Jjunju et al., 2014 - Google Patents

Ambient analysis of nitrogen compounds in petroleum oil using desorption atmospheric pressure chemical ionization

Jjunju et al., 2014

View PDF
Document ID
981870852604183741
Author
Jjunju F
Mahera S
Lib A
Hsub H
Weib P
Taylora S
Cooksb R
Publication year
Publication venue
tandem

External Links

Snippet

The presence of nitrogen compounds in crude oil, even at low concentrations, can poison the activity of catalysts used during oil processing and refining. 1-4 For this reason, the identification and quantification of nitrogen-containing compounds (eg indole, carbazole …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0413Sample holders or containers for automated handling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0404Capillaries used for transferring samples or ions
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/107Arrangements for using several ion sources
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/94Development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode

Similar Documents

Publication Publication Date Title
US8648297B2 (en) Coupling of liquid chromatography with mass spectrometry by liquid sample desorption electrospray ionization (DESI)
CN103415909B (en) For the system and method for sample analysis
Ghosh et al. Influence of ionization source design on matrix effects during LC–ESI-MS/MS analysis
Hagenhoff et al. Determination of peroxide explosive TATP and related compounds by dielectric barrier discharge ionization-mass spectrometry (DBDI-MS)
He et al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application
Ma et al. Real-time monitoring of chemical reactions by mass spectrometry utilizing a low-temperature plasma probe
Xu et al. Study of discontinuous atmospheric pressure interfaces for mass spectrometry instrumentation development
Fredenhagen et al. Evaluation of the optimization space for atmospheric pressure photoionization (APPI) in comparison with APCI
CN105021718A (en) Liquid chromatography and open-type ionization mass spectrometry online combined interface and detection method
Shelley et al. Ambient mass spectrometry: Approaching the chemical analysis of things as they are
US10408801B2 (en) Dynamic post column addition
Ducati et al. Improved metabolite characterization by liquid chromatography–Tandem mass spectrometry through electron impact type fragments from adduct ions
Pyatkivskyy et al. Coupling of ion‐molecule reactions with liquid chromatography on a quadrupole ion trap mass spectrometer
Jjunju et al. Ambient analysis of nitrogen compounds in petroleum oil using desorption atmospheric pressure chemical ionization
Ilbeigi et al. Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface
CN210245452U (en) Ion-induced spray ionization device
US20140224983A1 (en) Ion Fragmentation
Ahonen et al. Feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization mass spectrometry in analyzing anabolic steroids in urine samples
Wang et al. Solvent assisted thermal desorption for the on-site detection of illegal drugs by a miniature ion trap mass spectrometer
US9659760B2 (en) Automated adjustment of capillary voltage based on the elution conditions to retain optimal ionization conditions
Berkout et al. ECD-like peptide fragmentation at atmospheric pressure
CN216160521U (en) Surface explosive substance detection device based on arc plasma
Bhosale et al. A Brief Review on Hyphenated Techniques
CN113552208B (en) Method for detecting organic explosive substances
US11469092B2 (en) Multi-channel pulsed valve inlet system and method