Journal Description
Journal of Molecular Pathology
Journal of Molecular Pathology
is an international, peer-reviewed, open access journal on every topic related to modern histopathology and cytopathology, predictive pathology and molecular cytopathology, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 26.5 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH)
J. Mol. Pathol. 2025, 6(1), 3; https://doi.org/10.3390/jmp6010003 - 15 Jan 2025
Abstract
►
Show Figures
The occurrence of cervical cancer is often linked to a previous infection with a human papillomavirus (HPV). In order to detect HPV infections in cervical smears, a broad range of tests can be used. This study compares the two hybridisation-based DNA-microarray systems “HPV
[...] Read more.
The occurrence of cervical cancer is often linked to a previous infection with a human papillomavirus (HPV). In order to detect HPV infections in cervical smears, a broad range of tests can be used. This study compares the two hybridisation-based DNA-microarray systems “HPV 3.5 LCD-Array” (Chipron GmbH) and “PapilloCheck®” (Greiner Bio-One GmbH), based on their ability to detect and differentiate HPV infections in 42 different cervical smears. PapilloCheck® can detect and individually identify 24 HPV types, whereas the 3.5 LCD-Array can differentiate among 32 HPV genotypes. However, both systems include all 13 high-risk (HR)-classified types. With Chipron having already stopped the production of the 3.5 LCD-Array test, quite a few laboratories are confronted with the need to establish a new HPV testing method. The two methods were found to have a high agreement regarding the clinical significance of the detected HR HPV types. Discrepant cases were additionally validated with the help of a third test (VisionArray® HPV, ZytoVision GmbH). The results of the VisionArray® test corresponded rather well with the results of the 3.5 LCD-Array.
Full article
Open AccessReview
Is It Time to Assess T Cell Clonality by Next-Generation Sequencing in Mature T Cell Lymphoid Neoplasms? A Scoping Review
by
Rina Kansal
J. Mol. Pathol. 2025, 6(1), 2; https://doi.org/10.3390/jmp6010002 - 8 Jan 2025
Abstract
►▼
Show Figures
Background: T cell clonality is commonly assessed in the diagnostic work-up of mature T cell lymphoid neoplasms. Although fragment-length polymerase chain reaction (FL-PCR) assays are most widely used, next-generation sequencing (NGS) of the TRG and TRB genes is increasingly being used to assess
[...] Read more.
Background: T cell clonality is commonly assessed in the diagnostic work-up of mature T cell lymphoid neoplasms. Although fragment-length polymerase chain reaction (FL-PCR) assays are most widely used, next-generation sequencing (NGS) of the TRG and TRB genes is increasingly being used to assess T cell clonality. Objective: The present work is a scoping review of studies that assessed T cell clonality by NGS for diagnostic purposes, including only studies that provided integrated clinicopathologic diagnoses in comparing FL-PCR and NGS assays to evaluate if it is preferable to use NGS-based assays for T cell clonality evaluation in diagnostic pathology. Methods: Papers published from 1992 to 3 August 2024 were searched in PubMed. Twenty-nine cohort studies and five instructive case reports, published from 2013–2024 from the USA, UK, Europe, and Australia that provided integrated clinicopathologic diagnoses and used NGS to evaluate T cell clonality in clinical specimens from patients with mature T cell neoplasms and related non-neoplastic and neoplastic diseases were included, with additional relevant studies. Results: Ten (34.4%) of the 29 cohorts included clinical samples from patients having various cutaneous and non-cutaneous T cell malignancies, related neoplasms, and reactive conditions; 2 (6.8%) studies focused on T cell prolymphocytic leukemia, 16 (55%) on cutaneous T cell lymphoma, and one on pediatric pityriasis lichenoides. Eleven (38%) of the 29 cohort studies compared NGS with FL-PCR assays in 908 clinical samples. Eight (72.7%) of the 11 studies compared TRG FL-PCR with TRG NGS (n = 5), TRB NGS (n = 2), and TRG NGS and TRB NGS (n = 1); the remaining three compared EuroClonality/BIOMED-2 FL-PCR (TRG and TRB) with TRG NGS (n = 1), TRB NGS (n = 1), and the EuroClonality-NGS DNA capture assay (n = 1). TRB NGS was used in 16 (55%) of 29, TRG NGS in 6 (20.6%) of 29, and both TRG and TRB NGS in 7 (24%) of 29. Two (6.8%) of the 29 studies compared TRB NGS with flow cytometric immunophenotyping assays for Vβ and T cell receptor β constant region 1. One additional study compared long-read sequencing with NGS for TRG and TRB rearrangements. Conclusions: NGS is highly specific and sensitive for assessing T cell clonality. NGS precisely tracks unique rearranged sequences, which FL-PCR cannot. NGS findings for clonality must be interpreted in the context of all clinicopathologic and immunophenotypic findings, like FL-PCR. With such interpretations, NGS is much preferable to FL-PCR for evaluating T cell clonality for diagnostic purposes. It is necessary to reduce costs, increase accessibility, and educate providers about NGS for clonality evaluation. TRB NGS has been primarily assessed in the peripheral blood and skin, whereas TRG NGS has also been evaluated in formalin-fixed and non-cutaneous fresh lymphoid tissues. TRG NGS performed better than TRB NGS in comparative studies.
Full article
Figure 1
Open AccessArticle
The Transcription of Transposable Elements Differentially Regulated by SVAs in the Major Histocompatibility Complex Class I Region of a Parkinson’s Progression Markers Initiative Cohort
by
Jerzy K. Kulski, Abigail L. Pfaff and Sulev Koks
J. Mol. Pathol. 2025, 6(1), 1; https://doi.org/10.3390/jmp6010001 - 6 Jan 2025
Abstract
►▼
Show Figures
Background/Objectives: The highly polymorphic Major Histocompatibility Complex (MHC) genomic region, located on the short arm of chromosome 6, is implicated genetically in Parkinson’s disease (PD), a progressive neurodegenerative disorder with motor and non-motor symptoms. Previously, we reported significant associations between SINE-VNTR-Alu (SVA) expression
[...] Read more.
Background/Objectives: The highly polymorphic Major Histocompatibility Complex (MHC) genomic region, located on the short arm of chromosome 6, is implicated genetically in Parkinson’s disease (PD), a progressive neurodegenerative disorder with motor and non-motor symptoms. Previously, we reported significant associations between SINE-VNTR-Alu (SVA) expression quantitative trait loci (eQTLs) and Human Leucocyte Antigen (HLA) class I genotypes in PD. In this study, we aimed to evaluate SVA associations and their regulatory effects on transposable element (TE) transcription in the MHC class I region. Methods: Transcriptome data from the peripheral blood cells of 1530 individuals in the Parkinson’s Progression Markers Initiative (PPMI) cohort were reanalyzed for TE and gene expression using publicly available bioinformatics tools, including Salmon and Matrix-eQTL. Results: Four structurally polymorphic SVAs regulated the transcription of 18 distinct clusters of 235 TE loci, comprising LINEs (33%), SINEs (19%), LTRs (35%), and ancient transposon DNA elements (12%) located near HLA genes. The transcribed TEs were predominantly short, with an average length of 445 nucleotides. The regulatory effects of these SVAs varied significantly in terms of TE types, numbers, and transcriptional activation or repression. The SVA-regulated TE RNAs in blood cells appear to function as enhancer-like elements, differentially influencing the expression of HLA class I genes, non-HLA genes, and noncoding RNAs. Conclusions: These findings highlight the roles of SVAs and their associated TEs in the complex regulatory networks governing coding and noncoding gene expression in the MHC class I region, with potential implications for immune function and disease susceptibility.
Full article
Graphical abstract
Open AccessReview
Effects of Calcium Ion Dyshomeostasis and Calcium Ion-Induced Excitotoxicity in Parkinson’s Disease
by
Daleum Nam, Hyejung Kim, Sun Jung Han, Ilhong Son and Dong Hwan Ho
J. Mol. Pathol. 2024, 5(4), 544-557; https://doi.org/10.3390/jmp5040037 - 14 Dec 2024
Abstract
►▼
Show Figures
Calcium ions (Ca2+) are vital intracellular messengers that regulate a multitude of neuronal functions, including synaptic transmission, plasticity, exocytosis, and cell survival. Neuronal cell death can occur through a variety of mechanisms, including excitotoxicity, apoptosis, and autophagy. In the context of
[...] Read more.
Calcium ions (Ca2+) are vital intracellular messengers that regulate a multitude of neuronal functions, including synaptic transmission, plasticity, exocytosis, and cell survival. Neuronal cell death can occur through a variety of mechanisms, including excitotoxicity, apoptosis, and autophagy. In the context of excitotoxicity, the excessive release of glutamate in the synapses can trigger the activation of postsynaptic receptors. Upon activation, Ca2+ influx into the cell from the extracellular space via their associated ion channels, most notably L-type Ca2+ channels. Previous studies have indicated that α-synuclein (α-syn), a typical cytosolic protein, plays a significant role in the pathogenesis of Parkinson’s disease (PD). It is also worth noting that the aggregated form of α-syn has the capacity to affect Ca2+ homeostasis by altering the function of Ca2+ regulation. The upregulation of leucine-rich repeat kinase 2 (LRRK2) is closely associated with PD pathogenesis. LRRK2 mutants exhibit a dysregulation of calcium signaling, resulting in dopaminergic neuronal degeneration. It could therefore be proposed that α-syn and LRRK2 play important roles in the mechanisms underlying Ca2+ dyshomeostasis and excitotoxicity in PD.
Full article
Figure 1
Open AccessArticle
Evaluation of Cell-Free DNA Long Fragments in the Triage of FIT+ Patients Enrolled in a Colorectal Cancer Screening Program: An Italian Prospective, Cross-Sectional Study
by
Mauro Scimia, Francesco Pepe, Gianluca Russo, Umberto Malapelle, Simone Scimia, Annalaura Alfieri, Valentina Olivieri, Rachel Chuang, Hiromi Tanaka, Michael Sha, David Chen, Claudia Scimone, Lucia Palumbo, Shuo Shen, Yulia Gavrilov, Stav Edelstein, Maria Antonia Bianco and Giancarlo Troncone
J. Mol. Pathol. 2024, 5(4), 533-543; https://doi.org/10.3390/jmp5040036 - 13 Dec 2024
Abstract
►▼
Show Figures
Introduction: Colorectal cancer screening programs are effective in reducing incidence and mortality. In Europe, every FIT+ patient is referred to colonoscopy. The available data show that ~75.0% of these patients are negative. It is desirable to select patients at a greater risk of
[...] Read more.
Introduction: Colorectal cancer screening programs are effective in reducing incidence and mortality. In Europe, every FIT+ patient is referred to colonoscopy. The available data show that ~75.0% of these patients are negative. It is desirable to select patients at a greater risk of having a positive colonoscopy. Materials and Methods: 711 subjects, aged 50–74, attending the screening program of ASL-NA-3-SUD (Naples, Italy), were enrolled in a cross-sectional study to evaluate the performance of the QuantiDNA™ test and the non-inferiority of an alternative approach (AAP). This evaluation is based on FIT+ and QuantiDNA™+ patients referred to colonoscopy, compared to Standard of Care (SOC) colonoscopy following a FIT+ test alone. A non-inferiority margin (NIM) for colorectal neoplasia (CN) and advanced adenomas (AA) was set at −10% and at −3.8% for CRC. Results: The odds ratio was 1.76 (p-value = 0.009). The detection rate of AAP was 15.9% for colorectal neoplasia, 13.0% for advanced adenoma, and 3.0% for CRC. The risk difference between AAP and SOC was −5.07% (95% C.I. −9.23, −0.90) for colorectal neoplasia, −4.02% (95% C.I. −7.89, −0.16) for advanced adenomas, and −1.04% (95% C.I. −3.16, 1.07) for CRC. This data suggests that AAP is non-inferior to SOC for detecting CN, AA, and CRC. The expected decrease in colonoscopies is 33.4%. Conclusions: The QuantiDNA™ test is straightforward, non-invasive, and well-tolerated. Data from this study indicate that it is effective in the reduction of the need for colonoscopy examinations (−33.4%) and is non-inferior to SOC in the detection of significant colorectal lesions.
Full article
Figure 1
Open AccessArticle
“Comprehensive Analysis of Factors Influencing Recurrence and Survival in Glioblastoma: Implications for Treatment Strategies”: A Single Center Study
by
Ahmed Bendari, Sunder Sham, Hamed Hammoud, Oana Vele, Brett Baskovich, David Huang, Alaa Bendari, Rachel Saks, Reham Al-Refai, Tasneem Bendari, Layth Kataw, Fnu Kiran, Fnu Anjali, Sanjay Kirshan Kumar and Manju Harshan
J. Mol. Pathol. 2024, 5(4), 520-532; https://doi.org/10.3390/jmp5040035 - 30 Nov 2024
Abstract
►▼
Show Figures
Glioblastoma is a highly aggressive malignancy affecting the brain and central nervous system. It is the most common malignant primary brain tumor, yet its prognosis remains poor. Median survival typically ranges from around 13 months with standard treatment to up to 19.9 months
[...] Read more.
Glioblastoma is a highly aggressive malignancy affecting the brain and central nervous system. It is the most common malignant primary brain tumor, yet its prognosis remains poor. Median survival typically ranges from around 13 months with standard treatment to up to 19.9 months in some recent clinical trials. Despite advances in treatment, the aggressive nature of glioblastoma continues to present significant challenges for improving patient outcomes. This study aimed to analyze various biological, radiological, and molecular factors associated with glioblastoma recurrence and to estimate survival outcomes. A total of 104 glioblastoma patients diagnosed between January 2017 and September 2022 were included. Patient demographics, treatment received, and molecular characteristics were obtained from the Electronic Patient Record (EPR). Tumor molecular characteristics were analyzed using the OnkoSight Advanced CNS NGS panel. Statistical analyses were performed to develop a prognostic model for glioblastoma recurrence and estimate survival rates. Among the patients, 65.4% had no recurrence, with a mean age of 63 years. No gender or BMI differences were observed, but ages <60 years were associated with recurrence. Radiological findings showed no significant differences in tumor size, necrosis, site, or focality. In multivariate analysis, the female gender, obesity, old age (>60 years), or bifocal tumors were associated with decreased glioblastoma recurrence. However, factors like tumor site, size, necrosis, MGMT promoter methylation, and EGFR alteration showed no significant association with recurrence. Median survival was 12 months, with older age significantly associated with shorter survival. Tumor sizes >4 cm showed shorter survival trends but not statistically significantly. Patients who lived longer experienced more tumor recurrence incidents. Standard or non-standard treatments were associated with longer median survival compared to no treatment. Our findings provide insights into factors influencing glioblastoma recurrence and survival. Age, gender, and tumor characteristics play pivotal roles in recurrence. Understanding these factors could aid in optimizing treatment strategies and improving patient outcomes. However, further multicentric investigations are needed to validate these findings. This study emphasizes the importance of considering biological and radiological factors in clinical decision-making for glioblastoma cases.
Full article
Figure 1
Open AccessArticle
Evaluation of Microsatellite Instability via High-Resolution Melt Analysis in Colorectal Carcinomas
by
Thais Maloberti, Sara Coluccelli, Viviana Sanza, Elisa Gruppioni, Annalisa Altimari, Stefano Zagnoni, Lidia Merlo, Antonietta D’Errico, Michelangelo Fiorentino, Daniela Turchetti, Sara Miccoli, Giovanni Tallini, Antonio De Leo and Dario de Biase
J. Mol. Pathol. 2024, 5(4), 512-519; https://doi.org/10.3390/jmp5040034 - 14 Nov 2024
Abstract
►▼
Show Figures
Background/Objectives: Colorectal cancer (CRC) is the third leading cause of cancer death globally, with rising incidence. The immunohistochemistry (IHC) for mismatch repair (MMR) proteins is the first technique used in routine practice to evaluate an MMR status. Microsatellite instability (MSI) may be tested
[...] Read more.
Background/Objectives: Colorectal cancer (CRC) is the third leading cause of cancer death globally, with rising incidence. The immunohistochemistry (IHC) for mismatch repair (MMR) proteins is the first technique used in routine practice to evaluate an MMR status. Microsatellite instability (MSI) may be tested in case of doubt during IHC staining. This study introduces a novel high-resolution melt (HRM) protocol for MSI detection and compares it with traditional fragment length analysis (FLA) via capillary electrophoresis. Methods: A total of 100 formalin-fixed and paraffin-embedded CRC specimens were analyzed using two distinct protocols: one based on FLA (TrueMark MSI Assay kit) and another one based on HRM (AmoyDx® Microsatellite Instability Detection Kit). Results: Overall, 68 (68.0%) of the cases were MSS, and 32 (32.0%) were MSI-H. HRM analysis was first successfully carried out in all the cases. A perfect concordance in MSI evaluation between HRM and FLA was observed. HRM showed slightly shorter hands-on time and turnaround time. Conclusions: We provided evidence of the validity of this new HRM approach in determining the MSI status of colorectal carcinomas.
Full article
Figure 1
Open AccessReview
Pattern Recognition Receptors in Periodontal Disease: Molecular Mechanisms, Signaling Pathways, and Therapeutic Implications
by
Elisabetta Ferrara and Francesco Mastrocola
J. Mol. Pathol. 2024, 5(4), 497-511; https://doi.org/10.3390/jmp5040033 - 13 Nov 2024
Abstract
►▼
Show Figures
Periodontal disease remains a significant global health concern, characterized by complex host–pathogen interactions leading to tissue destruction. This review explored the role of pattern recognition receptors (PRRs) in the pathogenesis of periodontal disease, synthesizing current knowledge on their molecular mechanisms and potential as
[...] Read more.
Periodontal disease remains a significant global health concern, characterized by complex host–pathogen interactions leading to tissue destruction. This review explored the role of pattern recognition receptors (PRRs) in the pathogenesis of periodontal disease, synthesizing current knowledge on their molecular mechanisms and potential as therapeutic targets. We examined the diverse family of PRRs, focusing on toll-like receptors (TLRs) and NOD-like receptors (NLRs), elucidating their activation by periodontal pathogens and subsequent downstream signaling cascades. This review highlights the intricate interplay between PRR-mediated pathways, including NF-κB and MAPK signaling, and their impact on inflammatory responses and bone metabolism in periodontal tissues. We discussed the emerging concept of PRR crosstalk and its implications for periodontal homeostasis and disease progression. Furthermore, this review addressed the potential of PRR-targeted therapies, exploring both challenges and opportunities in translating molecular insights into clinical applications. By providing an overview of PRRs in periodontal health and disease, this review aims to stimulate future research directions and inform the development of novel diagnostic and therapeutic strategies in periodontology.
Full article
Graphical abstract
Open AccessReview
Molecular Pathogenesis of Renal Neoplasms in Patients with Birt–Hogg–Dubé Syndrome
by
Behtash G. Nezami, Bin Tean Teh, Xiaoqi Lin and Ximing J. Yang
J. Mol. Pathol. 2024, 5(4), 478-496; https://doi.org/10.3390/jmp5040032 - 30 Oct 2024
Abstract
►▼
Show Figures
Birt–Hogg–Dubé syndrome (BHDS) is an autosomal dominant disease characterized by skin, lung, and renal manifestations. This syndrome is caused by a germline mutation in the FLCN gene, which leads to disruption in multiple downstream pathways. Renal cell carcinomas are one of the serious
[...] Read more.
Birt–Hogg–Dubé syndrome (BHDS) is an autosomal dominant disease characterized by skin, lung, and renal manifestations. This syndrome is caused by a germline mutation in the FLCN gene, which leads to disruption in multiple downstream pathways. Renal cell carcinomas are one of the serious clinical manifestations of the disease, which usually presents as bilateral and multiple tumors. Morphologically, most of these tumors are classified as hybrid oncocytic tumors. Recent advances in molecular techniques have shed light on the pathogenesis of these renal tumors. In this review, we evaluate and summarize the current knowledge of BHDS, pathologic changes, and its molecular basis with the focus on the renal hybrid oncocytic tumor (HOT), their pathogenesis, and molecular underpinning.
Full article
Figure 1
Open AccessArticle
Reduced Insulin-like Growth Factor Levels in Pre-Menopausal Women with Endometrial Cancer
by
Irene Ray, Carla S. Möller-Levet, Agnieszka Michael, Lisiane B. Meira and Patricia E. Ellis
J. Mol. Pathol. 2024, 5(4), 466-477; https://doi.org/10.3390/jmp5040031 - 14 Oct 2024
Abstract
►▼
Show Figures
The rising global incidence of uterine cancer has been linked to the escalating prevalence of obesity. Obesity results in insulin resistance which alters the IGF system, thereby driving cancer progression via increased cell proliferation and the inhibition of apoptosis, although the precise mechanisms
[...] Read more.
The rising global incidence of uterine cancer has been linked to the escalating prevalence of obesity. Obesity results in insulin resistance which alters the IGF system, thereby driving cancer progression via increased cell proliferation and the inhibition of apoptosis, although the precise mechanisms remain unclear. In a previous study, we compared the levels of IGF1 and IGF2 between fifty endometrial cancer patients (study group) and fifty age-matched non-cancer patients with benign gynaecological conditions (control group), identifying a correlation with menopause. Building on these data, we now report that IGF levels in pre-menopausal women were significantly lower in the study group compared to the control group, a pattern not observed in post-menopausal women. We undertook the receiver operating characteristic (ROC) curve analysis for calculating the potential of IGF1 and IGF2 to effectively distinguish pre-menopausal women with endometrial cancer from those without it. For pre-menopausal women, the area under ROC curve values were 0.966 for IGF1 and 0.955 for IGF2, both with significant p-values, indicating that IGF1 and IGF2 levels have the potential to be diagnostic biomarkers for distinguishing pre-menopausal women with endometrial cancer from those without it. In summary, our findings emphasise the importance of considering menopausal status in the context of IGF level assessments and suggest that IGF1 and IGF2 could play a crucial role in the early diagnosis of endometrial cancer in pre-menopausal women.
Full article
Figure 1
Open AccessReview
Rheumatoid Arthritis: What Inflammation Do We Face?
by
Anastasia V. Poznyak, Tatyana Vladimirovna Kirichenko, Dmitry Felixovich Beloyartsev, Alexey V. Churov, Tatiana Ivanovna Kovyanova, Irina Alexandrovna Starodubtseva, Vasily N. Sukhorukov, Stanislav A. Antonov and Alexander N. Orekhov
J. Mol. Pathol. 2024, 5(4), 454-465; https://doi.org/10.3390/jmp5040030 - 8 Oct 2024
Abstract
►▼
Show Figures
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by symmetrical joint inflammation, cartilage degradation, and bone erosion. This review explores the multifaceted aspects of RA pathogenesis, focusing on the dynamic interplay between innate and adaptive immune responses, genetic predisposition, and environmental triggers.
[...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by symmetrical joint inflammation, cartilage degradation, and bone erosion. This review explores the multifaceted aspects of RA pathogenesis, focusing on the dynamic interplay between innate and adaptive immune responses, genetic predisposition, and environmental triggers. The development of RA involves genetic susceptibility and trigger events such as infections, trauma, smoking, obesity, and microbiome alterations, fostering autoimmune reactions and tissue/organ destruction. The innate immune response, including toll-like receptor activation and synovial fibroblasts’ roles, contributes to the acceleration of inflammatory processes in joint tissues. Monocytes and macrophages organize and sustain chronic joint inflammation, leading to tissue damage and bone resorption, while highlighting the significance of CD14 and CD16 subsets in RA pathogenesis. In the adaptive immune response, aberrant activation and proliferation of CD4+ T cells and the role of regulatory T cells in maintaining immune tolerance are discussed. Target cytokines like TNF-α, IL-6, IL-1, IL-17, and BAFF, as well as chemokines such as CCL2, CXCL10, CCL5, and CXCL12, have emerged as critical components in managing chronic inflammation and joint damage in RA. This comprehensive overview provides insights into the pathophysiology of RA and potential therapeutic avenues, emphasizing the importance of understanding these complex immunological and genetic mechanisms for developing more effective treatment strategies.
Full article
Figure 1
Open AccessReview
Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors
by
Ilya Klabukov, Anna Smirnova, Anna Yakimova, Alexander E. Kabakov, Dmitri Atiakshin, Daria Petrenko, Victoria A. Shestakova, Yana Sulina, Elena Yatsenko, Vasiliy N. Stepanenko, Michael Ignatyuk, Ekaterina Evstratova, Michael Krasheninnikov, Dmitry Sosin, Denis Baranovskii, Sergey Ivanov, Peter Shegay and Andrey D. Kaprin
J. Mol. Pathol. 2024, 5(4), 437-453; https://doi.org/10.3390/jmp5040029 - 5 Oct 2024
Abstract
►▼
Show Figures
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence
[...] Read more.
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Full article
Figure 1
Open AccessArticle
Overlapping Gene Expression and Molecular Features in High-Grade B-Cell Lymphoma
by
Katharina D. Faißt, Cora C. Husemann, Karsten Kleo, Monika Twardziok and Michael Hummel
J. Mol. Pathol. 2024, 5(4), 415-436; https://doi.org/10.3390/jmp5040028 - 30 Sep 2024
Abstract
►▼
Show Figures
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is
[...] Read more.
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is difficult by means of histology/immunostaining in a substantial number of patients. This study aimed to improve subtyping by the identification of molecular features of aggressive B-cell lymphomas, with a specific focus on HGBL. To this end, we performed a comprehensive gene expression and mutational pattern analysis as well as the detection of B-cell clonality of 34 cases diagnosed with BL (n = 4), DLBCL (n = 16), HGBL DH (n = 8), and HGBL NOS (n = 6). Three distinct molecular subgroups were identified based on gene expression, primarily influenced by MYC expression/translocation and cell proliferation. In HGBL, compared to BL, there was an upregulation of PRKAR2B and TERT. HGBL DH exhibited elevated expression of GAMT and SMIM14, while HGBL NOS showed increased expression of MIR155HG and LZTS1. Our gene mutation analysis revealed MYC, ARID1A, BCL2, KMT2D, and PIM1 as the most affected genes in B-cell lymphoma, with BCL2 and CREBBP predominant in HGBL DH, and MYC and PIM1 in HGBL NOS. Clonality analysis of immunoglobulin heavy and light chain rearrangements did not show distinguishable V- or J-usage between the diagnostic subgroups.
Full article
Figure 1
Open AccessArticle
Concordance of HER2 Expression in Paired Primary and Metastatic Sites of Endometrial Serous Carcinoma and the Effect of Intratumoral Heterogeneity
by
Francis Hong Xin Yap, Yancey Wilson, Joanne Peverall, Benhur Amanuel, Ben Allanson and Sukeerat Ruba
J. Mol. Pathol. 2024, 5(3), 405-414; https://doi.org/10.3390/jmp5030027 - 14 Sep 2024
Abstract
►▼
Show Figures
Primary endometrial serous carcinoma, known for its aggressive nature and poor prognosis, shares similarities with breast and gastric cancers in terms of potential HER2 overexpression as a therapeutic target. Assessing HER expression is complicated by tumor heterogeneity and discrepancies between primary and metastatic
[...] Read more.
Primary endometrial serous carcinoma, known for its aggressive nature and poor prognosis, shares similarities with breast and gastric cancers in terms of potential HER2 overexpression as a therapeutic target. Assessing HER expression is complicated by tumor heterogeneity and discrepancies between primary and metastatic sites. In this study, we retrospectively analyzed HER amplification and expression in 16 pairs of primary endometrial serous carcinoma resections and corresponding metastases. HER2 status was determined using immunohistochemistry (IHC), with criteria based on the percentage and intensity of tumor cell staining. Confirmatory techniques, such as dual in situ hybridization (DISH) and fluorescence in situ hybridization (FISH), were also employed. This study reports on the concordance rates and the presence and pattern of HER2 heterogeneity. Our results showed an 87.5% concordance rate in HER2 amplification status between primary and metastatic sites, with 33% of cases scored as 2+ being amplified. Heterogeneity was observed in 100% of amplified cases and 95% of non-amplified cases on in situ testing, with variations in heterogeneity patterns between techniques. In conclusion, our findings emphasize the importance of testing both primary and metastatic sites or recurrences, with a concordance rate of 87.5%. In addition, a review of the literature and combining the results showed a concordance rate of up to 68%. The presence and pattern of heterogeneity, particularly in cases of mosaic or clustered heterogeneity in the primary tumor, may serve as reliable indicators of concordance, predicting a non-amplified HER2 status in corresponding metastases.
Full article
Figure 1
Open AccessArticle
A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke
by
Alexey Loktionov, Ksenia Kobzeva, Anna Dorofeeva, Maryana Babkina, Elizaveta Kolodezhnaya and Olga Bushueva
J. Mol. Pathol. 2024, 5(3), 385-404; https://doi.org/10.3390/jmp5030026 - 14 Sep 2024
Abstract
►▼
Show Figures
Cardiovascular diseases (CVDs) significantly exacerbate the severity and mortality of COVID-19. We aimed to investigate whether GWAS-significant SNPs correlate with CVDs in severe COVID-19 patients. DNA samples from 199 patients with severe COVID-19 hospitalized in intensive care units were genotyped using probe-based PCR
[...] Read more.
Cardiovascular diseases (CVDs) significantly exacerbate the severity and mortality of COVID-19. We aimed to investigate whether GWAS-significant SNPs correlate with CVDs in severe COVID-19 patients. DNA samples from 199 patients with severe COVID-19 hospitalized in intensive care units were genotyped using probe-based PCR for 10 GWAS SNPs previously implicated in severe COVID-19 outcomes. SNPs rs17713054 SLC6A20-LZTFL1 (risk allele A, OR = 2.14, 95% CI 1.06–4.36, p = 0.03), rs12610495 DPP9 (risk allele G, OR = 1.69, 95% CI 1.02–2.81, p = 0.04), and rs7949972 ELF5 (risk allele T, OR = 2.57, 95% CI 1.43–4.61, p = 0.0009) were associated with increased risk of coronary artery disease (CAD). SNPs rs7949972 ELF5 (OR = 2.67, 95% CI 1.38–5.19, p = 0.003) and rs61882275 ELF5 (risk allele A, OR = 1.98, 95% CI 1.14–3.45, p = 0.01) were linked to a higher risk of cerebral stroke (CS). No associations were observed with AH. Bioinformatics analysis revealed the involvement of GWAS-significant loci in atherosclerosis, inflammation, oxidative stress, angiogenesis, and apoptosis, which provides evidence of their role in the molecular mechanisms of CVDs. This study provides novel insights into the associations between GWAS-identified SNPs and the risk of CAD and CS.
Full article
Graphical abstract
Open AccessArticle
Brain and Serum Membrane Vesicle (Exosome) Profiles in Experimental Alcohol-Related Brain Degeneration: Forging the Path to Non-Invasive Liquid Biopsy Diagnostics
by
Suzanne M. De La Monte, Yiwen Yang and Ming Tong
J. Mol. Pathol. 2024, 5(3), 360-384; https://doi.org/10.3390/jmp5030025 - 10 Sep 2024
Abstract
►▼
Show Figures
Background: Alcohol-related brain degeneration (ARBD) is associated with cognitive–motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology
[...] Read more.
Background: Alcohol-related brain degeneration (ARBD) is associated with cognitive–motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology in ARBD could lead to therapeutic interventions. Objective: This study examines the potential utility of a non-invasive strategy for detecting WM ARBD using exosomes isolated from serum. Comparative analyses were made with paired tissue (Tx) and membrane vesicles (MVs) from the temporal lobe (TL). Methods: Long Evans rats were fed for 8 weeks with isocaloric liquid diets containing 37% or 0% caloric ethanol (n = 8/group). TL-Tx, TL-MVs, and serum exosomes (S-EVs) were used to examine ethanol’s effects on oligodendrocyte glycoprotein, astrocyte, and oxidative stress markers. Results: Ethanol significantly decreased the TL-Tx expression of platelet-derived growth factor receptor alpha (PDGFRA), 2′,3′-cyclic nucleotide 3′ phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP), and 8-OHdG, whereas in the TL-MVs, ethanol increased CNPase, PDGFRA, and 8-OHdG, but decreased MOG and GFAP concordantly with TL-Tx. Ethanol modulated the S-EV expression by reducing PLP, nestin, GFAP, and 4-hydroxynonenal (HNE). Conclusion: Chronic ethanol exposures differentially alter the expression of oligodendrocyte/myelin, astrocyte, and oxidative stress markers in the brain, brain MVs, and S-EVs. However, directionally concordant effects across all three compartments were limited. Future studies should advance these efforts by characterizing the relationship between ABRD and molecular pathological changes in brain WM-specific exosomes in serum.
Full article
Figure 1
Open AccessSystematic Review
In Silico Characterization of Inflammatory and Anti-Inflammatory Modulation in Diabetic Nephropathy: The Construction of a Genetic Panel
by
Caroline Christine Pincela da Costa, Leandro do Prado Assunção, Kamilla de Faria Santos, Laura da Silva, Rodrigo da Silva Santos and Angela Adamski da Silva Reis
J. Mol. Pathol. 2024, 5(3), 335-359; https://doi.org/10.3390/jmp5030024 - 31 Aug 2024
Abstract
►▼
Show Figures
Diabetic Nephropathy (DN) stands as a primary cause of end-stage renal disease and its etiology remains unclear. Thus, this study aims to construct a genetic panel with potential biomarkers linked to the inflammatory pathway of DN associated with the pathology’s susceptibility. Through a
[...] Read more.
Diabetic Nephropathy (DN) stands as a primary cause of end-stage renal disease and its etiology remains unclear. Thus, this study aims to construct a genetic panel with potential biomarkers linked to the inflammatory pathway of DN associated with the pathology’s susceptibility. Through a systematic review and meta-analysis, we selected observational studies in English, Portuguese, and Spanish, selected from the PubMed, SCOPUS, Virtual Health Library, Web of Science, and EMBASE databases. Additionally, a protein–protein interaction network was constructed to list hub genes, with differential expression analysis by microarray of kidneys with DN from the GSE30529 database to further refine results. Seventy-two articles were included, and 54 polymorphisms in 37 genes were associated with the inflammatory pathway of DN. Meta-analysis indicated a higher risk of complication associated with SNPs 59029 G/A, −511 C/T, VNTR 86 bp, −308 G/A, and −1031 T/C. Bioinformatics analyses identified differentially expressed hub genes, underscoring the scarcity of studies on CCL2 and VEGF-A genes in relation to DN. This study highlighted the intrinsic relationship between inflammatory activity in the etiology and progression of DN, enabling the effective application of precision medicine in diabetic patients for potential prognosis of the complications and contributing to cost reduction in the public health system.
Full article
Figure 1
Open AccessReview
Role of Cathelicidins in Atherosclerosis and Associated Cardiovascular Diseases
by
Siarhei A. Dabravolski, Nikolay A. Orekhov, Alexey V. Churov, Irina A. Starodubtseva, Dmitry F. Beloyartsev, Tatiana I. Kovyanova, Vasily N. Sukhorukov and Alexander N. Orekhov
J. Mol. Pathol. 2024, 5(3), 319-334; https://doi.org/10.3390/jmp5030023 - 20 Aug 2024
Abstract
►▼
Show Figures
Cathelicidins (human LL-37 and rat CRAMP) are multifunctional peptides involved in various cardiovascular conditions. This review integrates the recent findings about the functional involvement of LL-37/CRAMP across atherosclerosis, acute coronary syndrome, myocardial infarction, heart failure, diabetic cardiomyopathy, and platelet aggregation/thrombosis. In atherosclerosis, LL-37
[...] Read more.
Cathelicidins (human LL-37 and rat CRAMP) are multifunctional peptides involved in various cardiovascular conditions. This review integrates the recent findings about the functional involvement of LL-37/CRAMP across atherosclerosis, acute coronary syndrome, myocardial infarction, heart failure, diabetic cardiomyopathy, and platelet aggregation/thrombosis. In atherosclerosis, LL-37 interacts with scavenger receptors to modulate lipid metabolism and binds with mitochondrial DNA and lipoproteins. In acute coronary syndrome, LL-37 influences T cell responses and mitigates calcification within atherosclerotic plaques. During myocardial infarction and ischaemia/reperfusion injury, LL-37/CRAMP exhibits dual roles: protecting against myocardial damage through the AKT and ERK1/2 signalling pathways, while exacerbating inflammation via TLR4 and NLRP3 inflammasome activation. In heart failure, LL-37/CRAMP attenuates hypertrophy and fibrosis via NF-κB inhibition and the activation of the IGFR1/PI3K/AKT and TLR9/AMPK pathways. Moreover, in diabetic cardiomyopathy, these peptides alleviate oxidative stress and fibrosis by inhibiting TGFβ/Smad and AMPK/mTOR signalling and provide anti-inflammatory effects by reducing NF-κB nuclear translocation and NLRP3 inflammasome formation. LL-37/CRAMP also modulates platelet aggregation and thrombosis through the FPR2 and GPVI receptors, impacting apoptosis, autophagy, and other critical cellular processes. This comprehensive overview underscores LL-37/CRAMP as a promising therapeutic target in cardiovascular diseases, necessitating further elucidation of its intricate signalling networks and biological effects for clinical translation.
Full article
Figure 1
Open AccessArticle
mRNA Expression Level of ALK in Neuroblastoma Is Associated with Histological Subtype, ALK Mutations and ALK Immunohistochemical Protein Expression
by
Rixt S. Bruinsma, Marta F. Fiocco, Wendy W. J. de Leng, Lennart A. Kester, Karin P. S. Langenberg, Godelieve A. M. Tytgat, Max M. van Noesel, Marc H. W. A. Wijnen, Alida F. W. van der Steeg and Ronald R. de Krijger
J. Mol. Pathol. 2024, 5(3), 304-318; https://doi.org/10.3390/jmp5030022 - 1 Aug 2024
Abstract
►▼
Show Figures
ALK is related to poor survival in neuroblastoma patients. We investigated the prognostic relevance of ALK mRNA expression and the relationship with ALK immunohistochemical expression, histological subtype and ALK aberrations. Whole transcriptome sequencing data were available from 54 patients. Overall survival (OS) and
[...] Read more.
ALK is related to poor survival in neuroblastoma patients. We investigated the prognostic relevance of ALK mRNA expression and the relationship with ALK immunohistochemical expression, histological subtype and ALK aberrations. Whole transcriptome sequencing data were available from 54 patients. Overall survival (OS) and event-free survival (EFS) were estimated with Kaplan–Meier’s methodology. ALK protein expression was analyzed by immunohistochemistry. ALK aberrations were detected using whole exome sequencing, single nucleotide polymorphism array, next generation sequencing and/or fluorescence in situ hybridization. OS was 74.8% and EFS was 60%. ALK mRNA expression was not associated with OS (HR 1.127, 95% CI (0.812–1.854), p = 0.331) and adjusted EFS (HR 1.134, 95% CI (0.783–1.644), p = 0.505), but was associated with histological subtype (OR 1.914, 95% CI (1.083–3.382), p = 0.025) and ALK protein expression (negative versus weak: OR 2.829, 95% CI (1.290–6.204), p = 0.009) (negative versus moderate/strong: OR 2.934, 95% CI (0.889–9.679), p = 0.077). ALK mutated tumors had significantly higher ALK mRNA expression than non-mutated tumors (p < 0.001). MYCN-amplified neuroblastomas have higher MYCN mRNA expression (p ≤ 0.001), but not ALK mRNA expression (p = 0.553). ALK mRNA expression is higher in ALK mutated neuroblastomas and is associated with poorer differentiation degree and higher protein expression. ALK mRNA expression is not significantly associated with OS and EFS.
Full article
Figure 1
Open AccessArticle
Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma
by
Chidimma Agatha Akpa, Cora Husemann, Chris Allen, Ann-Christin von Brünneck, Jana Ihlow and Michael Hummel
J. Mol. Pathol. 2024, 5(3), 292-303; https://doi.org/10.3390/jmp5030021 - 4 Jul 2024
Abstract
►▼
Show Figures
Mucosa-associated lymphoid tissue (MALT) lymphomas are slow-growing B-cell lymphomas mainly diagnosed in the stomach and termed gastric MALT lymphoma (G-MALT). Despite histological evaluation, immunostaining, and additional B-cell clonality analysis by fragment analysis, a clear-cut diagnosis is not feasible in all cases, especially for
[...] Read more.
Mucosa-associated lymphoid tissue (MALT) lymphomas are slow-growing B-cell lymphomas mainly diagnosed in the stomach and termed gastric MALT lymphoma (G-MALT). Despite histological evaluation, immunostaining, and additional B-cell clonality analysis by fragment analysis, a clear-cut diagnosis is not feasible in all cases, especially for clinical follow-up of patients after treatment. We examined clonally rearranged immunoglobulin heavy- and light-chain gene sequences of 36 genomic DNA samples from six different patients obtained at different time points over the course of several years using the OncomineTM B-cell receptor pan-clonality next-generation sequencing (NGS) assay. Each case consisted of samples diagnosed with G-MALT and samples without evidence of lymphoma, based on histological examinations. We show a robust correlation (100%) of the results between the applied NGS method and histology-diagnosed G-MALT-positive patients. We also detected malignant clonotypes in samples where histology assessment failed to provide clear evidence of G-MALT (15 out of 19 samples). Furthermore, this method revealed malignant clonotypes much earlier in the disease course, with NGS of the immunoglobulin light chain being crucial in complementing immunoglobulin heavy-chain analysis. Hence, the value of NGS in routine lymphoma diagnostics is greatly significant and can be explored in order to provide better diagnoses and proffer the early detection of lymphoma relapse.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Conferences
Special Issues
Special Issue in
JMP
Beyond Genomics: Epigenetic and Transcriptomic Dynamics in Tumor Progression
Guest Editor: Dario De BiaseDeadline: 28 February 2025
Special Issue in
JMP
Automation in the Pathology Laboratory
Guest Editors: Albino Eccher, Stefano Marletta, Viscardo Paolo FabbriDeadline: 20 July 2025
Special Issue in
JMP
Advancing Cancer Diagnosis: Integrating Molecular Pathology into Histopathology for Solid Tumors
Guest Editor: Giuseppe BroggiDeadline: 31 October 2025
Topical Collections
Topical Collection in
JMP
Feature Papers in Journal of Molecular Pathology
Collection Editors: Giancarlo Troncone, Pasquale Pisapia
Topical Collection in
JMP
Juggling the Various Facets of Modern Anatomic Pathology
Collection Editors: Pasquale Pisapia, Giancarlo Troncone