Documentation ¶
Overview ¶
Package bits implements bit counting and manipulation functions for the predeclared unsigned integer types.
Functions in this package may be implemented directly by the compiler, for better performance. For those functions the code in this package will not be used. Which functions are implemented by the compiler depends on the architecture and the Go release.
Index ¶
- Constants
- func Add(x, y, carry uint) (sum, carryOut uint)
- func Add32(x, y, carry uint32) (sum, carryOut uint32)
- func Add64(x, y, carry uint64) (sum, carryOut uint64)
- func Div(hi, lo, y uint) (quo, rem uint)
- func Div32(hi, lo, y uint32) (quo, rem uint32)
- func Div64(hi, lo, y uint64) (quo, rem uint64)
- func LeadingZeros(x uint) int
- func LeadingZeros16(x uint16) int
- func LeadingZeros32(x uint32) int
- func LeadingZeros64(x uint64) int
- func LeadingZeros8(x uint8) int
- func Len(x uint) int
- func Len16(x uint16) (n int)
- func Len32(x uint32) (n int)
- func Len64(x uint64) (n int)
- func Len8(x uint8) int
- func Mul(x, y uint) (hi, lo uint)
- func Mul32(x, y uint32) (hi, lo uint32)
- func Mul64(x, y uint64) (hi, lo uint64)
- func OnesCount(x uint) int
- func OnesCount16(x uint16) int
- func OnesCount32(x uint32) int
- func OnesCount64(x uint64) int
- func OnesCount8(x uint8) int
- func Rem(hi, lo, y uint) uint
- func Rem32(hi, lo, y uint32) uint32
- func Rem64(hi, lo, y uint64) uint64
- func Reverse(x uint) uint
- func Reverse16(x uint16) uint16
- func Reverse32(x uint32) uint32
- func Reverse64(x uint64) uint64
- func Reverse8(x uint8) uint8
- func ReverseBytes(x uint) uint
- func ReverseBytes16(x uint16) uint16
- func ReverseBytes32(x uint32) uint32
- func ReverseBytes64(x uint64) uint64
- func RotateLeft(x uint, k int) uint
- func RotateLeft16(x uint16, k int) uint16
- func RotateLeft32(x uint32, k int) uint32
- func RotateLeft64(x uint64, k int) uint64
- func RotateLeft8(x uint8, k int) uint8
- func Sub(x, y, borrow uint) (diff, borrowOut uint)
- func Sub32(x, y, borrow uint32) (diff, borrowOut uint32)
- func Sub64(x, y, borrow uint64) (diff, borrowOut uint64)
- func TrailingZeros(x uint) int
- func TrailingZeros16(x uint16) int
- func TrailingZeros32(x uint32) int
- func TrailingZeros64(x uint64) int
- func TrailingZeros8(x uint8) int
Examples ¶
- Add32
- Add64
- Div32
- Div64
- LeadingZeros16
- LeadingZeros32
- LeadingZeros64
- LeadingZeros8
- Len16
- Len32
- Len64
- Len8
- Mul32
- Mul64
- OnesCount
- OnesCount16
- OnesCount32
- OnesCount64
- OnesCount8
- Reverse16
- Reverse32
- Reverse64
- Reverse8
- ReverseBytes16
- ReverseBytes32
- ReverseBytes64
- RotateLeft16
- RotateLeft32
- RotateLeft64
- RotateLeft8
- Sub32
- Sub64
- TrailingZeros16
- TrailingZeros32
- TrailingZeros64
- TrailingZeros8
Constants ¶
const UintSize = uintSize
UintSize is the size of a uint in bits.
Variables ¶
This section is empty.
Functions ¶
func Add ¶ added in go1.12
Add returns the sum with carry of x, y and carry: sum = x + y + carry. The carry input must be 0 or 1; otherwise the behavior is undefined. The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
func Add32 ¶ added in go1.12
Add32 returns the sum with carry of x, y and carry: sum = x + y + carry. The carry input must be 0 or 1; otherwise the behavior is undefined. The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 33<<32 + 12 n1 := []uint32{33, 12} // Second number is 21<<32 + 23 n2 := []uint32{21, 23} // Add them together without producing carry. d1, carry := bits.Add32(n1[1], n2[1], 0) d0, _ := bits.Add32(n1[0], n2[0], carry) nsum := []uint32{d0, d1} fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) // First number is 1<<32 + 2147483648 n1 = []uint32{1, 0x80000000} // Second number is 1<<32 + 2147483648 n2 = []uint32{1, 0x80000000} // Add them together producing carry. d1, carry = bits.Add32(n1[1], n2[1], 0) d0, _ = bits.Add32(n1[0], n2[0], carry) nsum = []uint32{d0, d1} fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) }
Output: [33 12] + [21 23] = [54 35] (carry bit was 0) [1 2147483648] + [1 2147483648] = [3 0] (carry bit was 1)
func Add64 ¶ added in go1.12
Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. The carry input must be 0 or 1; otherwise the behavior is undefined. The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 33<<64 + 12 n1 := []uint64{33, 12} // Second number is 21<<64 + 23 n2 := []uint64{21, 23} // Add them together without producing carry. d1, carry := bits.Add64(n1[1], n2[1], 0) d0, _ := bits.Add64(n1[0], n2[0], carry) nsum := []uint64{d0, d1} fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) // First number is 1<<64 + 9223372036854775808 n1 = []uint64{1, 0x8000000000000000} // Second number is 1<<64 + 9223372036854775808 n2 = []uint64{1, 0x8000000000000000} // Add them together producing carry. d1, carry = bits.Add64(n1[1], n2[1], 0) d0, _ = bits.Add64(n1[0], n2[0], carry) nsum = []uint64{d0, d1} fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) }
Output: [33 12] + [21 23] = [54 35] (carry bit was 0) [1 9223372036854775808] + [1 9223372036854775808] = [3 0] (carry bit was 1)
func Div ¶ added in go1.12
Div returns the quotient and remainder of (hi, lo) divided by y: quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper half in parameter hi and the lower half in parameter lo. Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func Div32 ¶ added in go1.12
Div32 returns the quotient and remainder of (hi, lo) divided by y: quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper half in parameter hi and the lower half in parameter lo. Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 0<<32 + 6 n1 := []uint32{0, 6} // Second number is 0<<32 + 3 n2 := []uint32{0, 3} // Divide them together. quo, rem := bits.Div32(n1[0], n1[1], n2[1]) nsum := []uint32{quo, rem} fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum) // First number is 2<<32 + 2147483648 n1 = []uint32{2, 0x80000000} // Second number is 0<<32 + 2147483648 n2 = []uint32{0, 0x80000000} // Divide them together. quo, rem = bits.Div32(n1[0], n1[1], n2[1]) nsum = []uint32{quo, rem} fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum) }
Output: [0 6] / 3 = [2 0] [2 2147483648] / 2147483648 = [5 0]
func Div64 ¶ added in go1.12
Div64 returns the quotient and remainder of (hi, lo) divided by y: quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper half in parameter hi and the lower half in parameter lo. Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 0<<64 + 6 n1 := []uint64{0, 6} // Second number is 0<<64 + 3 n2 := []uint64{0, 3} // Divide them together. quo, rem := bits.Div64(n1[0], n1[1], n2[1]) nsum := []uint64{quo, rem} fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum) // First number is 2<<64 + 9223372036854775808 n1 = []uint64{2, 0x8000000000000000} // Second number is 0<<64 + 9223372036854775808 n2 = []uint64{0, 0x8000000000000000} // Divide them together. quo, rem = bits.Div64(n1[0], n1[1], n2[1]) nsum = []uint64{quo, rem} fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum) }
Output: [0 6] / 3 = [2 0] [2 9223372036854775808] / 9223372036854775808 = [5 0]
func LeadingZeros ¶
LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
func LeadingZeros16 ¶
LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("LeadingZeros16(%016b) = %d\n", 1, bits.LeadingZeros16(1)) }
Output: LeadingZeros16(0000000000000001) = 15
func LeadingZeros32 ¶
LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("LeadingZeros32(%032b) = %d\n", 1, bits.LeadingZeros32(1)) }
Output: LeadingZeros32(00000000000000000000000000000001) = 31
func LeadingZeros64 ¶
LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("LeadingZeros64(%064b) = %d\n", 1, bits.LeadingZeros64(1)) }
Output: LeadingZeros64(0000000000000000000000000000000000000000000000000000000000000001) = 63
func LeadingZeros8 ¶
LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("LeadingZeros8(%08b) = %d\n", 1, bits.LeadingZeros8(1)) }
Output: LeadingZeros8(00000001) = 7
func Len ¶
Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len16 ¶
Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("Len16(%016b) = %d\n", 8, bits.Len16(8)) }
Output: Len16(0000000000001000) = 4
func Len32 ¶
Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("Len32(%032b) = %d\n", 8, bits.Len32(8)) }
Output: Len32(00000000000000000000000000001000) = 4
func Len64 ¶
Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("Len64(%064b) = %d\n", 8, bits.Len64(8)) }
Output: Len64(0000000000000000000000000000000000000000000000000000000000001000) = 4
func Len8 ¶
Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("Len8(%08b) = %d\n", 8, bits.Len8(8)) }
Output: Len8(00001000) = 4
func Mul ¶ added in go1.12
Mul returns the full-width product of x and y: (hi, lo) = x * y with the product bits' upper half returned in hi and the lower half returned in lo.
This function's execution time does not depend on the inputs.
func Mul32 ¶ added in go1.12
Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y with the product bits' upper half returned in hi and the lower half returned in lo.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 0<<32 + 12 n1 := []uint32{0, 12} // Second number is 0<<32 + 12 n2 := []uint32{0, 12} // Multiply them together without producing overflow. hi, lo := bits.Mul32(n1[1], n2[1]) nsum := []uint32{hi, lo} fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum) // First number is 0<<32 + 2147483648 n1 = []uint32{0, 0x80000000} // Second number is 0<<32 + 2 n2 = []uint32{0, 2} // Multiply them together producing overflow. hi, lo = bits.Mul32(n1[1], n2[1]) nsum = []uint32{hi, lo} fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum) }
Output: 12 * 12 = [0 144] 2147483648 * 2 = [1 0]
func Mul64 ¶ added in go1.12
Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y with the product bits' upper half returned in hi and the lower half returned in lo.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 0<<64 + 12 n1 := []uint64{0, 12} // Second number is 0<<64 + 12 n2 := []uint64{0, 12} // Multiply them together without producing overflow. hi, lo := bits.Mul64(n1[1], n2[1]) nsum := []uint64{hi, lo} fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum) // First number is 0<<64 + 9223372036854775808 n1 = []uint64{0, 0x8000000000000000} // Second number is 0<<64 + 2 n2 = []uint64{0, 2} // Multiply them together producing overflow. hi, lo = bits.Mul64(n1[1], n2[1]) nsum = []uint64{hi, lo} fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum) }
Output: 12 * 12 = [0 144] 9223372036854775808 * 2 = [1 0]
func OnesCount ¶
OnesCount returns the number of one bits ("population count") in x.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("OnesCount(%b) = %d\n", 14, bits.OnesCount(14)) }
Output: OnesCount(1110) = 3
func OnesCount16 ¶
OnesCount16 returns the number of one bits ("population count") in x.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("OnesCount16(%016b) = %d\n", 14, bits.OnesCount16(14)) }
Output: OnesCount16(0000000000001110) = 3
func OnesCount32 ¶
OnesCount32 returns the number of one bits ("population count") in x.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("OnesCount32(%032b) = %d\n", 14, bits.OnesCount32(14)) }
Output: OnesCount32(00000000000000000000000000001110) = 3
func OnesCount64 ¶
OnesCount64 returns the number of one bits ("population count") in x.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("OnesCount64(%064b) = %d\n", 14, bits.OnesCount64(14)) }
Output: OnesCount64(0000000000000000000000000000000000000000000000000000000000001110) = 3
func OnesCount8 ¶
OnesCount8 returns the number of one bits ("population count") in x.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("OnesCount8(%08b) = %d\n", 14, bits.OnesCount8(14)) }
Output: OnesCount8(00001110) = 3
func Rem ¶ added in go1.14
Rem returns the remainder of (hi, lo) divided by y. Rem panics for y == 0 (division by zero) but, unlike Div, it doesn't panic on a quotient overflow.
func Rem32 ¶ added in go1.14
Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics for y == 0 (division by zero) but, unlike Div32, it doesn't panic on a quotient overflow.
func Rem64 ¶ added in go1.14
Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics for y == 0 (division by zero) but, unlike Div64, it doesn't panic on a quotient overflow.
func Reverse16 ¶
Reverse16 returns the value of x with its bits in reversed order.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%016b\n", 19) fmt.Printf("%016b\n", bits.Reverse16(19)) }
Output: 0000000000010011 1100100000000000
func Reverse32 ¶
Reverse32 returns the value of x with its bits in reversed order.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%032b\n", 19) fmt.Printf("%032b\n", bits.Reverse32(19)) }
Output: 00000000000000000000000000010011 11001000000000000000000000000000
func Reverse64 ¶
Reverse64 returns the value of x with its bits in reversed order.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%064b\n", 19) fmt.Printf("%064b\n", bits.Reverse64(19)) }
Output: 0000000000000000000000000000000000000000000000000000000000010011 1100100000000000000000000000000000000000000000000000000000000000
func Reverse8 ¶
Reverse8 returns the value of x with its bits in reversed order.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%08b\n", 19) fmt.Printf("%08b\n", bits.Reverse8(19)) }
Output: 00010011 11001000
func ReverseBytes ¶
ReverseBytes returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
func ReverseBytes16 ¶
ReverseBytes16 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%016b\n", 15) fmt.Printf("%016b\n", bits.ReverseBytes16(15)) }
Output: 0000000000001111 0000111100000000
func ReverseBytes32 ¶
ReverseBytes32 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%032b\n", 15) fmt.Printf("%032b\n", bits.ReverseBytes32(15)) }
Output: 00000000000000000000000000001111 00001111000000000000000000000000
func ReverseBytes64 ¶
ReverseBytes64 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%064b\n", 15) fmt.Printf("%064b\n", bits.ReverseBytes64(15)) }
Output: 0000000000000000000000000000000000000000000000000000000000001111 0000111100000000000000000000000000000000000000000000000000000000
func RotateLeft ¶
RotateLeft returns the value of x rotated left by (k mod UintSize) bits. To rotate x right by k bits, call RotateLeft(x, -k).
This function's execution time does not depend on the inputs.
func RotateLeft16 ¶
RotateLeft16 returns the value of x rotated left by (k mod 16) bits. To rotate x right by k bits, call RotateLeft16(x, -k).
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%016b\n", 15) fmt.Printf("%016b\n", bits.RotateLeft16(15, 2)) fmt.Printf("%016b\n", bits.RotateLeft16(15, -2)) }
Output: 0000000000001111 0000000000111100 1100000000000011
func RotateLeft32 ¶
RotateLeft32 returns the value of x rotated left by (k mod 32) bits. To rotate x right by k bits, call RotateLeft32(x, -k).
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%032b\n", 15) fmt.Printf("%032b\n", bits.RotateLeft32(15, 2)) fmt.Printf("%032b\n", bits.RotateLeft32(15, -2)) }
Output: 00000000000000000000000000001111 00000000000000000000000000111100 11000000000000000000000000000011
func RotateLeft64 ¶
RotateLeft64 returns the value of x rotated left by (k mod 64) bits. To rotate x right by k bits, call RotateLeft64(x, -k).
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%064b\n", 15) fmt.Printf("%064b\n", bits.RotateLeft64(15, 2)) fmt.Printf("%064b\n", bits.RotateLeft64(15, -2)) }
Output: 0000000000000000000000000000000000000000000000000000000000001111 0000000000000000000000000000000000000000000000000000000000111100 1100000000000000000000000000000000000000000000000000000000000011
func RotateLeft8 ¶
RotateLeft8 returns the value of x rotated left by (k mod 8) bits. To rotate x right by k bits, call RotateLeft8(x, -k).
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("%08b\n", 15) fmt.Printf("%08b\n", bits.RotateLeft8(15, 2)) fmt.Printf("%08b\n", bits.RotateLeft8(15, -2)) }
Output: 00001111 00111100 11000011
func Sub ¶ added in go1.12
Sub returns the difference of x, y and borrow: diff = x - y - borrow. The borrow input must be 0 or 1; otherwise the behavior is undefined. The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
func Sub32 ¶ added in go1.12
Sub32 returns the difference of x, y and borrow, diff = x - y - borrow. The borrow input must be 0 or 1; otherwise the behavior is undefined. The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 33<<32 + 23 n1 := []uint32{33, 23} // Second number is 21<<32 + 12 n2 := []uint32{21, 12} // Sub them together without producing carry. d1, carry := bits.Sub32(n1[1], n2[1], 0) d0, _ := bits.Sub32(n1[0], n2[0], carry) nsum := []uint32{d0, d1} fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) // First number is 3<<32 + 2147483647 n1 = []uint32{3, 0x7fffffff} // Second number is 1<<32 + 2147483648 n2 = []uint32{1, 0x80000000} // Sub them together producing carry. d1, carry = bits.Sub32(n1[1], n2[1], 0) d0, _ = bits.Sub32(n1[0], n2[0], carry) nsum = []uint32{d0, d1} fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) }
Output: [33 23] - [21 12] = [12 11] (carry bit was 0) [3 2147483647] - [1 2147483648] = [1 4294967295] (carry bit was 1)
func Sub64 ¶ added in go1.12
Sub64 returns the difference of x, y and borrow: diff = x - y - borrow. The borrow input must be 0 or 1; otherwise the behavior is undefined. The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { // First number is 33<<64 + 23 n1 := []uint64{33, 23} // Second number is 21<<64 + 12 n2 := []uint64{21, 12} // Sub them together without producing carry. d1, carry := bits.Sub64(n1[1], n2[1], 0) d0, _ := bits.Sub64(n1[0], n2[0], carry) nsum := []uint64{d0, d1} fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) // First number is 3<<64 + 9223372036854775807 n1 = []uint64{3, 0x7fffffffffffffff} // Second number is 1<<64 + 9223372036854775808 n2 = []uint64{1, 0x8000000000000000} // Sub them together producing carry. d1, carry = bits.Sub64(n1[1], n2[1], 0) d0, _ = bits.Sub64(n1[0], n2[0], carry) nsum = []uint64{d0, d1} fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry) }
Output: [33 23] - [21 12] = [12 11] (carry bit was 0) [3 9223372036854775807] - [1 9223372036854775808] = [1 18446744073709551615] (carry bit was 1)
func TrailingZeros ¶
TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
func TrailingZeros16 ¶
TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("TrailingZeros16(%016b) = %d\n", 14, bits.TrailingZeros16(14)) }
Output: TrailingZeros16(0000000000001110) = 1
func TrailingZeros32 ¶
TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("TrailingZeros32(%032b) = %d\n", 14, bits.TrailingZeros32(14)) }
Output: TrailingZeros32(00000000000000000000000000001110) = 1
func TrailingZeros64 ¶
TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("TrailingZeros64(%064b) = %d\n", 14, bits.TrailingZeros64(14)) }
Output: TrailingZeros64(0000000000000000000000000000000000000000000000000000000000001110) = 1
func TrailingZeros8 ¶
TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
Example ¶
package main import ( "fmt" "math/bits" ) func main() { fmt.Printf("TrailingZeros8(%08b) = %d\n", 14, bits.TrailingZeros8(14)) }
Output: TrailingZeros8(00001110) = 1
Types ¶
This section is empty.