Singh et al., 2017 - Google Patents
Analysis of Pre-, Post-, and Symmetrical Dispersion Compensation Techniques using DCF on 40 X 10 Gbps WDM-PON SystemSingh et al., 2017
View PDF- Document ID
- 9502351480883182038
- Author
- Singh K
- Sarangal H
- Singh M
- Thapar S
- Publication year
- Publication venue
- Int J Latest Technol Eng Manag Appl Sci
External Links
Snippet
To reduce the dispersion and to improve the overall performance of the WDM-PON system, various dispersion compensation techniques are used in this system. In the optical communication, the dispersion compensation is mainly done by using DCF (Dispersion …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/2525—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
- H04B10/25253—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres with dispersion management, i.e. using a combination of different kind of fibres in the transmission system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2563—Four-wave mixing [FWM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/25137—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/25133—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator ; optical dispersion compensators involving optical fibres per se G02B6/293
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/25077—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using soliton propagation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5167—Duo-binary; Alternative mark inversion; Phase shaped binary transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2210/00—Indexing scheme relating to optical transmission systems
- H04B2210/25—Distortion or dispersion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Amiri et al. | Comparative simulation of thermal noise effects for photodetectors on performance of long-haul DWDM optical networks | |
Eid et al. | High modulated soliton power propagation interaction with optical fiber and optical wireless communication channels | |
Neheeda et al. | Analysis of WDM system with dispersion compensation schemes | |
Patnaik et al. | Ultra high capacity 1.28 Tbps DWDM system design and simulation using optimized modulation format | |
Mohammed | Performance evaluation of DWDM for radio over fiber system with dispersion compensation and EDFA | |
Mishra et al. | Investigation of a 16 channel 40 Gbps varied GVD DWDM system using dispersion compensating fiber | |
Senthamizhselvan et al. | Performance analysis of DWDM based fiber optic communication with different modulation schemes and dispersion compensation fiber | |
EP1566002B1 (en) | Optical communication system | |
Singh et al. | Analysis of Pre-, Post-, and Symmetrical Dispersion Compensation Techniques using DCF on 40 X 10 Gbps WDM-PON System | |
Ahuja et al. | Design and performance analysis of semiconductor optical amplifier for 16× 10Gbps DWDM transmission systems | |
Aisawa et al. | A 1580-nm band WDM transmission technology employing optical duobinary coding | |
Gupta et al. | Pre-, post, symmetric1 and 2 compensation techniques with RZ modulation | |
Gul et al. | Multistage amplified and dispersion compensated ultra-long haul DWDM link with high OSNR | |
Sugumaran et al. | Optimized FWM Parameters for FTTH Using DWDM Network | |
Onidare et al. | Optical dispersion compensation using different modulation formats | |
Kheris et al. | Analysis three dispersion compensation techniques using DCF | |
Zuhair et al. | Performance analysis of WDM-hybrid RFoFSO\FO system under different weather conditions utilizing a hybrid optical amplifier | |
Aleksejeva et al. | Performance investigation of dispersion compensation methods for WDM-PON transmission systems | |
Bobrovs et al. | Evaluation of nonlinear effect impact on optical signal transmission over combined WDM system | |
Pradhan et al. | Hybrid Multiplexing (OTDM/WDM) Technique for Fiber Optic Communication | |
Rani et al. | Bidirectional transmission of high-speed 704 gbps using 64 channels for long reach dwdm-pon-pdcf system | |
Graini et al. | Similariton spectrums application for high bit rate WDM communication systems | |
Lazim et al. | Improve Quality Factor by Using DWDM Technology for Long Distances and Different Power Levels. | |
Alsevska et al. | Comparison of chromatic dispersion compensation method efficiency for 10 Gbit/S RZ-OOK and NRZ-OOK WDM-PON transmission systems | |
Rasheed et al. | Novel approaches for suppression of four wave mixing in wdm system using concocted modulation techniques |