Zhang et al., 2021 - Google Patents

Zeus: Improving resource efficiency via workload colocation for massive kubernetes clusters

Zhang et al., 2021

View PDF
Document ID
9541142637348624897
Author
Zhang X
Li L
Wang Y
Chen E
Shou L
Publication year
Publication venue
IEEE Access

External Links

Snippet

With the popularity of container-based microservices and cloud-native architectures, Kubernetes has established itself as the de facto standard for container orchestration. Kubernetes is known for its advantage in easy deployment and operations for applications; …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • G06F9/5088Techniques for rebalancing the load in a distributed system involving task migration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3442Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for planning or managing the needed capacity
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring

Similar Documents

Publication Publication Date Title
Chen et al. Parties: Qos-aware resource partitioning for multiple interactive services
Rodriguez et al. Container‐based cluster orchestration systems: A taxonomy and future directions
Zhang et al. Zeus: Improving resource efficiency via workload colocation for massive kubernetes clusters
Jalaparti et al. Network-aware scheduling for data-parallel jobs: Plan when you can
Soualhia et al. Task scheduling in big data platforms: a systematic literature review
Zhang et al. Laius: Towards latency awareness and improved utilization of spatial multitasking accelerators in datacenters
Li et al. Real-time scheduling based on optimized topology and communication traffic in distributed real-time computation platform of storm
Blagodurov et al. Maximizing server utilization while meeting critical SLAs via weight-based collocation management
Xu et al. Resource pre-allocation algorithms for low-energy task scheduling of cloud computing
Yang et al. Performance-aware speculative resource oversubscription for large-scale clusters
Fallah et al. NASLA: Novel auto scaling approach based on learning automata for web application in cloud computing environment
De Souza et al. Boosting big data streaming applications in clouds with BurstFlow
Ludwig et al. Optimizing multi‐tier application performance with interference and affinity‐aware placement algorithms
Tesfatsion et al. PerfGreen: performance and energy aware resource provisioning for heterogeneous clouds
Molka et al. Contention-aware workload placement for in-memory databases in cloud environments
Salimi Beni et al. An analysis of long-tailed network latency distribution and background traffic on dragonfly+
Kambatla et al. Optimistic scheduling with service guarantees
Zhang et al. Towards reliable (and efficient) job executions in a practical geo-distributed data analytics system
Tzenetopoulos et al. Interference-aware workload placement for improving latency distribution of converged HPC/Big Data cloud infrastructures
Liu et al. Suppressing the Interference within a Datacenter: Theorems, Metric and Strategy
Zhang et al. Utility functions in autonomic workload management for DBMSs
Nabavinejad et al. Data locality and VM interference aware mitigation of data skew in hadoop leveraging modern portfolio theory
Nam et al. Workload-aware resource management for software-defined compute
Xavier et al. IntP: Quantifying cross-application interference via system-level instrumentation
Yang et al. Principled Schedulability Analysis for Distributed Storage Systems Using Thread Architecture Models