Cutaia et al., 2015 - Google Patents
Vertical InAs-Si gate-all-around tunnel FETs integrated on Si using selective epitaxy in nanotube templatesCutaia et al., 2015
View PDF- Document ID
- 9801523082716701038
- Author
- Cutaia D
- Moselund K
- Borg M
- Schmid H
- Gignac L
- Breslin C
- Karg S
- Uccelli E
- Riel H
- Publication year
- Publication venue
- IEEE Journal of the Electron Devices Society
External Links
Snippet
In this paper, we introduce p-channel InAs-Si tunnel field-effect transistors (TFETs) fabricated using selective epitaxy in nanotube templates. We demonstrate the versatility of this approach, which enables III-V nanowire integration on Si substrates of any crystalline …
- 239000002071 nanotube 0 title abstract description 10
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cutaia et al. | Vertical InAs-Si gate-all-around tunnel FETs integrated on Si using selective epitaxy in nanotube templates | |
Li et al. | AlGaSb/InAs Tunnel Field-Effect Transistor With On-Current of 78$\mu\hbox {A}/\mu\hbox {m} $ at 0.5 V | |
Riel et al. | InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs | |
Moselund et al. | Lateral InAs/Si p-type tunnel FETs integrated on Si—part 1: experimental devices | |
JP5255437B2 (en) | Semiconductor nanowire transistor | |
Moselund et al. | InAs–Si nanowire heterojunction tunnel FETs | |
Choi et al. | Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec | |
Cutaia et al. | Complementary III–V heterojunction lateral NW tunnel FET technology on Si | |
Rajamohanan et al. | 0.5 V supply voltage operation of In 0.65 Ga 0.35 As/GaAs 0.4 Sb 0.6 tunnel FET | |
US5179037A (en) | Integration of lateral and vertical quantum well transistors in the same epitaxial stack | |
McCarthy et al. | GaN HBT: toward an RF device | |
Memisevic et al. | Vertical nanowire TFETs with channel diameter down to 10 nm and point S MIN of 35 mV/decade | |
EP0159273A2 (en) | Semiconductor device | |
JPH05110086A (en) | Tunnel transistor | |
Yu et al. | ${\rm In} _ {0.53}{\rm Ga} _ {0.47}{\rm As}/{\rm GaAs} _ {0.5}{\rm Sb} _ {0.5} $ Quantum-Well Tunnel-FETs With Tunable Backward Diode Characteristics | |
Jönsson et al. | A self-aligned gate-last process applied to all-III–V CMOS on Si | |
Yeh et al. | Sb-based semiconductors for low power electronics | |
Shao et al. | Sub-10-nm diameter vertical nanowire p-type GaSb/InAsSb tunnel FETs | |
WO2012142781A1 (en) | Tunneling current amplifying transistor | |
Czornomaz et al. | Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon | |
Convertino et al. | Sub-thermionic scalable III-V tunnel field-effect transistors integrated on Si (100) | |
EP0566591B1 (en) | Semiconductor device | |
Chinni et al. | V-Shaped InAs/Al0. 5Ga0. 5Sb Vertical Tunnel FET on GaAs (001) Substrate With I $ _ {\text {ON}}=\text {433}\,\,\mu $ A. $\mu $ m $^{-\text {1}} $ at V $ _ {\text {DS}}=\text {0.5} $ V | |
Moselund et al. | Complementary III–V heterostructure tunnel FETs | |
Karthik et al. | Source extended GaSb/GaAs heterojunction GAATFET to improve I ON/I OFF ratio |