Young et al., 2012 - Google Patents
Effects of H2O2 addition to the cell balance and self-discharge of Ni/MH batteries with AB5 and A2B7 alloysYoung et al., 2012
- Document ID
- 9915301949803031275
- Author
- Young K
- Wu A
- Qiu Z
- Tan J
- Mays W
- Publication year
- Publication venue
- International journal of hydrogen energy
External Links
Snippet
In this paper we have compared nickel/metal hydride batteries made from AB5 and Nd-only A2B7 alloys with or without addition of hydrogen peroxide (H2O2). The biggest advantages Nd-only A2B7 alloys have over AB5 alloys are: a higher positive electrode utilization rate …
- 229910045601 alloy 0 title abstract description 109
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/124—Alkaline secondary batteries, e.g. NiCd or NiMH
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
- Y02E60/324—Reversible uptake of hydrogen by an appropriate medium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review | |
Kohno et al. | Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14 | |
Uesato et al. | Hybrid nickel-metal hydride/hydrogen battery | |
Young et al. | Effects of H2O2 addition to the cell balance and self-discharge of Ni/MH batteries with AB5 and A2B7 alloys | |
Shuqin et al. | Influences of molybdenum substitution for cobalt on the phase structure and electrochemical kinetic properties of AB5-type hydrogen storage alloys | |
Mu et al. | Degradation kinetics of discharge capacity for amorphous Mg–Ni electrode | |
Zhao et al. | Effect of surface treatment on electrochemical properties of MmNi3. 8Co0. 75Mn0. 4Al0. 2 hydrogen storage alloy | |
Yang et al. | Effect of substituting B for Ni on electrochemical kinetic properties of AB5-type hydrogen storage alloys for high-power nickel/metal hydride batteries | |
Cui et al. | Nickel–metal hydride (Ni–MH) battery using Mg2Ni-type hydrogen storage alloy | |
Zhang et al. | Effect of La/Ce ratio on the structure and electrochemical characteristics of La0. 7− xCexMg0. 3Ni2. 8Co0. 5 (x= 0.1–0.5) hydrogen storage alloys | |
Liao et al. | Effect of Co substitution for Ni on the structural and electrochemical properties of La2Mg (Ni1− xCox) 9 (x= 0.1–0.5) hydrogen storage electrode alloys | |
Yuan et al. | Electrochemical characteristics of Mg2− xAlxNi (0≤ x≤ 0.5) alloys | |
Geng et al. | Charging/discharging stability of a metal hydride battery electrode | |
Tang et al. | Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0. 8Mg0. 2Ni3. 2Co0. 6− xAlx (x= 0–0.6) alloys | |
Jiang et al. | Effect of substituting Mn for Ni on the hydrogen storage and electrochemical properties of ReNi2. 6− xMnxCo0. 9 alloys | |
Geng et al. | Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode | |
Geng et al. | Hydrogen-absorbing alloys for the NICKEL–METAL hydride battery | |
Srivastava et al. | Investigations of AB5-type negative electrode for nickel-metal hydride cell with regard to electrochemical and microstructural characteristics | |
Zhou et al. | Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4. 2Co0. 3Mn0. 4Al0. 3Mg0. 03 hydrogen storage alloy | |
Hu | Improvement in capacity of cobalt-free Mm-based hydrogen storage alloys with good cycling stability | |
Zhai et al. | Electrochemical and kinetic properties of Ti41. 5Zr41. 5Ni17 quasicrystal and LiH composite materials | |
Tang et al. | Study on a low-cobalt Ml0. 8Mg0. 2Ni3. 2Co0. 3Al0. 3 alloy | |
Liao et al. | The structural and electrochemical properties of La2Mg (Ni0. 8− xCo0. 2Alx) 9 (x= 0–0.03) hydrogen storage electrode alloys | |
Yanzhi et al. | Electrochemical characteristics and synergetic effect of Ti0. 10Zr0. 15V0. 35Cr0. 10Ni0. 30-10 wt.% LaNi5 hydrogen storage composite electrode | |
Han et al. | Electrochemical characteristics of the interface between the metal hydride electrode and electrolyte for an advanced nickel/metal hydride battery |