Wang et al., 2021 - Google Patents
TSTNN: Two-stage transformer based neural network for speech enhancement in the time domainWang et al., 2021
View PDF- Document ID
- 938644009392487728
- Author
- Wang K
- He B
- Zhu W
- Publication year
- Publication venue
- ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
External Links
Snippet
In this paper, we propose a transformer-based architecture, called two-stage transformer neural network (TSTNN) for end-to-end speech denoising in the time domain. The proposed model is composed of an encoder, a two-stage transformer module (TSTM), a masking …
- 230000001537 neural 0 title abstract description 13
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/14—Speech classification or search using statistical models, e.g. hidden Markov models [HMMs]
- G10L15/142—Hidden Markov Models [HMMs]
- G10L15/144—Training of HMMs
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/065—Adaptation
- G10L15/07—Adaptation to the speaker
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/15—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being formant information
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/09—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being zero crossing rates
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/06—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the analysis technique
- G10L25/30—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the analysis technique using neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding, i.e. using interchannel correlation to reduce redundancies, e.g. joint-stereo, intensity-coding, matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/93—Discriminating between voiced and unvoiced parts of speech signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/06—Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification
- G10L17/04—Training, enrolment or model building
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | TSTNN: Two-stage transformer based neural network for speech enhancement in the time domain | |
Zeghidour et al. | End-to-end speech recognition from the raw waveform | |
Wang et al. | Caunet: Context-aware u-net for speech enhancement in time domain | |
Tseng et al. | Combining sparse NMF with deep neural network: A new classification-based approach for speech enhancement | |
Li et al. | U-shaped transformer with frequency-band aware attention for speech enhancement | |
Do et al. | Speech source separation using variational autoencoder and bandpass filter | |
CN114495969A (en) | Voice recognition method integrating voice enhancement | |
Hasannezhad et al. | Speech enhancement with phase sensitive mask estimation using a novel hybrid neural network | |
Martinez et al. | Should deep neural nets have ears? the role of auditory features in deep learning approaches. | |
Wang et al. | Cptnn: Cross-parallel transformer neural network for time-domain speech enhancement | |
Xu et al. | Improving visual speech enhancement network by learning audio-visual affinity with multi-head attention | |
Chavan et al. | Speech recognition in noisy environment, issues and challenges: A review | |
Jannu et al. | An attention based densely connected U-NET with convolutional GRU for speech enhancement | |
Xiang et al. | Joint waveform and magnitude processing for monaural speech enhancement | |
Jannu et al. | Convolutional Transformer based Local and Global Feature Learning for Speech Enhancement | |
Wei et al. | IIFC-Net: A Monaural Speech Enhancement Network With High-Order Information Interaction and Feature Calibration | |
Sunny et al. | Feature extraction methods based on linear predictive coding and wavelet packet decomposition for recognizing spoken words in malayalam | |
Ben Messaoud et al. | Sparse representations for single channel speech enhancement based on voiced/unvoiced classification | |
Parisae et al. | Adaptive attention mechanism for single channel speech enhancement | |
Zhao et al. | Time Domain Speech Enhancement using self-attention-based subspace projection | |
Aysa et al. | Language identification in overlapped multi-lingual speeches | |
Wang et al. | Speech enhancement based on noise classification and deep neural network | |
Huang et al. | A two-stage frequency-time dilated dense network for speech enhancement | |
Xu et al. | Dual-path cross-modal attention for better audio-visual speech extraction | |
Deng et al. | Vision-Guided Speaker Embedding Based Speech Separation |