamma herpes virus 4 (13) | Acinetobacter baumannii (14,557) Klebsiella pneumoniae (4) Chryseobacterium indologenes (4) Candida albicans (585) Human α-herpes virus 1 (6) COVID-19 (55) | Acinetobacter baumannii (140,867) Corynebacterium striatum (39,157) Chryseobacterium indologenes (21,651) Candida albicans (15) Human β-herpes virus 7 (25) Human α-herpes virus 1 (11) Human β-herpes virus 5 (6) |
Group | Enrichment Score | p-Value | Genes in the List |
---|---|---|---|
Acinetobacter baumannii with NDM vs. nonbacterial infection | |||
Ribosome | 32.13 | 0.00 | 72 |
COVID-19 | 27.20 | 0.00 | 91 |
Thyroid hormone signaling pathway | 9.78 | 0.00 | 42 |
Primary immunodeficiency | 5.96 | 0.00 | 15 |
Glycosphingolipid biosynthesis: lacto and neolecto series | 5.89 | 0.00 | 12 |
Gastric cancer | 5.61 | 0.00 | 43 |
Arrhythmogenic right ventricular cardiomyopathy | 5.35 | 0.00 | 25 |
Nicotine addiction | 5.09 | 0.01 | 15 |
Vasopressin-regulated water reabsorption | 5.00 | 0.01 | 16 |
Herpes simplex virus 1 infection | 4.92 | 0.01 | 118 |
Acinetobacter baumannii without resistant genes vs. nonbacterial infection | |||
Ribosome | 67.25 | 0.00 | 69 |
COVID-19 | 51.62 | 0.00 | 77 |
Pentose phosphate pathway | 6.31 | 0.00 | 9 |
Salmonella infection | 5.46 | 0.00 | 38 |
Spliceosome | 4.43 | 0.01 | 24 |
Sulfur metabolism | 4.40 | 0.01 | 4 |
Actin cytoskeleton regulation | 4.24 | 0.01 | 32 |
Shigellosis | 4.02 | 0.02 | 35 |
Pathogenic Escherichia coli infection | 3.99 | 0.02 | 29 |
Viral myocarditis | 3.81 | 0.02 | 11 |
Subclass (Class) of the KEGG Pathway | Description | Enrichment Score | p-Value | Genes in the List |
---|---|---|---|---|
Acinetobacter baumannii with NDM infection pulmonary microenvironment | ||||
Immune system (Organismal systems) | Thyroid hormone signaling pathway | 9.78 | <0.01 | 42 |
Parathyroid hormone synthesis, secretion, and action | 4.59 | 0.01 | 31 | |
Glucagon signaling pathway | 3.89 | 0.02 | 30 | |
Insulin signaling pathway | 3.45 | 0.03 | 36 | |
Cortisol synthesis and secretion | 3.25 | 0.04 | 19 | |
Signal transduction ((Environmental information processing) | Endocytosis | 4.90 | 0.01 | 65 |
ErbB signaling pathway | 4.65 | 0.01 | 26 | |
AMPK signaling pathway | 3.76 | 0.02 | 33 | |
Actin cytoskeleton regulation | 3.45 | 0.03 | 54 | |
Signaling molecules and their interaction ((Environmental information processing) | HIF-1 signaling pathway | 3.14 | 0.04 | 29 |
Cell growth and death ((Cellular processes) | Mitophagy-animal | 3.01 | 0.05 | 20 |
Acinetobacter baumannii without resistant gene infection in the pulmonary microenvironment | ||||
Transport and catabolism (Cellular processes) | Phagosome | 3.33 | 0.04 | 22 |
Cell growth and death (Cellular processes) | Ferroptosis | 3.11 | 0.04 | 8 |
Cell motility (Cellular processes) | Actin cytoskeleton regulation | 4.24 | 0.01 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, M.-J.; Cheng, C.-H.; Wang, H.-C.; Tsai, M.-J.; Sheu, C.-C.; Chang, W.-A. Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing. Biomedicines 2025, 13, 142. https://doi.org/10.3390/biomedicines13010142
Chou M-J, Cheng C-H, Wang H-C, Tsai M-J, Sheu C-C, Chang W-A. Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing. Biomedicines. 2025; 13(1):142. https://doi.org/10.3390/biomedicines13010142
Chicago/Turabian StyleChou, Mu-Jung, Chih-Hung Cheng, Hui-Ching Wang, Ming-Ju Tsai, Chau-Chyun Sheu, and Wei-An Chang. 2025. "Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing" Biomedicines 13, no. 1: 142. https://doi.org/10.3390/biomedicines13010142
APA StyleChou, M.-J., Cheng, C.-H., Wang, H.-C., Tsai, M.-J., Sheu, C.-C., & Chang, W.-A. (2025). Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing. Biomedicines, 13(1), 142. https://doi.org/10.3390/biomedicines13010142